CIS 5371 Cryptography

4. Computational Complexity

Turing Machines

- A finite *state control unit*
- $k \ge 1$ tapes and read or write tapeheads

Deterministic Polynomial Time

Class P

The class of languages L such that:

any $x \in L$ can be recognized by a TM in time bounded

by a polynomial p(n), where n is the length of x.

A language recognition problem is a *decisional* problem.

Class Pcan also be used to capture *computational* problems.

Polynomial-time computational problems

These must be computed by a TM in polynomial-time.

The Euclidean Algorithm

Input: integers $a > b \ge 0$

Output: gcd(a,b)

- 1. $i \leftarrow 0; r_{-1} \leftarrow a; r_0 \leftarrow b;$
- 2. while $(r_i \neq 0)$ do
 - a) $r_{i+1} \leftarrow r_{i-1} \pmod{r_i}$;
 - b) $i \leftarrow i+1$
- 3. return(r_{i-1})

An example

$$a = 60, b = 9$$

r_{i-1}	r_i
60	9
9	6
6	3
3	0

$$3 = gcd(60,9)$$

The Extended Euclidean Algorithm

Input: integers $a > b \ge 0$

Output: integers λ, μ satisfying $a\lambda + b\mu = gcd(a,b)$

- 1. $i \leftarrow 0; r_{-1} \leftarrow a; r_0 \leftarrow b; q \leftarrow 0$ $\lambda_{-1} \leftarrow 1; \mu_{-1} \leftarrow 0; \lambda_0 \leftarrow 0; \mu_0 \leftarrow 1$
- 2. while $(r_i = a\lambda_i + b\mu_i \neq 0)$ do
 - a) $q = r_{i-1} \div r_i$
 - b) $\lambda_{i+1} \leftarrow \lambda_{i-1} q\lambda_i$; $\mu_{i+1} \leftarrow \mu_{i-1} q\mu_i$
 - c) $r_{i+1} \leftarrow r_{i-1} \pmod{r_i}$;
 - d) $i \leftarrow i+1$
- 3. return((λ_i, μ_i))

An example

$$a = 60, b = 9$$

i	r	q	λ	μ
-1	60		1	0
0	9	6	0	1
1	6	1	1	-6
2	3	2	-1	7
3	0	×	×	×

$$3 - 60*(-1) + 9*(7) \leftarrow$$

Modular arithmetic

- Some exercises in modular addition multiplication and exponentiation.
- The computational complexity of modular addition and multiplication
- The computational complexity of modular exponentiation: the square & multiply algorithm

Modular Exponentiation

Input: integers x > 0, y > 0, n > 0.

Output: $x^y \pmod{n}$

 $mod_{exp}(x,y,n)$.

- 1. if y = 0 return (1);
- 2. if $y = 0 \pmod{2}$ return $\pmod{\exp(x^2 \pmod{n}, y \div 2, n)}$;
- 3. return $(x \cdot \text{mod}_{exp}(x^2(\text{mod } n), y \div 2, n)$.

Probabilistic Polynomial Time

• A *probabilistic* Turing Machine (TM) is a non-deterministic TM with bounded error (<1/3).

Class PP

The class of languages L such that:

* any $x \in L$ can be recognized by a probabilistic TM in time bounded by a polynomial p(n), where n is the length of x.

PP (Monte Carlo) Always fast, probably correct

```
L \in PP (Monte Carlo): if there exists a randomized algorithm A such that for any instance I: Prob [ A recognizes I | I \in L ] = 1 and Prob [ A recognizes I | I \notin L ] \leq \delta, where \delta is a constant in the interval (0,1/2).
```

PP Monte Carlo

Input: p, a positive number Output: Yes if p is prime, No otherwise.

- 1. Repeat $\log_2 p$ times:
 - a) Pick a random number x in (1, p-1);
 - b) If gcd(x,p) > 1 or if $x^{(p-1)/2} \neq \pm 1 \pmod{p}$ return (No) end of repeat;
- 2. If (test in 1.b never shows -1) return (No)
- 3. Return (Yes)

Primality testing

This test holds because

- Fermat's little theorem: if p is a prime then:
 - For any $0 < x < p : x^{p-1} \equiv 1 \pmod{p}$
 - * There are only two quadratic residues of 1: +1 and -1.
- * If *n* is a composite number then there are at least 4 quadratic residues of 1 modulo *n*.
 - Consequently we may have $x^{(p-1)/2} \neq \pm 1 \pmod{p}$

PP (Las Vegas) Probably fast, always correct

```
L \in PP (Las Vegas): if there exists a randomized algorithm A such that for any instance I: Prob [ A recognizes I | I \in L ] \geq \epsilon and Prob [ A recognizes I | I \notin L ] = 0, where \epsilon is a constant in the interval (1/2,1).
```

PP Las Vegas

Input: p, an odd positive number

 $q_1,q_2,...,q_k$: all prime factors of p-1

Output: Yes if p is prime, No otherwise.

No decision with certain probability of error

- 1. Pick $g \in_U [2,p-1]$
- 2. For (i=1, i++, k) do if $g^{(p-1)/q_i} = 1 \pmod{p}$ output NO_DECISION and terminate;
- 3. if $g^{p-1} \neq 1 \pmod{p}$ output NO and terminate;
- 4. Output YES and terminate.

Primality testing

This test holds because p is a prime iff there exists some $g \in [2,p-1]$

- * $g^{(p-1)/q_i} \neq 1 \pmod{p}$ for all factors of p-1.

Non-deterministic Polynomial Time

Class NP

- These are recognized by non-deterministic Turing Machine in polynomial time.
- Instances of NP problems have witnesses which can be found by random guessing: given a *witness*, every language (decisional problem) is recognizable in polynomial time.

Class NP -- examples

- Square-freeness
- Quadratic residuocity
- Other examples.

Clearly we have:

 $P \subseteq NP$ problems

Class NP-Complete

A general discussion on NP-completeness.