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Abstract. We present a new approach to the algorithmic study of planar curves, with

applications to estimations of contours in images. We construct spaces of curves satisfying

constraints suited to specific problems, exploit their geometric structure to quantify properties

of contours, and solve optimization and inference problems. Applications include new algo-

rithms for computing planar elasticae, with enhanced performance and speed, and geometric

algorithms for the estimation of contours of partially occluded objects in images.
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1. Introduction

The detection and recognition of objects in images are central problems in

computer vision. Significant advances have been made in modeling appearances,

but applications to recognition tasks only have found limited success. This is

due, in part, to difficulties related to partial occlusions of objects and the high

variability of observed pixel values. Thus, it is important to take into account

additional global features of objects such as the shapes of their contours in

order to improve the performance of image analysis algorithms. In this paper,

we present a framework for the algorithmic study of planar curves and apply the
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methodology developed to the design of new algorithms for the completion of

partially occluded contours of objects in images. Curves are treated as continua

and discrete formulations are used only at the implementation level. Thus, repre-

sentations of curves often involve infinitely many degrees of freedom, which lead

us to the study of both finite and infinite-dimensional manifolds. In this paper,

a fundamental element is a space of constrained curves, referred to as an SCC

henceforth. As an example, if we are interested in analyzing closed contours that

outline objects in images, the closure condition provides a constraint on curves.

A typical SCC is a smooth manifold equipped with a Riemannian structure;

that is, a manifold with an inner product on each tangent space that varies

smoothly along the space. We exploit such structures to develop an algorith-

mic study of gradient flows, and to solve optimization and statistical inference

problems associated with a variety of cost functions and probability models

on SCCs. The following problems will be addressed: (i) completion of contours

with elasticae; (ii) global estimation of contours using curves whose curvature

functions are localized in the frequency domain. Details are provided below.

Since the introduction of “snakes” in (Kass et al., 1988), active contours have

been the subject of numerous studies [see e.g. (Sethian, 1996; Chan et al., 2003)].

Given the past success of PDE-based methods, why introduce new methodology?

The study of SCCs provides new insights and solutions to problems involving

planar contours, as demonstrated here [see also (Klassen et al., 2004; Joshi et al.,

2004; Mio et al., 2004b)]. An important new characteristic is that there is a well-

defined, structured space of curves on which optimization and inference problems

can be formulated and statistical models developed. In our approach, the dy-

namics of active contours is modeled on vector fields on SCCs. This treatment

of curve evolution leads to algorithms with improved computational efficiency,

as exemplified by our algorithm for computing planar elasticae.

We should also point out the main limitations of the proposed approach. One

drawback is its inability to handle changes in topology, which is one of the key

features of level-set methods. Secondly, it does not extend easily to the analysis of

surfaces in 3D space or hypersurfaces in n-dimensional Euclidean space. Despite
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these limitations, the proposed methodology leads to powerful new geometric

algorithms for the analysis of planar curves.

A word about the organization of the paper. In Sec. 2, we discuss representa-

tion of curves and the geometry of SCCs. In Sec. 3 we develop an algorithm to

compute elasticae and apply it to the completion of contours in images. Sec. 4

is devoted to the study of localization of curvature and angle functions, which is

applied to the resolution of partial occlusions in images in Sec. 5.

2. Representation of Planar Curves

We study planar curves presented in parametric form and traversed with constant

speed. More precisely, we consider curves α: I → R2 parameterized over the unit

interval I = [0, 1] with ‖α′(s)‖ constant. Thus, if the length of α is L, then

‖α′(s)‖ = L, for every s ∈ I. A continuous function θ: I → R is said to be an

angle function for α if α′(s) = Lejθ(s), for every s, where j =
√
−1. Here, we are

identifying R2 with the complex plane C in the usual manner. Notice that angle

functions are only defined up to the addition of integer multiples of 2π. Moreover,

they are invariant to uniform scalings and translations of the curve; the effect

of a rotation is to add a constant to θ. The rotation index of α, which measures

the total number of turns made by the tangent vector α′(s) as the curve α is

traversed, is defined as ı(α) = 1
2π

(θ(1)− θ(0)) and is independent of the angle

function chosen. The rotation index of a closed curve α with α′(0) = α′(1) is an

integer, with the sign depending on the orientation of the curve. If, in addition,

α is a simple curve (i.e., with no self-intersections other than the end points) the

rotation index is known to be ± 1 [see e.g. (Do Carmo, 1976)].

Associated with α, there is a normalized unit-speed curve β: I → R2 obtained

by scaling α to have unit length; i.e., β(s) = α(s)/L. If α′(s) = Lejθ(s), then

β′(s) = ejθ(s). Thus, any angle function for α is also an angle function for β and

κ(s) = θ′(s) is the curvature function of β. Since curvature scales inversely, the

curvature of α at s is κ(s)/L.
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In applications involving elastic energies, we can only allow curves with square

integrable curvature functions. Thus, we only consider angle functions θ: I →
R that can be expressed as integrals of square integrable functions. In more

technical terms, we assume that angle functions are absolutely continuous [see

e.g. (Royden, 1988)] with square integrable first derivatives. The space of all such

functions equipped with the inner product, 〈f, g〉1 = f(0)g(0)+
∫ 1

0
f ′(s)g′(s) ds,

is denoted H1. This inner product, introduced in (Palais, 1963), is a variant of

the Sobolev inner product
∫ 1

0
f(s)g(s) ds +

∫ 1

0
f ′(s)g′(s) ds.

2.1. A manifold of constrained curves

We begin our discussion of SCCs by considering the space of all planar curves

with square integrable curvature function, fixed rotation index, and given first-

order boundary conditions. We prescribe the endpoints p0, p1 ∈ R2 and angles

θ0, θ1 ∈ R that determine the tangent directions at the endpoints. Our goal is

to construct an SCC, denoted A, consisting of all curves α of rotation index

(θ1 − θ0)/2π satisfying α(i) = pi and α′(i)/‖α′(i)‖ = ejθi , for i = 0, 1.

Using a logarithmic scale for the length, write L = e`. If θ is an angle function

for α, the velocity vector can be written as α′(s) = e`ejθ(s). Thus, curves of

length L satisfying α(0) = p0 can be expressed as α(s) = p0 + e`
∫ s

0
ejθ(σ) dσ. Let

d = (d1, d2) = p1−p0 be the desired total displacement of α. Then, the condition

α(1) = p1 can be written as e`
∫ 1

0
ejθ(s) ds = d1 + jd2, or equivalently, as

e`

∫ 1

0

cos θ(s) ds = d1 and e`

∫ 1

0

sin θ(s) ds = d2. (1)

Hence, there is a one-to-one correspondence between elements of A and pairs

(`, θ) ∈ R × H1 satisfying θ(0) = θ0, θ(1) = θ1 and (1). These four constraints

define a codimension-4 submanifold of R×H1; i.e., a submanifold whose normal

space at each point is four dimensional. We are assuming that the ambient space

R×H1 is equipped with the inner product 〈(v, f), (w, g)〉 = v ·w+〈f, g〉1, where

(v, f), (w, g) ∈ R×H1.

Before proceeding with the calculations, we describe the space A as a level

set, as this will shed some light on its geometric structure. Define a function
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F : R×H1 → R4 by:

F 1(`, θ) = e`

∫ 1

0

cos θ(s) ds ; F 2(`, θ) = e`
∫ 1

0
sin θ(s) ds ;

F 3(`, θ) = θ(0) ; F 4(`, θ) = θ(1). (2)

Then, A is the level set F−1(d1, d2, θ0, θ1). Note that F 3 and F 4 are linear func-

tionals on R × H1 and can be expressed in terms of the inner product 〈 , 〉 as

F 3(`, θ) = 〈(`, θ), (0, 1)〉 and F 4(`, θ) = 〈(`, θ), (0, 1 + s)〉, where 1 and s denote

the constant function 1 and the function s 7→ s, respectively.

2.2. The normal bundle of A

We exhibit an explicit basis for the normal space to the level sets of F at

any regular point (`, θ) ∈ R × H1; that is, at any point where the derivative

dF : T(`,θ)A → R4 is an onto mapping. Here, T(`,θ)A is the tangent space of A

at the point (`, θ). The derivative of F at (`, θ) in the direction of the vector

(v, f) ∈ R×H1 is given by:

dF 1(v, f) =
〈
(v, f),

(
F 1(`, θ), e`h1

)〉
; dF 2(v, f) =

〈
(v, f),

(
F 2(`, θ), e`h2

)〉
;

dF 3(v, f) = 〈(v, f), (0, 1)〉 ; dF 4(v, f) = 〈(v, f), (0, 1 + s)〉 , (3)

where h1, h2: I → R are characterized by h′′1(s) = sin θ(s), h1(0) = h′1(0) = 0

and h′′2(s) = − cos θ(s), h2(0) = h′2(0) = 0. This means that the gradient of F i,

1 ≤ i ≤ 4, is:

∇F 1(`, θ) =
(
F 1(`, θ), e`h1

)
; ∇F 2(`, θ) =

(
F 2(`, θ), e`h2

)
;

∇F 3(`, θ) = (0, 1) ; ∇F 4(`, θ) = (0, 1 + s) . (4)

Hence, a vector (v, f) is tangent to the level set of F at (`, θ) if and only if it

is orthogonal to the subspace of R×H1 spanned by {∇F i(`, θ), 1 ≤ i ≤ 4}. We

thus have a basis of the normal space to the level set of F at any regular point

(`, θ). An orthonormal basis can be obtained using the Gram-Schmidt process.

In applications, the calculation of normal structures will be useful in the

computation of the gradient of energy functionals on A. One can usually proceed
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in two steps: first, calculate the gradient of the energy as a functional on R×H1,

often an easier task. Then, subtract the normal component to A to obtain the

gradient as a functional on A.

2.3. Projection onto A

In numerical simulations of the flow associated with vector fields on A, we use

a variant of Euler’s method, as follows. Infinitesimally, first flow in the ambient

linear space R×H1 in the direction of the vector field. The new point typically

falls off of A due to its nonlinearity, so we devise a mechanism to project the

point back onto A in order to iterate the procedure. Higher-order integration

methods can be modified similarly.

Let (`, θ) ∈ R × H1. The residual vector r(`, θ) = (d1, d2, θ0, θ1) − F (`, θ) ∈
R4 is zero precisely at points (`, θ) ∈ A. Thus, ε(`, θ) = 1/2 ‖r(`, θ)‖2 gives a

measurement of how far off (`, θ) is from A and achieves its minimum value 0 at

points in A. We project (`, θ) onto A by following the negative gradient flow of the

functional ε. The gradient of ε is given by ∇ε(`, θ) = −
∑4

i=1 ri(`, θ)∇F i(`, θ),

with r = (r1, r2, r3, r4) and ∇F i as in (4). Hence, the projection of a point

(`∗, θ∗) ∈ R×H1 onto A is obtained by asymptotically following the solution of

the initial value problem

( ˙̀, θ̇) =
4∑

i=1

ri(`, θ)∇F i(`, θ), `(0) = `∗, θ(0) = θ∗. (5)

Alternatively, a version of Newton’s method can be used to search for the zeros

of ε, as in (Klassen et al., 2004; Mio et al., 2004a).

Algorithm 1 [Projection onto A]. Given a pair (`, θ) ∈ R×H1, this algorithm

projects it onto A, for a given choice of d1, d2, θ0 and θ1. Let ε, δ > 0 be small.

1. Compute F (`, θ) using Eqn. 2 and the residual vector r(`, θ) = (d1, d2, θ0, θ1)−
F (`, θ). If ‖r(`, θ)‖ < ε, then stop. Else, continue.

2. Use Eqns. 4 and 5 to compute ∇F i(`, θ), 1 ≤ i ≤ 4, and ( ˙̀, θ̇).

3. Update (`, θ) = (`, θ) + δ( ˙̀, θ̇). Return to Step 1.
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3. Scale-Invariant Planar Elasticae

The elastica model for the estimation of partially hidden contours in images was

introduced in (Horn, 1983), but the study of the elastic energy of curves dates

back to Euler (Euler, 1744). A stochastic interpretation of elasticae as the most

likely curves according to a probability model based on length and (bending)

elastic energy was given in (Mumford, 1994). In (Weiss, 1988; Bruckstein and

Netravali, 1990), it was argued that scale-invariant models are more natural in

vision problems and the notion of scale-invariant elastica was introduced. Fur-

ther studies of elasticae and associated stochastic completion fields were carried

out in (Williams and Jacobs, 1997), but calculations were computationally very

intensive. Algorithmically efficient approximations were investigated in (Sharon

et al., 2000) under the simplifying assumption that 2D elasticae could be de-

scribed as graphs of functions. More recently, geometric algorithms to compute

elasticae in general Euclidean spaces were developed in (Mio et al., 2004a). As

an application of SCCs, in this paper, we present an algorithm to compute

planar elasticae. By restricting the analysis to the 2D case, not only we simplify

the algorithm of (Mio et al., 2004a), but also improve computational efficiency.

Completions with Euler spirals have been studied in (Kimia et al., 2003).

3.1. The elastic energy flow

Let (`, θ) ∈ A represent a curve α: I → R2 of length L = e` and let κ(s) = θ′(s).

The (bending) elastic energy of α is the integral of the square of the curvature

function κ/L with respect to the arc-length parameter. Since the arc-length

element is L ds, the elastic energy of α can be expressed as 1
2L

∫ 1

0
κ2(s) ds. The

scale-invariant elastic energy of α (Bruckstein and Netravali, 1990) is given by

Esi(`, θ) =
1

2

∫ 1

0

κ2(s) ds. (6)

The main goal of this section is to describe an algorithm to calculate curves

of least scale-invariant elastic energy with prescribed rotation index and first-

order boundary conditions; these curves are known as scale-invariant elasticae.
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Equivalently, we wish to minimize the functional Esi on the manifold A. From

(6), the differential of Esi (as a functional on R×H1) at the point (`, θ) evaluated

in the direction (v, f) is dEsi(v, f) =
∫ 1

0
f ′(s)θ′(s) ds = 〈(v, f), (0, θ − θ0)〉. Thus,

∇R×H1Esi(`, θ) = (0, θ− θ0). Using the calculation of normal spaces to A carried

out in Sec. 2.2, we project this vector orthogonally onto the tangent space T(`,θ)A

to obtain ∇AEsi(`, θ). Flow lines of the negative gradient vector field on A

associated with Esi approach scale-invariant elasticae, asymptotically.

3.2. Algorithms and experimental results

Algorithm 2 [Finding Elasticae]. Given boundary conditions (d1, d2; θ0, θ1),

find the corresponding scale-invariant elastica. Initialize (`, θ) with a straight

line segment between the end points.

1. Project (`, θ) onto A using Algorithm 1. Compute ei ≡ ∇F i(`, θ), for i =

1, . . . , 4, according to Eqn. 4. Transform {e1, e2, e3, e4} into an orthonormal basis

using the Gram-Schmidt process.

2. Project the gradient vector (0, θ − θ0) orthogonally onto the tangent space

using: (d`, dθ) ≡ (0, θ − θ0)−
∑4

i=1 〈(0, θ − θ0), ei〉. If ‖(d`, dθ)‖ < ε, stop. Else,

continue.

3. For a step size δ > 0, perform the update: (`, θ) = (`, θ) + δ(d`, dθ). Return

to Step 1.

Fig. 1 shows several examples of planar, scale-invariant elasticae generated

using Algorithm 2. In our current implementation, we compute an average of 50

elasticae per second on a Pentium IV processor.

Figure 1. Examples of scale-invariant planar elasticae.

Examples of partial occlusions of contours in natural images resolved with

scale-invariant elasticae are shown in Fig. 2. The curves drawn as solid lines are
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elasticae computed with the algorithm developed in this section. For comparison

purposes, dashed lines show hand-drawn contours.

Figure 2. Examples of partial occlusions in natural images resolved with scale-invariant

elasticae are shown as solid lines. For comparison, dashed lines show hand-drawn completions.

4. Localization of Curvature and Angle Functions

In this section, we study an SCC of curves with fixed length L, rotation index

1, localized curvature functions, and prescribed first-order initial conditions. By

localization, we mean that curvature functions will be restricted to some subspace

W ⊆ L2 such as that spanned by certain dominant harmonics. We carry out

experiments with localization in the frequency domain, but the discussion is

more general.

4.1. V -local curves

All curves will have the same initial point p0 ∈ R2 and initial value θ(0) = θ0 of

the angle function. Thus, angle functions will be of the form θ(s) = θ0 + ϕ(s),

where ϕ: I → R satisfies ϕ(0) = 0. In Section 2, curves were represented by pairs

(`, θ) ∈ R × H1. For simplicity, we assume that the length L = e` is fixed, so

we just need the variable θ, or equivalently, ϕ. Thus, the curve associated with

θ ∈ H1 is given by α(s) = p0 + L
∫ s

0
ejθ(t) dt.

We wish to localize curvature functions and consequently angle functions, as

well. What subspaces are we going to restrict angle functions to? This is equiva-
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lent to asking what restrictions to impose on ϕ. We formulate these restrictions

in terms of the H1 inner product.

Since 〈ϕ, 1〉1 = ϕ(0), functions ϕ ∈ H1 satisfying ϕ(0) = 0 are those orthogo-

nal to constant functions. They can be written as ϕ(s) =
∫ s

0
ϕ′(ξ) dξ. Hence, we

localize angle functions as follows: pick a finite-dimensional subspace W ⊂ L2,

with orthonormal basis {σ1, . . . , σn}; this is to be interpreted as localization of

the curvature function κ(s) = θ′(s) = ϕ′(s) to W . If

ϕi(s) =

∫ s

0

σi(t) dt, (7)

we restrict ϕ to the subspace V = span {ϕ1, . . . , ϕn} ⊂ H1. We only consider lo-

calization to finite-dimensional subspaces, but the construction can be extended

to other (closed) subspaces.

Example. Let W ⊂ L2 be the subspace spanned by the truncated Fourier basis{
1,
√

2 cos(2πs), . . . ,
√

2 cos(2kπs),
√

2 sin(2πs), . . . ,
√

2 sin(2kπs)
}

.

If {σi}2k+1
i=1 are these basis elements, use (7) to obtain a basis {ϕi}2k+1

i=1 of V .

This choice of W corresponds to localizing curvature functions to the first 2k+1

harmonics. �

We restrict our attention to V -local angle functions; that is, those of the form

θ(s) = θ0 + x1ϕ1(s) + . . . + xnϕn(s), (8)

where x = (x1, . . . , xn) ∈ Rn. Thus, curves α of fixed length L = e`, localized

angle functions and given first-order initial conditions can be represented by a

vector x ∈ Rn via α(s) = p0 + L
∫ s

0
ej(θ0+

Pn
i=1 xiϕi(τ)) dτ . If f =

∑n
i=1 xiϕi(s)

and g =
∑n

i=1 yiϕi(s), then 〈f, g〉1 = x1y1 + . . . + xnyn. Thus, the inner product

〈f, g〉1 can be expressed in terms of x and y as the standard inner product

x · y = x1 y1 + . . . + xn yn in Rn.
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4.2. A manifold of localized closed curves

We are interested in closed curves with rotation index 1. Therefore, analogous

to the constraints on pairs (`, θ) imposed by the function F , defined in (2), we

consider the map G: Rn → R3 given by:

G1(x) =

∫ 1

0

cos θ(s) ds ; G2(x) =

∫ 1

0

sin θ(s) ds ; G3(x) = θ(1)− θ0 , (9)

with θ as in (8). The relevant SCC of V -local closed curves is the iso-set HV =

G−1(0, 0, 2π). For almost all choices of V , HV is a smooth (n − 3)-dimensional

submanifold of Rn. As in Sec. 2, a computation of the normal structure to level

sets of the mapping G is needed for projections of points and vector fields in the

ambient space Rn onto HV . The mechanism is identical to that discussed earlier,

so we just provide expressions for ∇G:

∇G1(x) = −
(∫ 1

0
ϕ1(s) sin θ(s) ds, . . . ,

∫ 1

0
ϕn(s) sin θ(s) ds

)
;

∇G2(x) =
(∫ 1

0
ϕ1(s) cos θ(s) ds, . . . ,

∫ 1

0
ϕn(s) cos θ(s) ds

)
;

∇G3(x) = (ϕ1(1), . . . , ϕn(1)) . (10)

Algorithm 3 [Projection onto HV ]. Given a point x ∈ Rn, this algorithm

projects it onto HV . Choose ε, δ > 0 small.

1. Compute G(x) according to Eqn. 9 and the residual vector r(x) = (0, 0, 2π)−
G(x). If ‖r(x)‖ < ε, then stop. Else, continue.

2. Compute ∇Gi(x), for i = 1, . . . , 3, according to Eqn. 10 and let dx =∑3
i=1 ri(x)∇Gi(x).

3. Perform the update: x = x + δdx. Return to Step 1.

Applications of this algorithm to contour inference in images will be discussed

in the next section.

5. Discovery of Contours in Images

The resolution of partial occlusions of contours with elasticae only yields good

results in situations where the hidden parts are small or not very rich in geometric
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features. This is because elasticae only take first-order boundary information into

account and are designed to minimize the bending elastic energy. If examples of

likely shapes are known, algorithms can be trained to use this information, e.g.,

as in (Cootes et al., 1995; Klassen et al., 2004). However, if additional contex-

tual knowledge is unavailable, the problem of discovering hidden shapes is very

challenging. In such generality, it might be even difficult to develop meaningful

quantitative criteria to measure the “goodness” of a proposed completion.

We propose to use localization, in a Bayesian framework, to produce comple-

tions that take into consideration more information about the global geometry of

the visible parts. The basic idea is to restrict the search to curves whose curvature

(or angle) functions contain just enough harmonics to capture the geometry of

the visible portions, so that observed geometric patterns will propagate to the

parts to be estimated without high energy costs. Examples will illustrate the

fact that, in the presence of periodic patterns, this technique leads to improved

contour estimations.

5.1. Estimation of contours

For simplicity, we assume that the visible portion of the contour of an imaged

object has been extracted and consists of a single arc. We work under the assump-

tion that the data is presented as a parametric curve γ. Also, we suppose that

the length of the part of the contour to be estimated is known. This implicitly

assumes that, in practice, some additional contextual knowledge is available.

Given an open curve γ: [0, L0] → R2, L0 > 0, with unit-speed parameteriza-

tion, we would like to find an “optimal completion” of γ to a closed curve α

of rotation index 1 and length L > L0. For the problem to be interesting, we

assume that L > ‖γ(L0)−γ(0)‖+L0. We let θγ: [0, L0] → R be an angle function

for the curve γ, θ0 = θγ(0), and p0 = γ(0).

We take a Bayesian approach to the estimation of contours. We adopt a model

having the scale-invariant elastic energy E(x) = 1
2

∑n
i=1 x2

i as prior energy and

data likelihood energy F (γ|x) = 1
2

∫ ζ0
0

(θ(t)− θγ(Lt))2 dt, where ζ0 = L0/L.

A probabilistic interpretation for the elastic energy can be given, analogous to
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(Mumford, 1994). The functional F (γ|x) quantifies the consistency of θγ with

the angle function represented by x ∈ Rn over the interval [0, L0]. For each λ,

0 < λ < 1, the posterior energy is proportional to the functional Eλ(x|γ) =

λ F (γ|x) + (1− λ)E(x). We refer to a maximum-a-posteriori (MAP) estimation

of the contour according to Eλ as a V -local λ-completion of γ. Equivalently, a

λ-completion of γ is a curve represented by x ∈ HV ⊂ Rn that minimizes the

posterior energy Eλ on HV .

The search for V -local λ-completions requires that we solve an optimization

problem on HV , which we approach with gradient methods. To simulate the

negative gradient flow of Eλ on HV , we need to compute the partial derivatives

of Eλ. For each x ∈ Rn, let Qx(s) = θ(s)− θγ(Ls), 0 ≤ s ≤ ζ0 = L0/L. Then,

∂F

∂xi

=

∫ ζ0

0

Qx(s)ϕi(s) ds and
∂E

∂xi

= xi. (11)

Thus,

∇RnEλ(x) = λ

(
∂F

∂x1

, . . . ,
∂F

∂xn

)
+ (1− λ) (x1, . . . , xn). (12)

Projecting this vector orthogonally onto the tangent space TxHV , we obtain

∇HV
Eλ(x). Flow lines of the negative gradient field on HV associated with Eλ

approach λ-completions of γ asymptotically.

5.2. Algorithms and experimental results

Algorithm 4 [Finding V -Local Completions of Contours]. Given the vis-

ible curve γ and a basis {ϕi} of V , find a local closed curve that minimizes

the posterior energy. L0 is the length of γ and L is the chosen length of its

completion. Initialize x ∈ Rn.

1. Project x onto HV using Algorithm 3. Compute ei ≡ ∇H i(x), for i = 1, 2, 3,

and make them orthonormal in Rn using the Gram-Schmidt procedure.

2. Compute the gradient vector ∇RnEλ(x) using Eqn. 12 and project it onto

the tangent space using: dx ≡ ∇RnEλ(x)−
∑3

i=1 〈∇RnEλ(x), ei〉 ei. If ‖dx‖ < ε,

stop. Else, continue.

3. For a step size δ > 0, perform the update: x = x + δ dx. Return to Step 1.
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Fig. 3 shows contour estimations with this algorithm. On the first row, the

part of the contour of the starfish shown as a dotted line was hand extracted

and represents the curve γ. To obtain a coarse estimation of the subspace V , we

truncated the Fourier expansion of θγ keeping only the dominant harmonics and

used the same fundamental harmonics to choose V . The first three panels show

the evolution of the curve during the gradient search and the fourth panel shows

the MAP estimation of the contour. The fifth panel on shows a plot of the angle

function of γ and that of the estimated contour. The result of a similar Bayesian

contour estimation experiment with an image of a flower is shown on the second

row.
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Figure 3. Curve evolution during MAP estimations of partially occluded contours.

6. Summary and Conclusions

We investigated spaces of planar curves satisfying various linear and non-linear

constraints, as well as methods for solving optimization and inference problems

on these spaces. The methodology developed was applied to the design of new

algorithms for computing planar elasticae, and to the Bayesian estimation of

hidden contours in images. We concluded that planar elasticae can be computed

efficiently without some restrictive assumptions adopted in the past, and that

frequency localization techniques allows us to better infer occluded contours

exhibiting periodic patterns.
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