CIS 5371 Cryptography

5. Algebraic foundations

Groups

Group (G,*)

A set G with a binary operation "*" for which we have

- Closure
- Associativity
- An identity
- Each element has an inverse

Groups

Examples

• $(Z,+), (Z_p^*, \cdot), (Z_n^*, \cdot)$ are all groups

Here:

•
$$Z_n = \{0, 1, 2, \dots, n-1\},$$

- $Z_p^* = \{1, 2, ..., p-1\}, \text{ for prime } p,$
- $Z_n^* = \{ \text{all integers } k, 0 < k < n, \text{ with } gcd(k,n) = 1 \}.$

So:
$$Z_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}.$$

We have, $|Z_n^*| = \phi(n)$

Lagrange's theorem

Lagrange's theorem

- If H is a subgroup of G then: |H| is a factor of |G|
- If G is a finite group and $a \in G$ then ord(a) is a factor of |G|.

Examples

 $(\{1,2,4\},\cdot)$ is a subgroup of Z_7^* The order of $2 \text{ in } Z_7^*$ is $3: 2^3 \equiv 8 \equiv 1 \pmod{7}$

Cyclic groups

A group is *cyclic* if it has an element whose order is the same as the cardinality of the group.

Any such element is called a *generator* of the group.

Examples

 Z_7^* is a cyclic group with generator 3. In fact, it can be shown that any group Z_p^* , with p prime is cyclic.

Rings

Ring (*R*,+,*)

- Under addition R is a commutative group with identity 0
- Under multiplication we have:
 Closure, associativity, an identity 1≠0,
 commutativity and distributivity

Examples

Z(+, *) and $Z_n(+,*)$

Finite Fields

Field (F,+,*)

F is a ring in which all non-zero elements have an inverse with respect to "*"

Examples $Z_p(+,*)$, *p* a prime

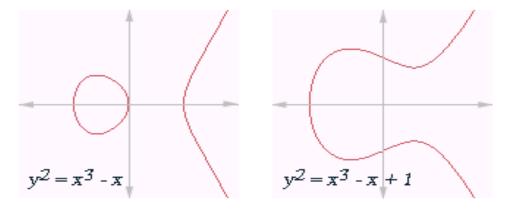
An modular elliptic curve is defined by an equation of the form

E:
$$y^2 = x^3 + ax + b \pmod{p}$$

where a,b are constants in F_p satisfying

 Δ (descriminant) = $4a^3 + 27b^2 \neq 0 \pmod{p}$ We take p a prime greater than 3. To have the points on E to be a group we add an extra point at infinity:

$$O=(x,\infty).$$



The group law

See wikipedia diagrams.

http://en.wikipedia.org/wiki/Elliptic curves

Elliptic Curve Discrete Logarithm problem Point addition:

Let $P, Q \in E$, let $\boldsymbol{\ell}$ be the line containing them (or the tangent if P=Q), and R the third point of intersection of with E. Let $\boldsymbol{\ell}$ be the line connecting R and O. Then P+Q is the point such that $\boldsymbol{\ell}$ intersects E at R, O and P+Q. If P is a point: $nP = P + P + \cdots + P(n \text{ times})$

The ECDL problem:

Given (P, nP) find n.

(In the EC group addition corresponds to multiplication in the field group).

Elliptic Curve Discrete Logarithm problem

- In general the cost of finding the order of an arbitrary point in a group is proportional to the order of the group.
- The best known algorithm give us $O(\sqrt{q})$, where q is the order of the field. This exponential in q.
- In the case of the discrete logarithm problem there are algorithmic methods that sub-exponential in q.
- So if we take $q \approx 2^{160}$ we get difficulty 2^{80} in brute force attacks.
- To get similar protection in a finite field we need $q \approx 2^{1000}$