CIS 5371 Cryptography

5. Algebraic foundations



Groups

Group (G,x*)

A set G with a binary operation "*+" for which we have

o Closure

o Associativity

o Anidentity

« Each element has an inverse



Groups

Examples
« (Z,4), (4%, ), (Z£,*, - ) are all groups

Here.:

« £,={0,1,2,...,n-1},

« Z*={12,...,p-1}, for primep,

« £ *={all integers k, 0 <k < n, with gcd(k,n)=1}.
So.72,.*={1,2,,4,7,8,11,13,14}.

We have, |Zn*| = ¢(n)



Lagrange’'s theorem

Lagrange's theorem
« If His asubgroup of G then: |H| Is a factor

of |G]

« If Gisafinite group and aeG then ord(a) is a
factor of |G]|.

Examples

({1,2,4},7) is a subgroup of Z,°
The order of 2inZ," is 3: 23 =8=1 (mod 7)



Cyclic groups

A group is cyclic if it has an element whose order is
the same as the cardinality of the group.

Any such element is called a generator of the group.

Examples
Z," is a cyclic group with generator 3.

In fact, it can be shown that any group Z;, with
P prime is cyclic.



Rings

Ring (R,+,*)
« Under addition R is a commutative group
with identity O

« Under multiplication we have:
Closure, associativity, an identity 10,
commutativity and distributivity

Examples
Z(+, *) and Z, (+,%*)



Finite Fields

Field (F,+,%)
F is a ring in which all non-zero elements
have an inverse with respect to “*”

Examples
Z,(+,*), paprime



Groups on the elliptic curve

An modular elliptic curve is defined by an equation of the
form
E: y2=x3+ ax + b (mod p)
where a,b are constants in F  satisfying
A (descriminant) = 4a3 + 27b2 # 0 (mod p)
We take p a prime greater than 3. To have the points on E to
be a group we add an extra point at infinity:

O=(x.,).

= C/



Groups on the elliptic curve

The group law

See wikipedia diagrams.

http://en.wikipedia.org/wiki/Elliptic curves




Groups on the elliptic curve

Elliptic Curve Discrete Logarithm problem

Point addition:

Let P,Q < E, let ¢ be the line containing them (or the tangent
if P=Q), and R the third point of intersection of with E.

Let ¢ be the line connecting R and O. Then P+Q is the
point such that ¢‘intersects E at R,O and P+Q.

If Pis a point: nP=P + P + - + P (n times)

The ECDL problem:

Given (P, nP) find n.

(In the EC group addition corresponds to multiplication in
the field group).
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Groups on the elliptic curve

Elliptic Curve Discrete Logarithm problem

In general the cost of finding the order of an arbitrary point
in @ group is proportional to the order of the group.

The best known algorithm give us O(\ﬁ), where q is the
order of the field. This exponential in Q.

In the case of the discrete logarithm problem there are
algorithmic methods that sub-exponential in (.

So if we take g~ 210 we get difficulty 2% in brute force
attacks.

To get similar protection in a finite field we need g~ 2109
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