CIS 5371 Cryptography

4. Computational Complexity

Turing Machines

o A finite state control unit

« k >1tapesand read or write tapeheads

FSC unit

tapeheads l

Deterministic Polynomial Time

Class P
The class of languages L such that:

any X e L can be recognized by a TM in time bounded

by a polynomial p(n), where n is the length of x.
A language recognition problem is a decisional problem.
Class Pcan also be used to capture computational problems.

e Polynomial-time computational problems
These must be computed by a TM In polynomial-time.

The Euclidean Algorithm

Input: integers a>b >0
Output: gcd(a,b)
1. 1«<0;ry«a;ryge«b;
2. while(r;=0)do
a) Tl < rip(modr) ;
b) i « i+l
3. return(ri,)

An example

a=060,b=9

3 = gcd(60,9)

ﬁ

Ol Ww|o, |©

<€

The Extended Euclidean Algorithm

Input: integers a>b>0

Output: integers A,u satisfying ad+bu = ged(a,b)

1. | < 0;r,«<a;rp«b;q«0
A1, 60 4,<0; 11
2. while (r;=aA+bg #0) do
a) q=ri = I
D) A1 A QA5 sy < g - Q4
C) Tl < lia(modr;) ;
d 1 « i+l
3. return((4, &))

An example

a=060,b=9

| | r | q|A]|u
-1 |60 110
O 9|6 01
1|16 |1 |1]|-6
2 3|2 -1 7
3|0 | x| x| x

3 = 60%(-1) + 9%(7) <

Modular arithmetic

» Some exercises In modular addition
multiplication and exponentiation.

» The computational complexity of modular
addition and multiplication

» The computational complexity of modular
exponentiation: the square & multiply
algorithm

Modular Exponentiation

Input: integers x>0,y >0,n>0.
Output: x¥Y (mod n)

mod_exp(x,y,n).

1. ify=0return(1);
2. if y=0(mod 2) return (mod_exp(x?(mod n), y+2,n) ;
3. return (X - mod_exp(x?(mod n), y+2, n).

Probabilistic Polynomial Time

» A probabilistic Turing Machine (TM) Is a non-
deterministic TM with bounded error (<1/3).

#« Class PP
The class of languages L such that:

» any XeL can be recognized by a probabilistic
TM in time bounded by a polynomial p(n),
where n is the length of x.

10

PP (Monte Carlo)
Always fast, probably correct

L € PP (Monte Carlo):
if there exists a randomized algorithm A
such that for any instance I:
Prob [ArecognizesI | I eL] =1
and
Prob [A recognizes I|I ¢ L] < §,

where 6 is a constant in the interval (0,1/2).

11

PP Monte Carlo

Input: p, a positive number
Output : Yes if p is prime, No otherwise.

1. Repeat log, p times:
a) Pick arandom number x in (1, p-1) ;
b) If gcd(x,p) > 1 orif x D2 +1 (mod p) return (No)

end of repeat ;
2. If (testinl.b never shows—1) return (No)
3. Return (Yes)

12

Primality testing

This test holds because

» Fermat’s little theorem: If p Is a prime then:
» Forany O0<x<p: xP1t=1(modp)

#» There are only two quadratic residues of 1: +1 and -1.

» If n 1sacomposite number then there are at
least 4 quadratic residues of 1 modulo n.

» Consequently we may have x 122 +1 (mod p)

13

PP (Las Vegas)
Probably fast, always correct

L € PP (Las Vegas):
if there exists a randomized algorithm A
such that for any instance I
Prob [ArecognizesI | TelL] >¢
and
Prob [A recognizes T |I ¢ L]=0,

where ¢ is a constant in the interval (1/2,1).

14

PP Las Vegas

Input : p, an odd positive number

41.95,., qi: all prime factors of p-1
Output : Yes if p is prime, No otherwise.

No decision with certain probability of error

1. Pickg ey [2,p-1]
2. For(1=1,1++ k) do

if g®1/4 =1 (mod p) output NO_DECISION and terminate;
3. if gP1=1(modp) output NO and terminate;

4. Output YES and terminate.

15

Primality testing

This test holds because p is a prime iff

there exists some g € [2,p-1]
¢gP1i=1(mod p),

g ®Y0%=«1 (mod p) for all factors of p-1.

16

Non-deterministic Polynomial Time

e Class NP

o These are recognized by non-deterministic
Turing Machine in polynomial time.

o Instances of NP problems have witnesses
which can be found by random guessing:
given a witness, every language (decisional
problem) is recognizable in polynomial time.

17

Class NP -- examples

e Square-freeness
e Quadratic residuocity
o Other examples.

Clearly we have:
P = NP problems

18

Class NP-Complete

A general discussion on NP-completeness.

19

