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a b s t r a c t

This article for the first time develops a nonparametric methodology for the analysis of
projective shapes of configurations of landmarks on real 3D objects from their regular
camera pictures. A fundamental result in computer vision, emulating the principle of
human vision in space, claims that, generically, a finite 3D configuration of points can be
retrieved from corresponding configurations in a pair of camera images, up to a projective
transformation. Consequently, the projective shape of a 3D configuration can be retrieved
from two of its planar views, and a projective shape analysis can be pursued from a sample
of images. Projective shapes are here regarded as points on projective shape manifolds.
Using large sample and nonparametric bootstrap methodology for extrinsic means on
manifolds, one gives confidence regions and tests for the mean projective shape of a 3D
configuration from its 2D camera images. Two examples are given: an example of testing
for accuracy of a simple manufactured object using mean projective shape analysis, and a
face identification example. Both examples are data driven based on landmark registration
in digital images.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Until now, statistical analysis of similarity shape from images has been restricted to a small amount of data, since
similarity shape appearance is relative to the camera position with respect to the scene pictured. In this paper, for the
first time, we study the shape of a 3D configuration from its 2D images in pictures of this configuration, without requiring
any restriction for the camera positioning vs. the scene pictured. Our nonparametric methodology is manifold based, and
uses standard reconstruction methods in computer vision. In the absence of occlusions, a set of point correspondences in
two views can be used to retrieve the 3D configuration of points. A key result due to Faugeras [1] and to Hartley et al. [2]
states that two such reconstructions differ by a projective transformation in three dimensions. Sugathadasa [3] noticed that
actually the object which is recovered without ambiguity is the projective shape of the configuration. This casts a new light
on the role of projective shape in the identification of a spatial configuration.
Projective shape is a natural approach to shape analysis from digital images, since the vast majority of libraries of images

are acquired via a central projection from the scene pictured to the black box recording plane. Hartley and Zisserman
[4, p. 1] note that ‘‘this often rends classical shape analysis of a spatial scene impossible, since similarity is not preserved
when a camera is moving.’’ Advances in statistical analysis of projective shape have been slowed down due to the
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overemphasized importance of similarity shape in image analysis, while ignoring the basic principle of image acquisition.
Progresswas also hampered by the lack of a geometricmodel for the space of projective shapes, andultimately by insufficient
dialogue between researchers in geometry, computer vision and statistical shape analysis.
For the reasons presented above, projective shapes have been studied only recently, and except for one concrete 3D

example due to Sugathadasa [3], to be found in [5], the literature including [6–14,31,33] was bound to linear or planar
projective shape analyzes.
Our main goal here is to derive a natural concept of 3D projective shape that can be extracted from data recorded from

regular camera images. Our statisticalmethodology for estimation of amean 3D projective shape is nonparametric, based on
Efron’s bootstrap [30]. In this paper, a 3D projective shape is regarded as a random object on a projective shape space. Since
typically samples of images are small, in order to estimate the mean projective shape we use nonparametric bootstrap for
the studentized sample mean projective shape on a manifold, as shown in [15]. This bootstrap distribution was essentially
derived in [12].
A summary by sections follows. Section 2 is devoted to a recollection of basic geometry facts needed further in the paper,

such as projective invariants, projective frames, and projective coordinates from [9,12]. We then introduce the essential
matrix (respectively, the fundamental matrix) associated with a pair of a camera views of a 3D scene that is needed in the
reconstruction of that scene fromboth 2D calibrated and noncalibrated camera images. For reconstruction of a configuration
of points in space from its views in a pair of images we refer to computational algorithms in [16]. The section concludes
with the Faugeras–Hartley–Chang–Gupta projective ambiguity theorem for the scene reconstructed from two noncalibrated
camera views, which is the key point for our projective shape analysis of spatial configurations.
In Section 3 we introduce projective shapes of configurations of k points in Rm or in RPm, and the multivariate

axial geometric model for the projective shape space, which is our choice for a statistical study of projective shapes.
The Faugeras–Hartley–Chang–Gupta theorem is reformulated in Theorem 3.1 as a result on projective shapes: the 3D
reconstruction R of a spatial configuration C from two ideal camera views of C, and C itself have the same projective
shape. This opens the statistical shape analysis door to computer vision and pattern recognition of 3D scenes, including face
analysis.
Since projective shape spaces are identified via projective frames with products of axial spaces, in Section 4 we approach

multivariate axial distributions via a quadratic equivariant embedding of a product of k−m− 2 copies of RPm in products
of spaces of symmetric matrices. A theorem on the asymptotic distributions of extrinsic sample means of multivariate axes,
stated without proof and with a minor typo in [12], is given here (Theorem 4.1) and its proof is provided in Appendix A.
The asymptotic and nonparametric bootstrap distribution results are used to derive confidence regions for extrinsic mean
projective shapes. If a random projective shape has a nondegenerated extrinsic covariance matrix one may studentize
the extrinsic sample mean to generate asymptotically chi-square distributions that are useful for large sample confidence
regions for mean projective shapes in Corollary 4.2 or nonparametric bootstrap confidence regions if the sample is small
in Corollary 4.4. If the extrinsic covariance matrix is degenerated, and the axial marginals have nondegenerated extrinsic
covariance matrices, one gives a Bonferroni type of argument for axial marginals to derive confidence regions for the mean
projective shape in Corollary 4.5.
Section 5 is dedicated to concrete applications. In a first example, applicable in manufacturing, we test if a simple 3D

polyhedral object, built from three cubes of different sizes,matches the designed blueprint for this object. The 2D coordinates
of these vertices were recorded in [3] and for convenience are listed in Appendix B. This leads to a one sample test for the
mean projective shape of a configuration of 19 vertices that are visible in a sample of 16 random images of the object. In a
second example, we consider a data set that was previously used in [12] to emphasize the role of 2D projective shape in face
identification. In this example we consider eight facial landmarks that are not coplanar, to verify that one quarter views of
a face can be also used to identify a person. The standard practice for shape based identification of a face was to use only
frontal or lateral images. Although the sample sizes are very small, the computations of nonparametric bootstrap confidence
regions of the mean projective shapes of the eight point configurations for frontal and for the one quarter views are very
encouraging for inclusion of arbitrary views of a face in the analysis.

2. Basic projective geometry for ideal pinhole camera image acquisition

Image acquisition from the 3Dworld to the 2D camera film is based on a central projection principle; therefore projective
geometry governs the physics of ideal pinhole cameras. A point in the outer space, and its central projection via the camera
pinhole, determine a unique line in space; therefore an image point captured on the camera film can be regarded as a line
going through the pinhole, leading to the definition of the real projective plane RP2 as the space of all lines going through
the origin ofR3. Projective geometry also provides a logical justification for themental reconstruction of a spatial scene from
binocular retinal images, playing a central role in vision. In this section we review some of the basics of projective geometry
that are useful in understanding of image formation and 3D scene retrieval from a pair of ideal pinhole camera images.

2.1. Basics of projective geometry

Consider a real vector space V , and let 0V be the zero of this vector space. Two vectors x, y ∈ V \ {0V } are equivalent if
they differ by a scalar multiple. The equivalence class of x ∈ V \{0V } is labeled [x], and the set of all such equivalence classes
is the projective space P(V ) associated with V , P(V ) = {[x], x ∈ V \ {0V }}. The real projective space inm dimensions,RPm, is
P(Rm+1). Another notation for a projective point p = [x] ∈ RPm, the equivalence class of x = (x1, . . . , xm+1) ∈ Rm+1,
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is p = [x1 : x2 : · · · : xm+1] featuring the homogeneous coordinates (x1, . . . , xm+1) of p, which are determined up
to a multiplicative constant. As a general notation rule, coordinates of a point in Rm+1 are separated by commas within
parentheses and homogeneous coordinates of the corresponding projective point are separated by the column symbols
‘‘:’’ within squared brackets. That is, [x1 : · · · : xm+1] = [(x1, . . . , xm+1)]. A projective point p admits also a spherical
representation, when thought of as a pair of antipodal points on the m dimensional unit sphere, p = {z,−z}, z =
(z1, z2, . . . , zm+1), (z1)2+ · · · + (zm+1)2 = 1. A d-dimensional projective subspace of RPm is a projective space P(V ), where
V is a (d + 1)-dimensional vector subspace of Rm+1. An (m − 1)-dimensional projective subspace of RPm is also called
hyperplane. The linear span of a subset D of RPm is the smallest projective subspace of RPm containing D. We say that k
points in RPm are in general position if the linear span of their set is RPm. If k points in RPm are in general position, then
k ≥ m+ 2.
The numerical space Rm can be embedded in RPm, preserving collinearity. An example of such an affine embedding is

h((u1, . . . , um)) = [u1 : . . . : um : 1] = [ũ], (2.1)
where ũ = (u1, . . . , um, 1). The complement of the range of the embedding h in (2.1) is the set RPm−1 of points [x1 : · · · :
xm : 0] ∈ RPm.
Conversely, the inhomogeneous (affine) coordinates (u1, . . . , um) of a point p = [x1 : x2 : · · · : xm+1] ∈ RPm \ RPm−1 are

given by

uj =
xj

xm+1
, ∀j = 1, . . . ,m. (2.2)

Consider a matrix B ∈ M(m + 1,m′ + 1;R) and the linear subspace K = {x ∈ Rm
′
+1, Bx = 0} of Rm

′

. The projective map
β : RPm

′

\ P(K)→ RPm associated with B is defined by β([x]) = [Bx]. In particular, a projective transformation β of RPm is
the projective map associated with a nonsingular matrix B ∈ GL(m+ 1,R) and its action on RPm :

β([x1 : · · · : xm+1]) = [B(x1, . . . , xm+1)T]. (2.3)
If u (respectively, v) are the affine coordinates (inverse of the affine embedding (2.1)) of [x] (respectively, of β([x])), then
the equation of the projective transformation (2.3) in affine coordinates is given by

vj =

ajm+1 +
m∑
i=1
ajiu
i

am+1m+1 +
m∑
i=1
am+1i ui

, ∀j = 1, . . . ,m (2.4)

where B = ((aji)i,j=1,...,m+1), and det(B) 6= 0. An affine transformation of Rm, v = Au + b, A ∈ GL(m,R), b ∈ Rm, is a
particular case of projective transformation α, associated with the matrix B ∈ GL(m+ 1,R), where

B =
(
A b
0m 1

)
. (2.5)

A projective frame in anm-dimensional projective space (or projective basis in the computer vision literature, see e.g. [17]) is
an ordered set ofm+2 projective points in general position. An example of projective frame inRPm is the standard projective
frame ([e1], . . . , [em+1], [e1 + · · · + em+1]).
In projective shape analysis it is preferable to employ coordinates invariantwith respect to the group PGL(m) of projective

transformations. A projective transformation takes a projective frame to a projective frame, and its action on RPm is
determined by its action on a projective frame; therefore if we define the projective coordinate(s) of a point p ∈ RPm w.r.t. a
projective frame π = (p1, . . . , pm+2) as being given by

pπ = β−1(p), (2.6)
where β ∈ PGL(m) is a projective transformation taking the standard projective frame toπ , these coordinates automatically
have the invariance property.

Remark 2.1. Assume u, u1, . . . , um+2 are points inRm, such thatπ = ([ũ1], . . . , [ũm+2]) is a projective frame. If we consider
the (m+ 1)× (m+ 1)matrix Um = [ũT1, . . . , ũ

T
m+1], the projective coordinates of p = [ũ]w.r.t. π are given by

pπ = [y1(u) : · · · : ym+1(u)], (2.7)

where

v(u) = U−1m ũ
T (2.8)

and

yj(u) =
vj(u)

vj(um+2)
, ∀j = 1, . . . ,m+ 1. (2.9)
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Let z j be given by

z j =
yj

‖yj‖
. (2.10)

Note that, in our notation, the superscripts are reserved for the components of a point whereas the subscripts are for the
labels of points. The projective coordinate(s) of x are given by the point [z1(x) : · · · : zm+1(x)] ∈ RPm.

2.2. Image acquisition in ideal digital cameras

Ideal pinhole camera image acquisition can be thought of in terms of a central projection β fromRP3 \RP2 toRP2, whose
representation in conveniently selected affine coordinates (x, y, z) ∈ R3, (u, v) ∈ R2 is given by

u = −f
x
z

v = −f
y
z
, (2.11)

where f is the focal length, the distance from the image sensor or film to the pinhole or principal plane of the lens RP2, the
complement of the domain of β . In homogeneous coordinates [x : y : z : w], [u : v : t] the perspective projective map β can
be represented by the matrix B ∈ M(3, 4;R) given by

B =

(
−f 0 0 0
0 −f 0 0
0 0 1 0

)
. (2.12)

In addition to the projectivemap (2.12), image formation in digital cameras assumes a compositionwithmatrices accounting
for camera internal calibration parameters, such as the pixel aspect ratio, skew parameter, origin of image coordinates in the
principal plane (principal point) and for a change of coordinates between two camera positions involving a roto-translation
(R, t) ∈ SO(3)× R3. The projective map of pinhole camera image acquisition π̃ , in homogeneous coordinates, is associated
with the matrix

B̃ = CintBE =

(ku kc u0
0 kv v0
0 0 1

)(
−f 0 0 0
0 −f 0 0
0 0 1 0

)(
R t
0T3 1

)
= NE, (2.13)

where ku and kv are scale factors of the image plane in units of the focal length f , θ = cot−1 kc is the skew, and (u0, v0) is the
principal point. The matrix N contains the internal parameters and the perspective map (2.12), while E contains the external
parameters. The matrix B̃ can be decomposed into a 3× 3 matrix P and a 3× 1 vector p:

B̃ =
(
P p

)
(2.14)

so that
P = AR and p = At [34]. (2.15)

2.3. Essential and fundamental matrices

We consider now a pair of cameras viewing a point [u] ∈ RP3. This point projects onto the two image planes to
m1 = [u1] ∈ RP2 respectively to m2 = [u2] ∈ RP2. Since we are working in homogeneous coordinates, [u] is represented
by a 4 × 1 column vector, and m1,m2 are each represented by 3 × 1 column vectors. If we assume the camera’s internal
parameters are known (the camera is calibrated), thenm1,m2 are given each with respect to its camera’s coordinate frame;
therefore Cint = I3.

Definition 2.1. The epipolar constraint refers to the fact that the vector from the first camera’s optical center to the first
imaged point, the vector from the second optical center to the second imaged point, and the vector from one optical center
to the other are all coplanar.

If we use only one coordinate system, say the coordinate system of the second camera, the vector from the first camera’s
optical center to the first imaged point is t + Ru1, the vector from the second optical center to the second imaged point is
u2, and the vector from one optical center to the other is t . Here the change of coordinates between the Euclidean frames
of the two cameras is given by a roto-translation (R, t) ∈ SO(3) × R3. The epipolar constraint can be expressed via a zero
exterior product u2 ∧ (t + Ru1) ∧ t = 0, which is equivalent to

uT2(t × (Ru1)) = 0. (2.16)
By defining t× as the matrix associated with the linear operator y→ t × ywe can rewrite equation (2.16) as follows:

uT2(t×(Ru1)) = u
T
2Eu1 = 0, (2.17)
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where E = t×R is the so-called essential matrix. If the cameras are uncalibrated, then the matrices A1, A2 from (2.15)
containing the internal parameters of the two cameras are needed to transform the camera bound Euclidean coordinates
into pixel coordinates:

v1 = A1u1
v2 = A2u2.

This yields the following equation:

(A−12 v2)
T(T × RA−11 v1) = v

T
2A
−1
2 (T × RA

−1
1 v1) = 0, (2.18)

and we obtain

vT2Fv1 = 0, (2.19)

where F = (A−12 )
TEA−11 is the fundamental matrix. The fundamental matrix depends only on the relative position of the two

cameras, and on their internal parameters. It has rank two, depending on seven real constants.

2.4. Reconstruction of a 3D scene from two of its 2D images

If we select conveniently the coordinates for the first camera, incorporating the internal parameters, we may assume
that the matrix associated with β̃1 in (2.13) is B1 = (I|0) and the fundamental matrix factors as F = [t]×R, with B2 = (R|t)
corresponding to β̃2, being a realization of the fundamental (or essential) matrix F (here R is nonsingular, and it does not
necessarily represent the matrix of a rotation). Let [u1], [u2] ∈ RP2 be a pair of matched points in the two images. We seek
a point [u] ∈ RP3 such that [ui] = β̃i[u], i = 1, 2. From the relation uT2Fu1 = u

T
2t×Ru1 = u

T
2(t × Ru1) = 0, it follows

that u2, Ru1, t are linearly dependent. We may assume that Ru1 = bu2 − at , and since the position vector u1 is defined up
to a scalar multiple, we may assume that Ru1 = u2 − at and define the corresponding landmark position [u] ∈ RP3 by
u = (uT1, a)

T. Now B1u = (I|0)u = u1, and B2u = (R|t)u = Ru1 + at = u2; therefore if β1, β2 are the projections associated
with B1, B2, it follows that βa([u]) = [u]a, for a = 1, 2 and [u] is a desired solution to the reconstruction problem. As shown,
[u] is determined by the two camera projection matrices B1 and B2. If we choose a different pair of camera matrices B1H and
B2H realizing the same fundamental matrix F , then in order to preserve the same pair of matched image points, the point
[u]must be replaced by [H−1u].

Problem 2.1. The problem of the reconstruction of a configuration of points in three dimensions from two ideal
noncalibrated camera images with unknown camera parameters is equivalent to the following: given two camera
images RP21 ,RP

2
2 of unknown relative position and internal camera parameters and two matching sets of labeled points

{pa,1, . . . , pa,k} ⊂ RP2a , a = 1, 2, find all the sets of points in space p1, . . . , pk such that there exist two positions of the
planes RP21 ,RP

2
2 and internal parameters of the two cameras ca, a = 1, 2 with the property that the ca-image of pj is

pa,j,∀a = 1, 2, j = 1, . . . , k.

The above discussion proves the following theorem [1,2]:

Theorem 2.2. The reconstruction problem for two noncalibrated camera images has a solution in terms of the realization of the
fundamental matrix F = t×R. Any two solutions can be obtained from each other by a projective transformation in RP3.

Remark 2.2. Note that although the configurations in correspondence are finite, their size is arbitrarily large, and the
assumption of finite matching labeled pairs can be replaced by an assumption of parameterized sets in correspondence;
therefore in the absence of occlusions, a 3D configuration can be reconstructed from 2D images, and this reconstruction is
unique up a projective transformation.

2.5. Estimation of the fundamental matrix

Since equation (2.19) is homogeneous as a linear equation in F and F has rank two, this matrix depends on seven
independent parameters; therefore, in principle, F can be recovered from the corresponding configurations of seven points.
Due to the fact that the nature of digital imaging data is inherently discrete and other errors in landmark registration, F can
be estimated using configurations of eight or more points pa,i, a = 1, 2, i = 1, . . . k, k ≥ 8, whose stacked homogeneous
coordinates are the k× 3 matrices ya, a = 1, 2. The linear system for F is

yT2Fy1 = 0. (2.20)

This can be written as

f TY = 0, (2.21)

where f is a vectorized form of F . If k is large the linear homogeneous system is overdetermined and the optimal estimated
solution f̂ can be obtained using a simple least squares algorithm byminimizing ‖Y Tf ‖2 subject to ‖f ‖ = 1 (see [4, p. 593]).
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3. Projective shape and 3D reconstruction

Definition 3.1. Two configurations of points in Rm have the same projective shape if they differ by a projective
transformation of Rm.

Unlike similarities or affine transformations, projective transformations of Rm do not have a group structure under
composition (the domain of definition of the composition of two such maps is smaller than the maximal domain of a
projective transformation inRm). To avoid this complication, rather than considering the projective shapes of configurations
in Rm, we consider projective shapes of configurations in RPm. A projective shape of a k-ad (configuration of k landmarks or
labeled points) is the orbit of that k-ad under projective transformations with respect to the diagonal action

αk(p1, . . . , pk) = (α(p1), . . . , α(pk)). (3.1)
Since the action (2.3) of β ∈ PGL(m) on [x] ∈ RPm, when expressed in inhomogeneous coordinates (2.2) reduces to (2.4), if
two configurations Γ1,Γ2 of points inRm have the same projective shape, then h(Γ1), h(Γ2) have the same projective shape
in RPm (h is the affine embedding given by (2.1)).
Patrangenaru [18,9] considered the set G(k,m) of k-ads (p1, . . . , pk), k > m + 2 for which π = (p1, . . . , pm+2)

is a projective frame. PGL(m) acts simply transitively on G(k,m) and the projective shape space PΣkm, is the quotient
G(k,m)/PGL(m). Using the projective coordinates (pπm+3, . . . , p

π
k ) given by (2.6) one can show that PΣ

k
m is a manifold

diffeomorphic with (RPm)k−m−2. The projective frame representation is an alternative to the projective invariants based
representation, used earlier for projective shape analysis by Goodall and Mardia [8]. The projective frame representation
has two useful features: firstly, the projective shape space has a manifold structure, thus allowing one to use the asymptotic
theory for means on manifolds in [19,15], and secondly, it can be extended to infinite-dimensional projective shape spaces,
such as projective shapes of curves, as shown in [14]. This approach has also the advantage of being inductive in the sense
that each new landmark of a configuration adds an extra marginal axial coordinate, thus allowing one to detect its overall
contribution to the variability of the configuration as well as correlation to the other landmarks. The effect of change of
projective coordinates, due to projective frame selection, can be understood via a group of projective transformations, but
is beyond the scope of this paper.

Remark 3.1. An approach to projective shape that is invariant with respect to the group of permutations on landmark
indices, initiated by Kent and Mardia [13,31] has not yet been used in practical applications beyond dimension 1, possibly
due to the fact that it requires nonlinear approximations to the matrix solution of the equation in A

A =
m
k

k∑
i=1

xixTi
xTi A−1xi

(3.2)

in terms of a k-ad of points in RPm given in their spherical representation, the key step in the Kent and Mardia description
of a projective shape.

We return to the reconstruction of a spatial configuration. Having in view Definition 3.1 of a projective shape of a
configuration, Theorem 2.2 can be stated as follows:

Theorem 3.1. A spatial R reconstruction of a 3D configuration C can be obtained in the absence of occlusions from two of its
ideal camera views. Any such 3D reconstructionR of C has the same projective shape as C.

Remark 3.2. Since the output in a reconstruction algorithm is a projective shape, and multiplying by an imposed internal
camera parameters matrix keeps the projective shape of the reconstruction unchanged, one may use the essential matrix
estimate using the eight point algorithm in [16, p. 121], for a conveniently selected internal parametersmatrix. Refined eight
point algorithms for the estimate F̂ of the fundamental matrix that can be found in [16, p. 188, p. 395] could also be used,
given the projective equivalence of any two 3D reconstructions.

4. Nonparametric estimation and testing for the projective shape of a 3D configuration

In general, if f : M1 → M2 is a differentiable function defined from the manifold M1 to the manifold M2 and x ∈ M1,
the differential of the function f at x is labeled Dxf . Assume J : M → RN is an embedding of the d-dimensional complete
manifold M [20]. Bhattacharya and Patrangenaru [19] defined the extrinsic mean µJ of a J-nonfocal random object (r.o.) Y
onM by

µJ =: J−1(PJ(µ)), (4.1)
where µ = E(J(Y )) is the mean vector of J(Y ) and PJ : F c

→ J(M) is the ortho-projection on J(M) defined on
the complement of the set F of focal points of J(M). The extrinsic covariance matrix of Y with respect to a local frame
field y → (f1(y), . . . , fd(y)) for which (DyJ(f1(y)), . . . ,DyJ(fd(y))) are orthonormal vectors in RN was defined in [15].
If Σ is the covariance matrix of J(Y ) regarded as a random vector on RN , then PJ is differentiable at µ. In order to
evaluate the differential DµPJ one considers a special orthonormal frame field to ease the computations. A local ortho-
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frame field (e1(p), e2(p), . . . , eN(p)) defined on an open neighborhood U ⊆ RN of PJ(M) is adapted to the embedding
J if ∀y ∈ J−1(U), er(J(y)) = DyJ(fr(y)), r = 1, . . . , d. Let e1, e2, . . . , eN be the canonical basis of RN and assume
(e1(p), e2(p), . . . , eN(p)) is an adapted frame field around PJ(µ) = J(µJ). ThenΣE given by

ΣE =

[
d∑
a=1

DµPJ(eb) · ea(PJ(µ))ea(PJ(µ))

]
b=1,...,N

Σ

[
d∑
a=1

DµPJ(eb) · ea(PJ(µ))ea(PJ(µ))

]T
b=1,...,N

. (4.2)

is the extrinsic covariance matrix of Y with respect to (f1(µJ), . . . , fd(µJ)). Since PΣkm is homeomorphic toM = (RP
m)q, q =

k−m− 2 and since RPm, as a particular case of a Grassmann manifold is equivariantly embedded in the space S(m+ 1) of
(m+ 1)× (m+ 1) symmetric matrices [21] via j : RPm → S(m+ 1),

j([x]) = xxT. (4.3)

Mardia and Patrangenaru [12] considered the resulting equivariant embedding

J = jk : PΣkm = (RP
m)q → (S(m+ 1))q

defined by

jk([x1], . . . , [xq]) = (j([x1]), . . . , j([xq])), (4.4)

where xs ∈ Rm+1, xTs xs = 1,∀s = 1, . . . , q.

Remark 4.1. The embedding jk in (4.4) yields the fastest known computational algorithms in projective shape analysis. Basic
axial statistics related to Watson’s method of moments such as the sample mean axis [22] and extrinsic sample covariance
matrix [23] can be expressed in terms of jm+3 = j.

A random projective shape Y of a k-ad in RPm is given in axial representation by the multivariate random axes

(Y 1, . . . , Y q), Y s = [X s], (X s)TX s = 1, ∀s = 1, . . . , q = k−m− 2. (4.5)

From [19] or [12] it follows that, in this representation, the extrinsic mean projective shape of (Y 1, . . . , Y q) exists if
∀s = 1, . . . , q, the largest eigenvalue of E(X s(X s)T) is simple. In this case µjk is given by

µjk = ([γ1(m+ 1)], . . . , [γq(m+ 1)]) (4.6)

where λs(a) and γs(a), a = 1, . . . ,m+ 1 are the eigenvalues in increasing order and the corresponding unit eigenvector of
E(X s(X s)T).
If Yr , r = 1, . . . , n are i.i.d.r.o.’s (independent identically distributed random objects) from a population of projective

shapes (in its multi-axial representation), for which the mean shape µjk exists, from a general consistency theorem for
extrinsic means on manifolds in [19] it follows that the extrinsic sample mean [Y ]jk,n is a strongly consistent estimator of
µjk . In the multivariate axial representation

Yr = ([X1r ], . . . , [X
q
r ]), (X

s
r )
TX sr = 1; s = 1, . . . , q. (4.7)

Let Js be the random symmetric matrix given by

Js = n−1
n∑
r=1

X sr (X
s
r )
T, s = 1, . . . , q, (4.8)

and let ds(a) and gs(a) be the eigenvalues in increasing order and the corresponding unit eigenvector of Js, a = 1, . . . ,m+1.
Then the sample mean projective shape in its multi-axial representation is given by

Y jk,n = ([g1(m+ 1)], . . . , [gq(m+ 1)]). (4.9)

Remark 4.2. Some of the results in this section can be found without a proof in [12]. Their proofs are given in [32] and here
in Appendix A.

If a is a positive integer, 1, a is the set of indices from 1 to a. To determine the extrinsic covariance matrix (4.2) of (4.5), we
note that the vectors

f(s,a) = (0, . . . , 0, γs(a), 0, . . . , 0), (4.10)

with the only nonzero term in position s, s ∈ 1, q, a ∈ 1,m yielding a basis in the tangent space at the extrinsic mean
Tµjk (RP

m)q, that is orthonormal with respect to the scalar product induced by the embedding jk. The vectors e(s,a),∀s ∈
1, q,∀a ∈ 1,m, defined as follows:

e(s,a) =: Dµjk jk(f(s,a)), (4.11)
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form an orthobasis of Tjk(µjk )(RP
m)q. We complete this orthobasis to an orthobasis of q-tuples of matrices (ei)i∈I for

(S(m + 1))q, that is indexed by the set I, the first indices of which are the pairs (s, a), s = 1, . . . , q; a = 1, . . . ,m in
their lexicographic order. Let Eba be the (m+ 1)× (m+ 1)matrix with all entries zero, except for an entry 1 in the position
(a, b). The standard basis of S(m + 1) is given by eba = E

b
a + E

a
b , 1 ≤ a ≤ b ≤ m + 1. For each s = 1, . . . , q, the vector

(seba) = (0m+1, . . . , 0m+1, e
b
a, 0m+1, . . . , 0m+1) has all the components zero matrices 0m+1 ∈ S(m + 1), except for the s-th

component, which is the matrix eba of the standard basis of S(m+ 1,R); the vectors se
b
a, s = 1, . . . , q, 1 ≤ a ≤ b ≤ m+ 1

listed in the lexicographic order of their indices (s, a, b) give a basis of S(m+ 1)q.
LetΣ be the covariancematrix of jk(Y 1, . . . , Y q) regarded as a randomvector in (S(m+1))q, with respect to this standard

basis, and let P =: Pjk : (S(m + 1))
q
→ jk((RPm)q) be the projection on jk((RPm)q). From (4.2) it follows that the extrinsic

covariance matrix of (Y 1, . . . , Y q)with respect to the basis (4.10) of Tµjk (RP
m)q is given by

ΣE =
[
e(s,a)(P(µ)) · DµP(reba)

]
(s=1,...,q),(a=1,...,m) ·Σ ·

[
e(s,a)(P(µ)) · DµP(reba)

]T
(s=1,...,q),(a=1,...,m) . (4.12)

Assume Y1, . . . , Yn are i.i.d.r.o.’s from a jk-nonfocal probabilitymeasure on (RPm)q andµjk in (4.6) is the extrinsicmean of Y1.
We arrange the pairs of indices (s, a), s = 1, . . . , q; a = 1, . . . ,m, in their lexicographic order, and define the (mq)× (mq)
symmetric matrix Gn, with the entries

Gn(s,a),(t,b) = n
−1(ds(m+ 1)− ds(a))−1(dt(m+ 1)− dt(b))−1

×

n∑
r=1

(gs(a)TX sr )(gt(b)
TX tr )(gs(m+ 1)

TX sr )(gt(m+ 1)
TX tr ). (4.13)

Lemma 4.1. Gn is the extrinsic sample covariance matrix estimator of ΣE .

From [15] it follows that Gn is a strongly consistent estimator of the population extrinsic covariance matrix in (4.12). In
preparation for an asymptotic distribution of Y jk,n we set

Ds = (gs(1) · · · gs(m)) ∈M(m+ 1,m;R), s = 1, . . . , q. (4.14)

If µ = ([γ1], . . . , [γq]), where γs ∈ Rm+1, γ Ts γs = 1, for s = 1, . . . , q, we define a Hotelling’s T
2-type statistic

T (Y jk,n;µ) = n(γ
T
1 D1, . . . , γ

T
q Dq)G

−1
n (γ

T
1 D1, . . . , γ

T
q Dq)

T. (4.15)

Theorem 4.1. Assume (Yr)r=1,...,n are i.i.d.r.o.’s on (RPm)q, and Y1 is jk-nonfocal, with ΣE > 0. Let λs(a) and γs(a) be the
eigenvalues in increasing order and corresponding unit eigenvectors of E[Xa1 (X

a
1 )
T
]. If λs(1) > 0, for s = 1, . . . , q, then

T (Y jk,n;µjk) converges weakly to χ
2
mq.

If Y1 is a jk-nonfocal population on (RPm)q, since (RPm)q is compact, it follows that jk(Y1) has finite moments of sufficiently
high order. According to Bhattacharya and Ghosh [24], this, along with an assumption of a nonzero absolutely continuous
component, suffices to ensure an Edgeworth expansion up to orderO(n−2) of the pivotal statistic T (Y jk,n;µjk), and implicitly
the bootstrap approximation of this statistic.

Corollary 4.1. Let Yr = ([X1r ], . . . , [X
q
r ]), XTstXst = 1, s = 1, . . . , q, r = 1, . . . , n, be i.i.d.r.o.’s from a jk-nonfocal

distribution on (RPm)q which has a nonzero absolutely continuous component, and with ΣE > 0. For a random resample with
repetition (Y ∗1 , . . . , Y

∗
n ) from (Y1, . . . , Yn), consider the eigenvalues of

1
n

∑n
r=1 X

∗
rsX
∗T
rs in increasing order and corresponding

unit eigenvectors d∗s (a) and g
∗
s (a), a = 1, . . . ,m+ 1. Let G

∗
n be the matrix obtained from Gn, by substituting all the entries with

∗-entries. Then the bootstrap distribution function of the statistic

T (Y
∗

jk; Y jk) = n(g1(m+ 1)
TD∗1, . . . , gq(m+ 1)

TD∗q)G
∗−1
n (g1(m+ 1)TD∗1, . . . , gq(m+ 1)

TD∗q)
T (4.16)

approximates the true distribution of T (Y jk;µjk) given by (4.15), with an error of order 0p(n
−2).

Remark 4.3. The above corollary is from [12]. The conditionΣE > 0 is missing there as well as in their Theorem 4.1.

Theorem 4.1 and Corollary 4.1 are useful in estimation and testing for mean projective shapes. From Theorem 4.1 we derive
a large sample confidence region for µjk .

Corollary 4.2. Assume (Yr)r=1,...,n are i.i.d.r.o.’s from a jk-nonfocal probability distribution on (RPm)q, and ΣE > 0. An
asymptotic (1 − α)-confidence region for µjk = [ν] is given by Rα(Y) = {[ν] : T (Y jk,n; [ν]) ≤ χ2mq,α}, where T (Y jk , [ν])
is given in (4.15). If the probability measure of Y1 has a nonzero-absolutely continuous component w.r.t. the volume measure on
(RPm)q, then the coverage error of Rα(Y) is of order Op(n−1).
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For small samples the coverage error could be quite large, and the bootstrap analogue in Corollary 4.1 is preferable.
Consider for example the one sample testing problem for mean projective shapes:
H0 : µjk = µ0 vs. H1 : µjk 6= µ0. (4.17)

Corollary 4.3. The large sample p-value for the testing problem (4.17) is p = Pr(T > T (Y jk,n;µ0)), where T (Y jk,n;µ) is given
by (4.15).

In the small sample case, problem (4.17) can be answered based on Corollary 4.1 to obtain the following 100(1 − α)%
bootstrap confidence region for µjk :

Corollary 4.4. Under the hypotheses of Corollary 4.1, the corresponding 100(1− α)% confidence region for µjk is

C∗n,α := j
−1
k (U

∗

n,α) (4.18)

with U∗n,α given by

U∗n,α = {µ ∈ jk((RP
m)q) : T (yjk,n;µ) ≤ c

∗

1−α}, (4.19)

where c∗1−α is the upper 100(1−α)% point of the values of T (Y
∗

jk; Y jk) given by (4.16). The region given by (4.18) and (4.19) has
coverage error Op(n−2).

If ΣE is singular and all the marginal axial distributions have positive definite extrinsic covariance matrices, one may
use simultaneous confidence ellipsoids to estimate µjk . Assume (Yr)r=1,...,n are i.i.d.r.o.’s from a jk-nonfocal probability
distribution on (RPm)q. For each s = 1, . . . , q let Σs be the extrinsic covariance matrix of Y s1 , and let Y

s
j,n and Gs,n be the

extrinsic sample mean and the extrinsic sample covariance matrix of the s-th marginal axial and assume the probability
measure of Y s1 has a nonzero-absolutely continuous component w.r.t. the volumemeasure on RPm. For s = 1, . . . , q and for
[γs] ∈ RPm, γ Ts γs = 1, we consider the statistics:

Ts = Ts(Y
s
j,n, [γs]) = nγ

TDsG−1s,nD
T
sγ (4.20)

and the corresponding bootstrap distributions:

T ∗s = Ts(Y
s∗
j , Y

s
j,n) = ngs(m+ 1)

TD∗sG
∗

s,n
−1D∗Ts gs(m+ 1). (4.21)

Since by Theorem 4.1 Ts has asymptotically a χ2m distribution, we obtain the following:

Corollary 4.5. For s = 1, . . . , q let c∗s,1−β be the upper 100(1− β)% point of the values of T
∗
s given by (4.21). We set

C∗s,n,β := j
−1
k (U

∗

s,n,β) (4.22)

where

U∗s,n,β = {µ ∈ RPm : Ts(ysj,n;µ) ≤ c
∗

s,1−β}. (4.23)

Then

R∗n,α =
q⋂
s=1

C∗s,n, αq (4.24)

with C∗s,n,β ,U
∗

s,n,β given by (4.22)–(4.23) is a region of approximately at least 100(1−α)% confidence for µjk . The coverage error
is of order Op(n−2).

Remark 4.4. If ΣE is singular one may also use a method for constructing nonpivotal bootstrap confidence regions for µjk
using Corollary 5.1 of [19].

5. Applications

5.1. Estimation of the mean 3D projective shape of a polyhedral surface from its images

Theorem 2.2 lays down the geometric principle of binocular vision that triggers 3D perception in combination with
certain neurological mechanisms. The projective ambiguity of the reconstructed scene stated in that theorem was first
recognized by Faugeras [1] and by Hartley et al. [2]. In this paper it is assumed that cameras are noncalibrated, meaning
that images of the same scene are available and nothing is known about the cameras’ internal parameters that recorded
these images, or about the cameras’ relative positions. Since initially in computer vision the reconstruction algorithms were
designed for calibrated cameras [25], the projective ambiguity of the reconstructed scene for noncalibrated cameras was
perceived as a lack of information, and research was directed mostly towards camera calibration.
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Fig. 1. 3D blueprint of a 3D object.

Fig. 2. Nineteen landmarks displayed that are used for 3D scene reconstruction, and statistical analysis.

Remark 5.1. Theorem 3.1 sheds a new light in pattern recognition of a 3D scene imaged by pairs of noncalibrated cameras,
since the projective shape of a reconstructed configuration does not depend on the reconstruction scheme, so the projective
shape already provides useful information about the imaged 3D scene, an important point in scene identification that was
previously ignored in the literature.

Due to landmark registration, camera distortion or rounding errors in the reconstruction algorithms, 3D projective shapes
from pairs of images can be regarded as random objects on the projective shape space PΣk3 . In our first example, we consider
a 3D polyhedral object manufactured from three cubes based on a blueprint displayed in Fig. 1. The object is manufactured
from three cubes that sit on the top of each other, whose sides from top to bottom are four, six and ten units. To see if the
projective shape of the objectmatches the original blueprint, one takes a number of randompictures of the object, to recover
its 3D projective shape. We assume the faces of the object are flat and consequently its visible surface is determined by the
visible corners. Fig. 2 displays a digital image of the object with visible corners, taken as landmarks, numbered from 1 to
19. Sixteen randomly selected pictures of the object, that show all the selected landmarks, were paired into eight pairs of
images. Recording of landmark coordinates of camera image pairswas done using theMatlab commands imread and cpselect.
Sixteen images of the object are displayed in Fig. 3. The 2D coordinates of the landmarks selected are and listed in Table 4
in Appendix B.
Using a reconstruction algorithm from [16, p. 121] for each pair of corresponding planar configurations, we obtain a 3D

reconstructed configuration. Homogeneous coordinates of the reconstructed configurations are given in Appendix B. The
sample of 3D configurations of points that are joined to resemble the original object is displayed in Fig. 4:
We selected landmarks 8, 12, 17, 18, and 19 in this order to form a projective frame, and with respect to this frame,

the projective coordinates of the other landmarks in their original labeling order yield a sample of points in (RP3)14
(19 − 3 − 2 = 14), each point representing a projective shape in axial representation. The extrinsic mean of the eight
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Fig. 3. Sixteen digital camera views of a 3D object resembling the blueprint.

Fig. 4. The eight reconstructed 3D projective shapes.

Table 1
Extrinsic sample mean.

Proj. Sp. Copy 1 2 3 4 5 6 7 9 10 11 13 14 15 16

x 0.21 0.29 −0.29 −0.25 0.54 −0.10 −0.07 −0.45 −0.28 0.85 −0.00 0.65 −0.43 −0.32
j19 Ext. Samp. Mean y 0.75 0.67 0.46 0.63 0.66 0.57 0.51 0.10 0.40 0.41 0.24 0.10 −0.41 0.08

z −0.41 0.36 0.46 −0.50 0.08 0.10 −0.77 0.64 −0.79 0.02 −0.96 0.71 0.77 −0.93
w 0.47 0.58 0.70 0.54 0.51 0.81 0.38 0.62 0.37 0.32 0.15 0.24 0.22 0.15

projective shapes was computed; a configuration having that projective shape is displayed in Fig. 5(a). The spherical
coordinates of the landmarks are given in Table 1. Given the large number of covariates in the tangent space (42), we display
only the ‘‘heat map’’ of the extrinsic covariance matrix (4.13), here shown in Fig. 6.



22 V. Patrangenaru et al. / Journal of Multivariate Analysis 101 (2010) 11–31

Fig. 5. (a) The estimated extrinsicmean shown as a 3D projective shape. (b)–(h) Randomly selected estimated extrinsicmeans based on bootstrap samples.
In each case, a projective transformation is applied to each shape so that landmarks 13, 15, 17, 18, and 19match that of reconstructed 3D image 1 as shown
in Fig. 4 in R3 .

Fig. 6. Extrinsic sample covariance matrix shown as an image.

We formulate the original question as a hypothesis testing problem

H0 : µj19 = µ0 vs. H1 : µj19 6= µ0, (5.1)

whereµ0 is the projective shape of the blueprint (Table 3), given in (5.1) andµj19 is the extrinsicmean projective shape of the
random 3D configuration of 19 vertices on the polyhedral surface of the object as recovered from its pictures, corresponding
tho the embedding j19 (Table 2).
It suffices to check that, for a significant level α, µ0 is in a (1 − α)100% confidence region of µ19. Since the sample size

(8) is too small, the extrinsic sample covariance matrix is a degenerate matrix, so one cannot use a pivotal bootstrap for
the mean projective shape of the entire configuration of 19 landmarks as given in Corollary 4.4. Nevertheless we could
find (1 − α)100% confidence regions using a pivotal bootstrap, based on Corollary 4.5. There are q = 14 marginal axial
distributions that correspond to the 14 existing landmarks beside those that are part of the projective frame. To achieve a
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Table 2
Coordinates of the blueprint.

Landmark no. 1 2 3 4 5 6 7 8 9 10

Blue print x 10.00 10.00 0.00 10.00 0.00 0.00 4.00 4.00 0.00 4.00
y 0.00 10.00 10.00 10.00 6.00 0.00 0.00 4.00 4.00 0.00
z 0.00 0.00 0.00 10.00 10.00 20.00 20.00 20.00 20.00 16.00
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 11 12 13 14 15 16 17 18 19

Blue print x 4.00 0.00 6.00 6.00 0.00 6.00 6.00 10.00 0.00
y 4.00 4.00 0.00 6.00 6.00 0.00 6.00 0.00 10.00
z 16.00 16.00 16.00 16.00 16.00 10.00 10.00 10.00 10.00
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 3
Projective coordinates of the blueprint.

Landmark no. 1 2 3 4 5 6 7

Blue print x 0.22 0.26 −0.31 −0.26 0.52 −0.09 −0.05
y 0.77 0.66 0.46 0.66 0.67 0.58 0.58
z −0.33 0.39 0.46 −0.39 0.09 0.13 −0.68
w 0.50 0.59 0.69 0.59 0.52 0.80 0.45

Landmark no. 9 10 11 13 14 15 16

Blue print x −0.42 −0.31 0.85 0.00 0.68 −0.47 −0.39
y 0.11 0.46 0.42 0.31 0.11 −0.47 0.10
z 0.64 −0.69 0.00 −0.92 0.68 0.70 −0.89
w 0.64 0.46 0.32 0.23 0.25 0.26 0.22

reliable conclusion, we used 20000 resamples from the original sample. For example,µ0 is in the 95% confidence region for
µj19 , if for each s = 1, . . . , 14 the value of Ts = T (Y

s
j,7;µ0,s) in (4.15), corresponding to the s-th marginal is between the

72nd ranked and the 19928th ranked observation of the corresponding bootstrap distribution (values of degenerated G∗s,7
have been omitted). The results are as follows:
– First marginal (Landmark 1): T1 = 3.0279647168E+00 is between 6301 (T ∗ = 3.0243210949E+00) and 6302 (T ∗ =
3.0294218108E+00).
– Second marginal (Landmark 2): T2 = 2.6459766362E+00 is between 3942 (T ∗ = 2.6434475892E+00) and 3943
(T ∗ = 2.6920988816E+00).
– Third marginal (Landmark 3): T3 = 1.5175491E−01 is between 397 (T ∗ = 1.4510789E−01) and 398 (T ∗ =
1.5271147E−01).
– Fourth marginal (Landmark 4): T4 = 3.7407490E+00 is between 7379 (T ∗ = 3.7288447E+00) and 7380 (T ∗ =
3.7464786E+00).
– Fifth marginal (Landmark 5): T5 = 2.6168385E+00 is between 5355 (T ∗ = 2.6166643704E+00) and 5356 (T ∗ =
2.6216985741E+00).
– Sixth marginal (Landmark 6): T6 = 1.7898784E+00 is between 3294 (T ∗ = 1.7859106E+00) and 3295 (T ∗ =
1.7914946E+00).
– Seventh marginal (Landmark 7): T7 = 3.9364703E+00 is between 7194 (T ∗ = 3.9191776E+00) and 7195 (T ∗ =
3.9388019E+00).
– Eighth marginal (Landmark 9): T8 = 1.5700171E+00 is between 4432 (T ∗ = 1.5687626E+00) and 4433 (T ∗ =
1.5748148E+00).
– Ninth marginal (Landmark 10): T9 = 5.0491394E+00 is between 8507 (T ∗ = 5.0407173E+00) and 8508 (T ∗ =
5.0521943E+00).
– Tenth marginal (Landmark 11): T10 = 1.3735517E+01 is between 15155 (T ∗ = 1.3706638E+01) and 15156 (T ∗ =
1.3750192E+01).
– Eleventh marginal (Landmark 13): T11 = 2.0352336E+00 is between 4198 (T ∗ = 2.0327469E+00) and 4199 (T ∗ =
2.0412641E+00).
– Twelfth marginal (Landmark 14): T12 = 3.9488573860E+00 is between 6837 (T ∗ = 3.9442688E+00) and 6838
(T ∗ = 3.9573099E+00).
– Thirteenth marginal (Landmark 15): T13 = 3.6973595941E+00 is between 7857 (T ∗ = 3.6946285E+00) and 7858
(T ∗ = 3.6986865E+00).
– Fourteenth marginal (Landmark 16): T14 = 2.8730067E+00 is between 5065 (T ∗ = 2.8723605E+00) and 5066
(T ∗ = 2.8770536E+00).
These results show that we fail to rejectH0 for any reasonable level α, thus proving that the projective shape of the object

is following the projective shape of the blueprint closely.
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Simultaneous confidence intervals for affine coordinates of the extrinsic mean projective shape, using a nonpivotal
bootstrap as in Remark 4.4, yield similar results, but are less reliable given the poorer coverage error of the nonparametric
bootstrap. Such results can be provided by the authors on request and can be found in [5] for a similar data set with different
cube relative sizes.

5.2. Face identification example

Our second example is in the area of face recognition. Our example is based on a data set used in a live BBC program
‘‘Tomorrow’s World’’. The example was introduced in [12], where six landmarks (ends of eyes plus ends of lips) have
been recorded from 14 digital images of the same person (an actor posing in different disguises), in 14 pictures. The face
appearance in these pictures may be neither frontal or lateral.
The data set made available to us, henceforth called actor data, has eight frontal images and seven one quarter images

of the actor’s face. In [12] seven of the frontal pictures (respectively, seven one quarter pictures) were used, for which
the coordinates of six anatomically landmarks that are approximately coplanar were recorded (four corners of the eyes
canthus and two end points of the lips mouth edge points). Using the four eye-corner landmarks as the projective frame,
the landmarks coordinates were converted into bivariate axial observations. An empirical test was performed in that paper
showing evidence that the frontal and one quarter views of the group of landmarks could be of the same person.
In this paperweuse twoadditional landmarks (‘‘bridge of thenose’’ and ‘‘tip of thenose’’). The eight landmarks considered

are significantly not coplanar, as shown by Balan et al. [29], therefore a 3D projective shape analysis is more appropriate for
this configuration. If one compares the nonparametric bootstrap distributions of the extrinsic sample mean 2D projective
shape of a configuration of five points, in one quarter views versus frontal views of the actor, we notice that, even for close
to coplanar configurations, these regions have only a small overlap. In Fig. 8 one may notice this effect when the fifth
landmark called ‘‘bridge of the nose’’ is added to a configuration of four coplanar landmarks, showing the limitations of
the 2D projective shape analysis of spatial scenes.
In Fig. 7, on the top row, we display the eight frontal pictures in the actor data, and six one quarter images of the same

individual, in order to reconstruct 3D configurations from pairs of images.

Landmark 1 2 3 4 5 6 7 8

Image
1 466, 403 469, 191 350, 501 608, 501 278, 191 397, 199 554, 200 665, 202
2 482, 385 483, 164 328, 552 602, 570 254, 148 40, 161 598, 167 730, 173
3 511, 358 533, 170 371, 500 600, 531 308, 136 428, 157 616, 178 742, 188
4 482, 334 513, 162 365, 462 589, 480 299, 140 412, 154 577, 169 701, 185
5 505, 260 511, 84 394, 422 628, 430 302, 83 421, 89 599, 83 719, 91
6 530, 328 539, 142 389, 450 605, 468 344, 133 457, 152 619, 155 728, 173
7 465, 264 478, 56 338, 457 620, 454 263, 98 385, 103 580, 113 700, 120
8 491, 382 503, 164 343, 494 593, 521 287, 143 430, 172 580, 181 727, 199
9 208, 238 300, 59 224, 422 421, 423 157, 94 239, 98 391, 106 497, 109
10 155, 295 240, 94 139, 495 389, 515 91, 94 193, 122 376, 128 494, 139
11 167, 303 244, 129 161, 449 365, 468 127, 113 196, 128 353, 136 475, 148
12 196, 280 256, 91 152, 447 401, 482 92, 101 203, 113 373, 117 514, 130
13 690, 484 683, 268 412, 569 620, 662 449, 212 568, 257 728, 310 842, 349
14 195, 315 240, 141 250, 477 439, 446 152, 173 224, 155 350, 140 454, 124

Thematched configurations from1 to 8 are for frontal views and from9 to 14 for one quarter views. The 3D reconstruction
was obtained for each pair of the images, with 1 and 2 being the first pair, 3 and 4 being the second pair, and so on. In total
there are four reconstructed 3D facial landmark configurations using the front views and three reconstructed 3D faces using
the side views. The 3D projective projective frames are given by landmarks 1 to 5.

Remark 5.2. Note that an asymptotic chi-square two sample test statistic for the hypothesis testing problemµj19,1 = µj19,2
similar with the statistic Tn1n2 in formula (3.16) in [26] for the equality of two extrinsic means onCPk−2 may be derived also
on (RPm)k−m−2. However such a test statistic assumes that the sample extrinsic covariance matrices are nonsingular, while
in our example the sample sizes n1 = 4, n2 = 3 are too small to insure this property for these 9× 9 matrices.

Therefore we are giving only a heuristic computational justification for the equality of the extrinsic mean projective shapes
of the reconstructed configurations from frontal images (respectively, from one quarter images), similar to the one used
in [12]. We use a nonpivotal bootstrap as mentioned in Remark 4.4. The affine coordinates of the extrinsic sample mean
3D projective shapes of the configurations of eight landmarks retrieved from the side images falls inside seven out of nine
95% simultaneous bootstrap confidence intervals for the affine coordinates of the extrinsic mean 3D projective shapes of
the corresponding configurations retrieved from the frontal images. The joint 95% confidence regions for the two means
overlap.
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Fig. 7. BBC data: 14 views of an actor’s face.

Fig. 8. Affine views of the bootstrap distribution of the extrinsicmean axial coordinate corresponding to the ‘‘bridge of nose’’ landmark. Frontal views=+.
One quarter views= ◦.

Simultaneous 95% bootstrap confidence intervals for the affine coordinates of the extrinsic mean 3D projective shapes of
spatial configurations of landmarks obtained from pairs of frontal images (circles) (respectively, from pairs of one quarter
images (crosses)) are displayed in Fig. 9. On the horizontal axis we have the nine affine coordinates (three for each projective
space marginal of the multi-axial representation). For each affine coordinate, the simultaneous confidence intervals are
displayed on the vertical of that coordinate. Note that, according to Hall [27, p. 283], if n is the sample size, the number
of atoms for the nonparametric bootstrap is

(
2n− 1
n

)
. In our example, n = 4 for reconstructions from frontal images, and

we have
(
7
4

)
= 35 bootstrap atoms, and n = 3 for reconstructions from frontal images, and for this group we have only(

5
3

)
= 10 bootstrap atoms. The affine coordinates of bootstrap means in the two groups are displayed in Fig. 9 as small

circles (respectively, as small crosses).
The intersection interval along each of the affine coordinates is given below:
The intersection interval for the 1st coordinate is 0.099812 0.642128 with length 0.542315.
The intersection interval for the 2nd coordinate is−0.160658 0.450349 with length 0.611007.
The intersection interval for the 3rd coordinate is 0.185366 0.292291 with length 0.106926.
The intersection interval for the 4th coordinate is−0.002991 0.657261 with length 0.660252.
The intersection interval for the 5th coordinate is−0.376397 0.983902 with length 1.360299.
The intersection interval for the 6th coordinate is−1.092520−0.001708 with length 1.090812.
The intersection interval for the 7th coordinate is−0.002792 1.131982 with length 1.134774.
The intersection interval for the 8th coordinate is−0.769301 1.474715 with length 2.244016.
The intersection interval for the 9th coordinate is−1.992983−0.008885 with length 1.984098.

Remark 5.3. No matter what model of 3D projective shape space is used, the dimension of that manifold is 3k − 15.
Therefore, for each additional landmark, ideally one should increase the sample size by at least six additional images.
For this reason, Corollary 4.5, based on the multivariate axial model, offers a reasonable way of bypassing this high-
dimensionality–small-sample problem, as seen in our application. This is a promising feature of ourmethodology for solving
pattern recognition questions from digital images of a scene.
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Fig. 9. 95% simultaneous bootstrap confidence intervals for affine coordinates of mean 3D projective shapes of eight facial landmarks in front views and
one quarter views.
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Appendix A

Proof. The proof of Lemma 4.1 is based on the equivariance of the embedding jk. As a preliminary step note that the group
SO(m+1) acts as a group of isometries ofRPm. If R ∈ SO(m+1) and [x] ∈ RPm then the action R([x]) = [Rx] is well defined.
SO(m+ 1) acts by isometries also on S+(m+ 1,R) via R(A) = RART. Note that the map j(x) = xxT is equivariant since

j(R[x]) = j([Rx]) = (Rx)(Rx)T = Rj([x])RT = R(j([x])).

Therefore, for q > 1 the group (SO(m+ 1))q acts as a group of isometries of (RPm)q and also

(R1, . . . , Rq) · (A1, . . . , Aq) = (R1A1RT1, . . . , RqAqR
T
q), Rj ∈ SO(m+ 1), j = 1, . . . , q. (A.1)

and the map jk is equivariant with respect to this action since

jk((R1, . . . , Rq) · ([x1], . . . , [xq])) = (R1, . . . , Rq) · jk([x1], . . . , [xq]),

∀(R1, . . . , Rq) ∈ (SO(m+ 1))q,∀([x1], . . . , [xq]) ∈ (RPm)q. (A.2)

We set M = jk((RPm)q). Let Mm+11 be the set of all matrices of rank 1 in S+(m + 1). Note that M is the direct product of q
copies ofMm+11 . Recall that

P : (S+(m+ 1,R))q → M (A.3)

is the projection on M . If Yr = ([X1r ], . . . , [X
q
r ]), r = 1, . . . , n, are i.i.d.r.o.’s from a probability distribution on (RPm)q, we

set

Vr = jk(Yr).

From the equivariance of jk, w.l.o.g. (without loss of generality) we may assume that jk(Y ) = D̃ = (D̃1, . . . , D̃q), where
D̃s ∈ S+(m+ 1,R) is a diagonal matrix, s = 1, . . . , q. Therefore

Y jk,n = ([g1(m+ 1)], . . . , [gq(m+ 1)])

and ∀s = 1, . . . , q,∀a = 1, . . . ,m+ 1, with gs(a) = ea are the eigenvectors of D̃s.

http://nihroadmap.nih.gov/bioinformatics
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Table 4
Coordinates of landmarks from camera images.

Landmark no. 1 2 3 4 5 6 7 8 9 10

Image 1 x 89.50 72.50 142.00 154.00 75.50 144.00 156.50 68.00 171.00 188.50
y 29.50 66.00 73.00 37.50 125.50 134.50 96.00 146.50 159.50 99.50

Image 2 x 135.00 97.50 137.50 174.50 99.00 138.50 175.00 80.00 138.50 194.00
y 39.00 54.50 70.50 53.50 105.00 122.00 104.00 116.00 140.50 113.00

Landmark no. 11 12 13 14 15 16 17 18 19

Image 1 x 72.50 170.00 187.50 56.00 225.50 249.50 66.50 222.50 244.50
y 227.50 238.50 179.50 273.00 295.50 187.00 389.00 412.00 303.50

Image 2 x 81.50 138.50 193.00 43.00 142.00 233.50 50.00 144.00 231.50
y 187.50 214.00 184.50 208.50 256.00 202.50 319.00 373.00 312.50

Landmark no. 1 2 3 4 5 6 7 8 9 10

Image 3 x 177.50 133.50 165.50 209.50 133.00 164.50 207.50 112.50 157.00 222.50
y 28.00 39.00 56.50 46.00 89.00 109.50 95.50 96.00 125.50 107.50

Image 4 x 223.00 176.50 201.00 248.50 175.50 199.50 246.50 152.00 187.00 258.50
y 35.50 44.50 63.50 53.50 94.50 114.50 104.50 100.00 130.00 115.00

Landmark no. 11 12 13 14 15 16 17 18 19

Image 3 x 110.50 154.00 219.00 66.00 140.00 251.00 69.50 139.50 246.00
y 168.00 199.50 179.00 183.00 240.00 200.50 293.00 356.50 312.00

Image 4 x 150.50 184.50 254.50 104.50 159.50 281.00 106.00 158.50 275.50
y 169.50 202.50 186.00 181.50 240.00 209.50 289.00 354.50 321.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Image 5 x 189.00 140.50 162.50 212.50 138.00 159.00 209.00 114.00 144.50 219.00
y 33.50 41.00 65.00 57.00 89.00 113.00 106.00 94.50 132.00 119.50

Image 6 x 209.50 163.00 178.00 227.00 161.00 175.00 224.50 138.00 157.00 231.50
y 63.50 67.50 83.00 80.50 115.50 132.50 129.00 119.00 145.00 138.50

Landmark no. 11 12 13 14 15 16 17 18 19

Image 5 x 110.00 140.00 212.00 62.50 110.50 235.00 61.00 106.00 225.00
y 162.00 201.50 188.00 173.00 241.50 216.00 276.00 350.50 321.00

Image 6 x 135.00 154.50 228.00 88.00 117.50 245.00 88.00 116.50 238.00
y 187.50 216.00 209.00 192.00 243.00 230.50 300.50 360.50 344.50

Landmark no. 1 2 3 4 5 6 7 8 9 10

Image 7 x 110.00 75.00 112.50 146.50 80.00 117.00 151.00 63.00 118.00 169.00
y 24.00 40.50 53.50 35.50 88.50 101.50 83.00 99.50 119.00 90.00

Image 8 x 161.50 121.50 147.00 187.50 122.00 147.00 187.00 102.50 139.50 199.50
y 47.00 56.00 71.50 62.00 101.00 117.00 106.00 107.50 130.00 115.50

Landmark no. 11 12 13 14 15 16 17 18 19

Image 7 x 69.00 122.50 173.50 34.00 125.00 211.50 47.00 136.50 217.50
y 167.00 187.50 158.50 188.50 227.00 173.00 292.00 336.00 277.00

Image 8 x 103.00 139.00 199.00 63.00 124.00 225.50 68.00 126.50 224.50
y 171.50 195.50 180.00 184.00 229.00 198.00 283.00 335.00 299.50

Landmark no. 1 2 3 4 5 6 7 8 9 10

Image 9 x 176.50 141.50 176.50 210.50 140.00 175.50 210.50 122.50 174.00 226.50
y 38.00 44.00 52.50 47.00 94.00 103.00 95.50 99.00 112.50 101.50

Image 10 x 146.50 109.50 136.50 176.00 109.00 136.50 175.00 89.00 131.00 187.50
y 35.00 41.00 51.50 46.00 88.00 100.50 93.00 93.50 110.50 99.00

Landmark no. 11 12 13 14 15 16 17 18 19

Image 9 x 120.00 171.50 224.50 82.50 169.50 259.50 83.00 167.50 256.00
y 171.50 188.00 174.50 181.50 211.50 185.50 298.00 337.00 303.00

Image 10 x 88.50 128.50 186.50 48.50 118.50 215.50 50.00 117.50 212.00
y 160.50 180.50 166.50 171.00 206.50 180.50 277.50 321.50 289.50

Landmark no. 1 2 3 4 5 6 7 8 9 10

Image 11 x 146.50 102.50 159.50 201.00 99.50 153.50 194.00 77.50 159.00 221.00
y 40.00 71.50 104.00 70.00 128.00 159.00 126.00 145.00 194.50 141.50

Image 12 x 167.00 111.50 143.50 200.50 105.50 136.00 191.00 78.50 123.50 208.00
y 29.00 42.50 80.50 65.50 96.50 136.50 118.00 104.00 163.00 138.00

Landmark no. 11 12 13 14 15 16 17 18 19

Image 11 x 75.00 150.00 210.00 30.00 161.50 260.50 32.50 150.00 240.50
y 218.00 266.00 213.00 256.00 343.50 244.50 356.00 441.00 342.00

(continued on next page)
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Table 4 (continued)

Image 12 x 71.00 113.00 193.00 16.00 85.50 225.50 14.00 76.00 204.00
y 175.50 232.50 206.50 193.00 298.00 248.50 292.00 396.50 345.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Image 13 x 91.00 78.00 142.50 152.00 79.00 142.50 153.50 72.50 168.50 181.50
y 35.50 63.00 70.00 41.50 122.00 127.50 99.50 138.50 148.00 103.00

Image 14 x 163.50 138.00 190.00 212.00 128.00 178.50 201.50 114.50 190.50 225.50
y 47.00 62.50 82.00 66.00 115.50 135.00 118.00 126.00 156.00 128.50

Landmark no. 11 12 13 14 15 16 17 18 19

Image 13 x 74.50 166.50 180.50 60.00 220.50 239.00 66.00 216.00 234.50
y 221.00 229.00 182.00 258.00 276.00 189.50 382.00 400.00 308.50

Image 14 x 99.50 173.50 208.00 71.50 200.50 256.50 52.50 172.50 229.50
y 200.50 232.00 200.00 223.50 278.50 221.00 340.00 395.00 330.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Image 15 x 135.00 105.50 167.50 193.00 105.50 166.00 190.50 91.00 180.50 219.00
y 38.00 64.00 79.50 54.50 124.50 140.50 112.50 140.00 165.00 120.50

Image 16 x 104.00 72.50 112.50 142.00 74.00 114.50 143.50 58.50 119.00 163.50
y 28.00 36.50 43.50 35.00 87.00 97.00 84.50 94.00 105.50 89.00

Landmark no. 11 12 13 14 15 16 17 18 19

Image 15 x 89.00 176.00 212.50 57.50 209.00 270.50 60.00 201.00 260.00
y 223.50 249.00 203.00 258.00 304.50 219.00 382.50 432.50 338.50

Image 16 x 60.50 120.00 164.00 27.00 131.50 203.00 33.50 133.00 205.00
y 167.50 181.00 160.50 181.50 207.00 170.50 298.50 329.50 284.50

It is obvious that if V is the sample mean of Vr , r = 1, . . . , n then

jk(Y jk,n) = P(V ) = P(D̃). (A.4)

Therefore w.l.o.g. we may assume that

gs(a) = ea, ∀s = 1, . . . , q,∀a = 1, . . . ,m+ 1, (A.5)

and that jk(p) = P(V ) is given with p = ([em+1], . . . , [em+1]). The tangent space Tp(RPm)q can be identified with (Rm)q,
and with this identification f(s,a) in (4.10) is given by f(s,a) = (0, . . . , 0, ea, 0, . . . , 0) has all vector components zero except
for position s, which is the vector ea of the standard basis of Rm. We may then assume that e(s,a)(D̃) := Dpjk(ies). From a
straightforward computation which can be found in [15] it follows that DD̃P(se

b
a) = 0, except for

DD̃P((se
m+1
a )) = {ds(m+ 1)− ds(a)}e(s,a)(Pk(D̃)). (A.6)

If Yr , r = 1, . . . , n is given by (4.7), from (A.6) and (4.2) we obtain

(Gn)(i,a),(j,b) = n−1{di(m+ 1)− di(a)}−1{dj(m+ 1)− dj(b)}−1
∑
r
iXar jX

b
r iX

m+1
r jX

m+1
r , (A.7)

which is (4.13) expressed in the selected basis, thus proving the lemma. �
The proof of Theorem 4.1 is elementary following from Lemma 4.1, and from the observation that V1 has a multivariate

distribution with a finite covariance matrix Σ since (RPm)q is compact. For n large enough, V has approximately a
multivariate normal distributionN (µ, 1nΣ), and by the delta method [28, p.45], it follows that

P(V ) ∼ N

(
P(µ) = jk(µk),

1
n
DµPΣDµPT

)
. (A.8)

The range of the differentialDµP is a subspace of TP(µ)jk((RPm)q); therefore the asymptotic distribution of P(V ) is degenerate.
If we decompose S(m+ 1)q = TP(µ)jk((RPm)q)⊕ TP(µ)jk((RPm)q)⊥ into tangent and normal subspaces, then the covariance
matrix of the tangential marginal distribution of tan P(V ) is 1nΣE , which is nondegenerate since the generalized extrinsic
covariance det(ΣE) = Π

q
s=1λs(a) > 0. Because V is a strongly consistent estimator of µ and Sn is a strongly consistent

estimator of Σ , from Slutsky’s theorems [28, p.42] it follows that Gn in (4.13) is a strongly consistent estimator of ΣE . Let
U = [(sU1, . . . ,s Um)s=1,...,q]T be the random vector whose components are the components of tan P(V ) w.r.t. the basis

e(s,a)(D̃) given in the proof of Lemma 4.1. Gn is a consistent estimator ofΣE . Then asymptotically Zn =
√
nG
−
1
2

n U converges
toN (0, Imq), and ZTnZn converges to a chi-square distributionwithmq degrees of freedom. If one uses the equivariance again,
one gets ZTnZn = T (Y jk,n;µ) in (4.15), which completes the proof of Theorem 4.1. �
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Table 5
Reconstructed object coordinates of the eight configurations.

Landmark no. 1 2 3 4 5 6 7 8 9 10
Reconstructed 3D Config 1 x −0.09 −0.18 −0.08 0.01 −0.19 −0.09 0.00 −0.24 −0.08 0.05

y 0.37 0.31 0.25 0.31 0.18 0.12 0.18 0.15 0.06 0.15
z 2.51 2.44 2.27 2.36 2.53 2.35 2.44 2.49 2.23 2.35
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 11 12 13 14 15 16 17 18 19

Reconstructed 3D Config 1 x −0.25 −0.09 0.04 −0.35 −0.09 0.13 −0.36 −0.10 0.14
y −0.04 −0.12 −0.03 −0.11 −0.22 −0.08 −0.45 −0.53 −0.38
z 2.62 2.36 2.49 2.55 2.13 2.33 2.78 2.35 2.56
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Reconstructed 3D Config 2 x 0.43 0.11 0.27 0.59 0.11 0.26 0.59 −0.05 0.17 0.66
y 1.39 1.30 1.13 1.22 0.99 0.81 0.91 0.93 0.69 0.81
z 6.89 6.78 6.52 6.65 6.90 6.64 6.79 6.76 6.47 6.68
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 11 12 13 14 15 16 17 18 19

Reconstructed 3D Config 2 x −0.07 0.16 0.65 −0.38 −0.00 0.81 −0.39 −0.01 0.80
y 0.47 0.23 0.35 0.39 −0.02 0.19 −0.36 −0.77 −0.58
z 6.99 6.69 6.86 6.89 6.32 6.66 7.15 6.61 6.97
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Reconstructed 3D Config 3 x 0.22 0.06 0.11 0.27 0.05 0.09 0.26 −0.03 0.03 0.27
y 0.62 0.61 0.54 0.55 0.45 0.38 0.39 0.43 0.33 0.35
z 3.28 3.30 3.16 3.16 3.30 3.17 3.15 3.30 3.10 3.08
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 11 12 13 14 15 16 17 18 19

Reconstructed 3D Config 3 x −0.04 0.02 0.25 −0.21 −0.10 0.29 −0.22 −0.11 0.26
y 0.20 0.10 0.13 0.18 0.01 0.06 −0.18 −0.35 −0.28
z 3.30 3.09 3.07 3.29 2.96 2.93 3.31 2.96 2.90
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Reconstructed 3D Config 4 x 0.00 −0.31 −0.11 0.20 −0.32 −0.11 0.20 −0.48 −0.16 0.29
y 1.47 1.36 1.15 1.27 1.03 0.83 0.94 0.96 0.69 0.84
z 8.10 7.90 7.38 7.61 8.17 7.61 7.80 8.09 7.29 7.56
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 11 12 13 14 15 16 17 18 19

Reconstructed 3D Config 4 x −0.50 −0.18 0.30 −0.83 −0.27 0.47 −0.87 −0.28 0.51
y 0.46 0.21 0.36 0.34 −0.06 0.19 −0.57 −0.89 −0.63
z 8.55 7.70 7.98 8.37 7.10 7.43 9.23 7.69 8.11
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Reconstructed 3D Config 5 x −0.13 −0.43 −0.19 0.10 −0.46 −0.19 0.11 −0.62 −0.23 0.20
y 1.72 1.69 1.43 1.50 1.36 1.11 1.17 1.30 0.99 1.07
z 8.10 8.19 7.35 7.51 8.69 7.74 7.76 8.57 7.49 7.44
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 11 12 13 14 15 16 17 18 19

Reconstructed 3D Config 5 x −0.68 −0.25 0.23 −1.06 −0.31 0.43 −1.19 −0.34 0.51
y 0.77 0.47 0.59 0.67 0.24 0.42 −0.46 −0.81 −0.52
z 9.48 8.14 8.22 9.45 7.62 7.54 11.02 9.01 8.88
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Reconstructed 3D Config 6 x 0.00 −0.16 −0.07 0.10 −0.19 −0.09 0.07 −0.28 −0.13 0.12
y 0.52 0.47 0.33 0.38 0.32 0.18 0.24 0.29 0.08 0.17
z 2.99 2.98 2.83 2.85 3.12 2.97 2.99 3.12 2.89 2.92
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 11 12 13 14 15 16 17 18 19

Reconstructed 3D Config 6 x −0.32 −0.17 0.08 −0.50 −0.25 0.17 −0.56 −0.31 0.12
y 0.07 −0.13 −0.04 0.00 −0.33 −0.17 −0.36 −0.70 −0.51
z 3.31 3.09 3.10 3.31 2.94 2.98 3.64 3.28 3.31

(continued on next page)
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Table 5 (continued)

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Reconstructed 3D Config 7 x −0.01 −0.12 0.10 0.20 −0.17 0.05 0.15 −0.23 0.09 0.25
y 0.80 0.70 0.58 0.68 0.47 0.36 0.45 0.41 0.25 0.40
z 4.44 4.31 4.06 4.18 4.41 4.14 4.24 4.35 3.95 4.16
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 11 12 13 14 15 16 17 18 19

Reconstructed 3D Config 7 x −0.31 0.02 0.17 −0.44 0.11 0.35 −0.56 −0.01 0.25
y 0.06 −0.07 0.08 −0.06 −0.26 −0.01 −0.63 −0.78 −0.51
z 4.48 4.10 4.25 4.39 3.74 4.01 4.65 3.96 4.21
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 1 2 3 4 5 6 7 8 9 10

Reconstructed 3D Config 8 x −0.04 −0.06 −0.03 −0.01 −0.06 −0.04 −0.02 −0.08 −0.04 −0.00
y 0.11 0.11 0.11 0.12 0.08 0.08 0.09 0.07 0.08 0.09
z 0.56 0.56 0.60 0.59 0.59 0.63 0.62 0.59 0.65 0.64
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Landmark no. 11 12 13 14 15 16 17 18 19

Reconstructed 3D Config 8 x −0.08 −0.04 −0.01 −0.11 −0.04 0.02 −0.12 −0.05 0.02
y 0.03 0.03 0.04 0.02 0.01 0.04 −0.06 −0.09 −0.05
z 0.64 0.69 0.68 0.64 0.74 0.72 0.72 0.84 0.81
w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Appendix B

Table 4 displays the coordinates of the 19 landmarks in each of 16 camera images. The camera images are organized as
pairs, each of which were used to reconstruct a 3D object in RP3 such as the ones displayed in the Fig. 4. Homogeneous
coordinates of the eight reconstructed objects, using the standard reconstruction algorithm [16, p. 188] are displayed in
Table 5.
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