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Weight Adaptation and Oscillatory Correlation for
Image Segmentation
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Abstract—We propose a method for image segmentation based
on a neural oscillator network. Unlike previous methods, weight
adaptation is adopted during segmentation to remove noise and
preserve significant discontinuities in an image. Moreover, a
logarithmic grouping rule is proposed to facilitate grouping of
oscillators representing pixels with coherent properties. We show
that weight adaptation plays the roles of noise removal and feature
preservation. In particular, our weight adaptation scheme is in-
sensitive to termination time and the resulting dynamic weights in
a wide range of iterations lead to the same segmentation results. A
computer algorithm derived from oscillatory dynamics is applied
to synthetic and real images and simulation results show that the
algorithm yields favorable segmentation results in comparison
with other recent algorithms. In addition, the weight adaptation
scheme can be directly transformed to a novel feature-preserving
smoothing procedure. We also demonstrate that our nonlinear
smoothing algorithm achieves good results for various kinds of
images.

Index Terms—Desynchronization, image segmentation,
LEGION, nonlinear smoothing, oscillatory correlation, synchro-
nization, weight adaptation.

I. INTRODUCTION

I MAGE segmentation refers to the process of partitioning an
image into a set of coherent regions. As a major aspect of vi-

sual perception, it is central to various kinds of tasks. Although
humans often perform it effortlessly, image segmentation is still
one of the main hurdles on the path from acquisition to under-
standing of images for machine vision.

Image segmentation has been extensively studied in com-
puter vision community, and many techniques have been pro-
posed (for reviews of the subject see [12], [13], [23], [43], and
[44]). Basically, all of algorithms can be classified into four
broad categories: pixel classification, edge-based segmentation,
region-based segmentation, and hybrid techniques. Pixel classi-
fication, e.g., thresholding, is a technique that associates a pixel
with a specific label if a measure of the pixel is within a certain
range. This technique has been extended to more complicated
forms such as multiple-threshold test [13], [17], and a recur-
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sive test [5]. Edge-based segmentation generally consists of two
consecutive stages, i.e., edge detection and contour completion,
and regions embraced by closed contours produce segmentation
results [7], [9], [30]. Region-based techniques operate directly
on regions, and classical techniques include region growing and
split and merge [1], [14], [26], [44]. The main idea of these
methods is to iteratively group (or split) pixels into connected re-
gions in accordance with some prespecified criteria, e.g., homo-
geneity. Finally, hybrid techniques combine two or more kinds
of aforementioned techniques to achieve improved segmenta-
tion [2], [4], [11], [24], [43]. Computationally, most of these al-
gorithms are of serial nature [20] though some partially parallel
algorithms have been developed [20]–[22]. Due to many uncer-
tain factors in image segmentation [42], good computational so-
lutions are often difficult to obtain [10] and the segmentation
problem is, to a great extent, viewed as unsolved.

In image segmentation, unexpected noise often causes poor
performance. To tackle the problem, smoothing techniques are
widely used prior to segmentation to improve the performance
of a segmentation algorithm. Nonlinear smoothing methods
have shown their usefulness in facilitating image segmentation,
and most of them are of iterative nature. For iterative smoothing,
it is well known that the performance highly depends upon
the termination time, and these algorithms generally cause the
original image to evolve toward a uniform intensity image [15],
[25], which we refer to as the termination problem. Therefore,
those smoothing techniques are difficult to use in practice.

Neural networks have been successfully applied in pattern
recognition [3], [27]. However, relatively little work has been
reported on image segmentation, which is generally viewed as
part of preprocessing in neural networks. For image segmenta-
tion, a nontrivial issue is how to represent the outcome of seg-
mentation. Most of neural network based methods pose image
segmentation as pixel classification [16], [23], where a pixel is
associated with one class label representing a region or a seg-
ment of the given image. In general, however, such a represen-
tational mechanism results in the need of prior knowledge of
a given image. That is, these classification-based methods re-
quire prior knowledge of the number of regions existing in the
image. Traditional neural networks, such as associative memo-
ries and multilayer perceptrons, are based on attractor dynamics;
that is, they respond to an input with a single pattern previously
stored. Such networks lack an effective representation for en-
coding multiple objects simultaneously, and as a result, image
segmentation is a challenging problem for neural networks.

Theoretical studies of brain functions and feature binding
suggest the mechanism of temporal correlation as a represen-
tational framework. According to von der Malsburg [35], an
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object is represented by the temporal correlation of the firing
activities of the scattered cells encoding different features
of an object. Neural oscillations provide a natural encoding
scheme for temporal correlation. In such a scheme, each
oscillator encodes some features of an object, and each object
is represented by a group of synchronized oscillators, whereas
different objects are represented by different oscillator groups
whose oscillations are desynchronized. This special form of
temporal correlation is calledoscillatory correlation [38].
Furthermore, Terman and Wang proposedlocally excitatory
globally inhibitory oscillator networks(LEGION) [33], [38],
and analytically showed that LEGION can rapidly achieve
both synchronization in a locally coupled oscillator group and
desynchronization among a number of oscillator groups.

LEGION has recently been applied to segment real images
[39]. However, their LEGION algorithm is sensitive to noise
since an oversimplified local coupling scheme is used. For ex-
ample, it does not work for the noisy image in Fig. 4(a), which
contains four blocks and a background. Real images are in-
evitably noisy due to the complexity of the physical world and
various kinds of noise introduced by imaging apparatus.

In this paper, we propose an image segmentation method using
weight adaptation and oscillatory correlation on the basis of LE-
GION. A weight adaptation scheme is proposed to remove noise
and irrelevant features to the given task in images. A logarithmic
grouping rule is used to replace both the summation and the max-
imization rules in [39]. The weight adaptation scheme and the
new grouping rule lead to an extended LEGION algorithm. We
have applied the algorithm to noisy synthetic images and real
images. Simulation results show that our extended LEGION al-
gorithm achieves considerably better performance. On the other
hand, the weight adaptation scheme can be directly transformed
toa feature-preservingsmoothingalgorithm. Incontrast to recent
adaptive smoothing techniques [41], our smoothing algorithm is
relatively immune to the termination problem and important fea-
tures can be preserved in a wide range of iterations. Comparison
results demonstrate its effectiveness.

The rest of the paper is organized as follows. Section II briefly
reviews the architecture and dynamics of LEGION. Section III
presents the weight adaptation scheme, the extended LEGION
algorithm, and the feature-preserved selective smoothing algo-
rithm. Section IV reports simulation results, and comparisons
are presented in Section V. Further discussions are given in Sec-
tion VI.

II. LEGION MODEL

In LEGION, each oscillator is defined as a feedback
loop between an excitatory unit and an inhibitory unit
[39]

(1a)

(1b)

where and
are used. The detailed forms ofand do not matter for LE-
GION to function (for details, see [33], [39]). is the Heav-
iside step function, which is defined as if and

if . represents external stimulation to the
oscillator and represents overall coupling from the network.
The parameter denotes the amplitude of a Gaussian noise term
which is introduced to test the robustness of the system and,
more importantly, to actively desynchronize different oscillator
groups. The parameteris chosen . In this case, (1)
without any coupling or noise, corresponds to a standard relax-
ation oscillator [34]. The dynamics of a single relaxation oscil-
lator is summarized as follows. To simplify the presentation, we
drop all the subscripts. The-nullcline of (1), is a
cubic curve, while the-nullcline, is a sigmoid. The
parameter controls the steepness of the sigmoid function and
is chosen to be large, . For , the two nullclines in-
tersect only at the middle branch of the cubic and (1) gives rise
to a stable periodic orbit for all sufficiently small values. In
this case, the oscillator is referred to as enabled [see Fig. 1(a)].
The periodic solution alternates between a phase called theac-
tive phaseof the oscillator and a phase called thesilent phase,
respectively. Within these two phases, (1) exhibits near steady
state behavior. In contrast, the transition between two phases
takes place on a fast time scale. The parameteris introduced
to control the relative times that a stimulated oscillator spends
in the two phases. For , the two nullclines intersect on the
left branch of the cubic, and (1) produces a stable fixed point as
illustrated in Fig. 1(b). In this case, the oscillator is referred to
as excitable. Fig. 1(c) illustrates the enabled behavior.

In (1a), the Heaviside term provides a mechanism to distin-
guish between major objects and noisy fragments. Wang and
Terman [39] suggested that a major object must contain at least
one oscillator (called a leader), which is located at the center of
a large, homogeneous region. A noisy fragment does not con-
tain such an oscillator. Essentially, a leader receives large lateral
excitation from its neighborhood. The variable denotes the
lateral potential of oscillator and, through the threshold,
determines whether oscillator is a leader.

For image segmentation, the LEGION network generally
has two-dimensional (2-D) architecture, as illustrated in Fig. 2,
where each oscillator corresponds to a pixel in the given image
and is connected to its eight nearest neighbors except for the
boundaries where there is no wrap around. The global inhibitor
is connected with all the oscillators on the 2-D grid. It receives
excitation from each oscillator and in turn exerts inhibition to
each oscillator.

In LEGION, the overall coupling term in (1a) is defined
by

(2)

where is the total coupling from the adjacent active neigh-
bors of oscillator to be defined later on. is the weight
of inhibition from the global inhibitor , whose activity is de-
fined as

(3)

where if for every oscillator and if
for at least one oscillator. is a threshold and is

a parameter. The computation of LEGION can be briefly sum-
marized as follows. Once an oscillator enters the active phase,
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(a)

(b)

(c)

Fig. 1. Nullclines and trajectories of a single relaxation oscillator. (a)
Behavior of an enabled oscillator. The bold curve shows the limit cycle of the
oscillator, whose direction of motion is indicated by arrowheads with double
arrowheads indicating jumping. (b) Behavior of an excitable oscillator. The
oscillator approaches a stable fixed point. (c) Temporal activity of the oscillator.
Thex value of the oscillator is plotted. The parameter values used areI = 0:8;
� = 0:02; � = 0:04; � = 9:0, and� = 10:0.

it triggers the global inhibitor. As a result, the global inhibitor
attempts to inhibit the entire network. On the other hand, an ac-
tive oscillator propagates its excitation to its nearest neighbors,
which is stronger than the inhibition. The propagation of the ac-
tivation rapidly continues until all the oscillators representing
the same object are active. Thus, the dynamics underlying LE-
GION is a process of both synchronization by local cooperation
through excitatory coupling and desynchronization by global
competition via the global inhibitor.

III. W EIGHT ADAPTATION AND EXTENSION OFLEGION
ALGORITHM

In this section, we define fixed and dynamic connection
weights and present a weight adaptation scheme for noise
removal and feature preservation. A new grouping rule is also

Fig. 2. Architecture of a 2-D LEGION network for image segmentation. An
oscillator is represented by an open circle and the global inhibitor is represented
by the filled circle.

proposed to achieve better segmentation. Using the weight
adaptation scheme and the new grouping rule, we extend the
LEGION algorithm for gray-level image segmentation. In
addition, we point out that our weight adaptation scheme can
be directly transformed to a nonlinear smoothing algorithm.

A. Dynamic Weight Adaptation

To facilitate weight adaptation, two kinds of connections, i.e.,
fixedanddynamicconnection, are assumed in our neural oscil-
lator network. For a specific oscillator, the fixed connectivity
specifies a group of neighboring oscillators connecting to the
oscillator. Corresponding to one pixel in the image, the lateral
attributes associated with the oscillator can be measured from
such an ensemble of fixed connections. On the other hand, the
dynamic connectivity encodes the instantaneous relationship
between two adjacent oscillators during weight adaptation.
Therefore, fixed connection weights are directly determined
based on the image, while dynamic connection weights adapt
themselves for noise removal and feature preservation.

For oscillator , the weight of its fixed connection from
oscillator , is defined as the difference between the
external stimuli received by and in its lateral neigh-
borhood, , i.e.,

(4)

Here and are the intensities of pixel and pixel ,
respectively, and is defined as

where is a parameter that determines the size of
the lateral neighborhood. For oscillator , the fixed con-
nections exist only in and , where

. On the other hand, a dynamic connection
weight from oscillator to oscillator is defined
only within the nearest neighborhood of and initialized
to the corresponding fixed weight, i.e., , where

. Dynamic weights are also anti-symmetrical:
as we shall see later, and encodes

the dissimilarity between oscillators and at time .
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The basic idea in our proposed weight adaptation scheme is
to update using all the dynamic weights associated with
oscillators and , where . For noise
removal and feature preservation, intuitively, dynamic weights
should be adapted so that the absolute dynamic weight becomes
small if two oscillators correspond to two adjacent pixels in
a homogeneous region, while the weight becomes large if the
two pixels cross a boundary between different homogeneous
regions. We observe that most of the discontinuities in a lat-
eral neighborhood correspond to significant features and such
discontinuities should remain unchanged and may be used to
control the speed of weight adaptation for preserving features.
We call such discontinuities corresponding to a lateral neighbor-
hoodlateral discontinuities. Furthermore, proximity is a major
grouping principle, which suggests another measure that reflects
local discontinuitiessensitive to the changes of local attributes
among adjacent oscillators. Therefore, we adopt two different
methods to measure fixed lateral discontinuities corresponding
to potentially significant features and variable local discontinu-
ities corresponding to local changes. Two discontinuity mea-
sures are jointly used in weight adaptation.

First, we use the variance of all the fixed weights associated
with an oscillator to measure its lateral discontinuities in the fol-
lowing manner. For oscillator , we first calculate the mean
of its fixed weights on , as

(5)

Accordingly, the variance of its fixed weights is calcu-
lated as

(6)

Moreover, we normalize the variance as

(7)

where and are the maximal and minimal vari-
ance across the entire image, respectively. Intuitively, re-
flects the relative degree of the lateral discontinuities for oscil-
lator . A large value of indicates that the oscillator’s
lateral discontinuities likely correspond to significant features
and vice versa. This suggests that the local attributes of an os-
cillator with a high lateral discontinuity should be preserved and
those of an oscillator with a low lateral discontinuity should be
adapted toward homogeneity.

To detect local discontinuities during weight adaptation, we
define four detectors for oscillator along four directions,

Fig. 3. Four directions used to detect local discontinuities at pixel(i; j).
Coordinates of pixels increase from left to right in horizontal direction and
from top to bottom in vertical direction.

TABLE I
RESPONSES OFFOUR DETECTORS TO ASTEP EDGE ALONG ONE OF

FOUR DIRECTIONS

as illustrated Fig. 3. These four directions are vertical, hor-
izontal , diagonal , and counter-diagonal , respec-
tively. Accordingly, four detectors are defined as

(8a)

(8b)

(8c)

(8d)

If there is a step edge through in one of these four direc-
tions, the corresponding detector will respond strongly. Assume
that is the steepness of a step edge, Table I summarizes the
responses to a possible edge through pixel along one of
those four directions. Based on the four detectors, we define a
measure of local discontinuity as

(9)

is sensitive to local discontinuity regardless of local orien-
tation.

Using both and , we introduce that integrates
the local attributes of oscillator to realize noise removal
and feature preservation, as shown in (10) at the bottom of the
next page, where is a scale used to determine to what
extent local discontinuities should be preserved during weight
adaptation and is used to determine to what extent
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features should be preserved in terms of lateral discontinuities.
The function is defined as if and

if . is a threshold used
to alleviate the influence of noise in the estimation of lateral
discontinuities (discussed later).

In general, the degree of lateral discontinuities in an image
indicates the significance of the corresponding features. In (10),
if all the oscillators in have similar lateral disconti-
nuities their local discontinuities should play a dominant role in
the update of . In this case, the local discontinuities
of oscillator in determine the contribution of
the dynamic weight in the update of . That is, a

small value of implies that have a large contribu-

tion and vice versa. Intuitively, the update of makes oscil-
lator change its local attributes so that the dissimilarity be-
tween and its adjacent oscillators is reduced in terms of the
scale . The reduction of dissimilarity results in noise removal
along with feature preservation in terms of local discontinuities.
When adjacent oscillators of have different lateral discon-
tinuities, the contribution from to must depend

upon both lateral and local discontinuities. In this case,
makes a large contribution only if the overall discontinuities as-
sociated with oscillator are relatively small. Intuitively,
both lateral and local discontinuities cooperatively provide a ro-
bust way to fulfill feature preservation and noise removal for
those oscillators associated with high lateral discontinuities, i.e.,

. The local attributes of oscillator tends to
change toward reduction of the dissimilarity between and
the adjacent oscillators with relatively low overall discontinu-
ities, while the dissimilarity between and those with rel-
atively high overall discontinuities tends to remain unchanged.
The above analysis indicates that plays a role of updating
the local attributes of oscillator for noise removal and fea-
ture preservation.

Based on (10), weight adaptation for is defined as

(11)

In (11), is adapted based on the local attributes asso-
ciated with and in terms of both lateral and local
discontinuities. The lateral discontinuity further plays a role of
gain control during weight adaptation. Thus, (11) incorporates
both noise removal and feature preservation.

With respect to our weight adaptation scheme, an additional
issue is worth mentioning. For an iterative system, the termina-
tion problem should be considered. For our adaptation scheme,
the termination criteria can be defined in a similar way as in un-
supervised learning methods, e.g., self-organizing feature maps

[18]. In the next section, we shall empirically show that the
weight adaptation scheme is insensitive to termination criteria
and, therefore, an upper bound on iteration numbers can be
readily given as a termination condition.

B. Extension of LEGION Algorithm

As described before, the size of a LEGION network for image
segmentation is the same as the given image; each oscillator
of the network corresponds to a pixel of the image. Due to a
large number of pixels in a real image, numerical integration of
hundreds of thousands of differential equations is prohibitively
expensive. To reduce numerical computation on a serial com-
puter, a simplified LEGION algorithm was recently proposed
by Wang and Terman [39]. The algorithm preserves essential
dynamic properties of LEGION, such as two time scales and the
properties of synchronization and desynchronization. By a sim-
ilar argument, we extend this algorithm by incorporating weight
adaptation and a new grouping rule to be discussed below. In ad-
dition, a new leader generation method is proposed.

When a LEGION network is applied to gray-level image seg-
mentation, every oscillator is assumed to be stimulated [39]. It
implies that every oscillator can enter the active phase once the
coupling term, , in (2) is strong enough. As mentioned be-
fore, coupling is critical for determining whether an oscillator
can synchronize with other oscillators. Previously, two grouping
rules called summation and maximization were proposed [39].
The former rule summates the dynamic weights of those neigh-
boring oscillators that are active, while the latter takes the max-
imal one. It is observed that both of them suffer from either
losing important boundary detail or yielding small noisy re-
gions. To overcome these shortcomings, we propose an alter-
native grouping rule using a logarithmic operation

(12)

where is the activity of oscillator .
, and and are the maximal and minimal intensity

across the entire image. Note that the reciprocal of is
used in (12) as encodes dissimilarity.

In order to lead an oscillator group, a leader is always required
to be stimulated in LEGION. Here, by extending the concept of
lateral potentials (see (1a)), we observe that an oscillator cor-
responding to the pixel located near the center of a homoge-
neous region tends to have a high potential. Based on the ob-
servation, we identify such oscillators directly in the following
way. For oscillator , we calculate ,
and using (5) and (6). Oscillator is a leader if and
only if and .
Here, and are two thresholds to reflect homogeneity and

(10)



CHEN et al.: WEIGHT ADAPTATION AND OSCILLATORY CORRELATION FOR IMAGE SEGMENTATION 1111

is a parameter to reflect whether an oscillator
is within a homogeneous region. Intuitively, a large value of
results in leaders that are generated from large homogeneous re-
gions, while a more rigorous test on the mean and the variance
results in leaders that are from more homogeneous regions. Note
that may be different from used to determine the size of
the fixed neighborhood.

By incorporating all the proposed mechanisms described
above, an extended LEGION algorithm is generated. In sum-
mary, the following aspects distinguish our extended LEGION
algorithm from the original one. First, a new method is used to
generate leaders. Second, weight adaptation is performed for a
given number of iterations in the initialization step. Third,
the logarithmic grouping rule is used to replace the summation
and maximization rules. All the other parts in the original
algorithm still remain the same (see [39] for details). We point
out that, like the original LEGION algorithm, our extended
algorithm is consistent with LEGION dynamics established by
Terman and Wang [33].

C. Feature-Preserving Smoothing Algorithm

Our weight adaptation scheme can be converted into a form
of nonlinear smoothing, which we call feature-preserving
smoothing (FPS). For consistency, the previous notations are
still utilized to describe the algorithm. First of all, we calculate
the variance on the lateral neighborhood of pixel

(13)

The normalized variance is calculated accordingly using
(7). In addition, the measure of local discontinuities in (9) is still
used, but those detectors along four directions as illustrated in
Fig. 3 are rewritten in terms of pixel values as

(14a)

(14b)

(14c)

(14d)

According to (10) and (11), the iterative scheme is (15), as
shown at the bottom of the page. In (15), denotes the
original intensity of pixel . Note that the FPS algorithm
is equivalent to the weight adaptation scheme if we define

, where .
There is often an issue of bounding in an adaptive scheme,

which concerns possible unbounded growth or boundness of
the final result of the adaptive scheme. The essential criterion
defining boundedness is that this numerical process must
restrict the amplification of all components from the initial
conditions. Here, we show the boundedness of our proposed
smoothing method. Let and

to simplify the presentation. We rewrite
the above iterative scheme as

Apparently, for any pixel in
the image. In other words, pixel values are bounded during
smoothing.

According to the definition of dynamic coupling weight,
can be represented as

Utilizing the above result, we can obtain
, where and .

As a result, any updated value of dynamic coupling weight is
bounded within .

IV. SIMULATION RESULTS

In this section, we report segmentation results of applying our
extended LEGION algorithm to noisy synthetic images, aerial
images, and magnetic resonance imaging (MRI) images. We
give all the parameter values in Table II. Note that a figure ap-
pearing in this section corresponds to more than one simulation.
Therefore, an item with a single value in Table II means that the
same parameter value is used in all the simulations illustrated by
the figure, while multiple parameter values in an item indicate
that the parameter changes in different simulations. For discus-
sions on parameter choices see Section IV-D below.

(15)
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TABLE II
PARAMETER VALUES USED IN SIMULATIONS REPORTEDSECTION IV

Fig. 4. Segmentation results for a synthetic image with� = 4:0. (a) A noisy synthetic image consisting of 230� 240 pixels. (b) Segmentation result using the
logarithmic operation withT = 40. (c) Segmentation result using the logarithmic operation withT = 1000. (d) Segmentation result using the maximization
operation withT = 40 andW = 65:0.

A. Synthetic Images

The use of synthetic images allows us to have a thorough
evaluation of effectiveness of our extended LEGION algorithm.

The first synthetic image used to test our algorithm is shown
in Fig. 4(a), which was used by Sarkar and Boyer [29]. As
stated before, the original LEGION algorithm fails to segment
the image into four parallelograms and an image background.
To simplify the display of segmentation results, we use the

so-calledgray map convention [39], where each gray level
indicates a distinct segment. In the gray-map convention, all the
excitable oscillators constitute thebackgroundcorresponding
to those parts with high intensity variations. Fig. 4(b) is a
resulting gray map of this simulation, where the background
is indicated by the black areas. Our algorithm segments the
image into five segments corresponding to four parallelograms
and the image background. To demonstrate immunity to the
termination problem, we use a different termination condition
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Fig. 5. Segmentation results for a noisy synthetic image with� = 10:0. (a) A noise-free synthetic image consisting of 256� 256 pixels, where the intensities
corresponding to three regions are 42, 160, and 198, respectively. (b) A noisy version of the image in (a). (c) Segmentation result using the logarithmic operation
with T = 650. (d) Segmentation result using the logarithmic operation withT = 2000. (e) Segmentation result using the maximization operation withT = 650

andW = 65:0.

in weight adaptation and Fig. 4(c) shows the corresponding
segmentation result. A very similar segmentation result is
achieved. To evaluate the logarithmic grouping rule, we also
conduct a simulation by using the previous maximization rule
[39] in our algorithm. As illustrated in Fig. 4(d), the resulting
segmentation contains ragged boundaries and small holes in the
image background though four parallelograms are separated
correctly with the help of weight adaptation. This result is not
as good in comparison with those shown in Fig. 4(b) and (c).

Fig. 5(a) shows a noise-free synthetic image, where a square
is in the middle of two adjacent rectangles and the boundary
sharpness along the square is different. Fig. 5(b) shows a noisy
version of Fig. 5(a) by adding Gaussian noise with zero mean
and . Note different sharpness of boundaries, e.g., for
four vertical lines, sharpness of three left boundaries is better
than the right one. The noisy image shown in Fig. 5(b) is chal-
lenging to an edge-based segmentation algorithm since weak
edges may either be detected along with many noisy details in
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a small scale or hardly be detected at all in a large scale. For
the same purpose as described in the last paragraph, Fig. 5(c)
and (d) illustrate two segmentation results using the logarithmic
grouping rule with two different termination conditions. Our al-
gorithm yields three segments corresponding to the three rect-
angular regions and a background indicated by the small black
areas. Once again, our simulations show that the segmentation
results are insensitive to the termination condition. For compar-
ison, Fig. 5(e) shows a segmentation result using the maximiza-
tion grouping rule. Again, the quality of segmentation produced
by the logarithmic grouping rule is superior to the one produced
by the maximization grouping rule.

These simulation results show that our algorithm can segre-
gate objects that are highly corrupted by noise due to weight
adaptation. Our weight adaptation method does not suffer from
the termination problem; that is, very similar segmentation re-
sults are achieved in a wide range of update iterations. More-
over, the logarithmic grouping rule performs better than the
maximization rule. In the sequel, we shall report only the re-
sults produced by the logarithmic grouping rule.

B. Aerial Images

The segmentation of aerial images is a difficult task because
the pixels within a semantically meaningful entity are generally
not homogeneous while pixels belonging to different entities
may have similar attributes. In addition, aerial images taken
from satellites are often corrupted by noise from different
sources. Therefore, most of traditional approaches such as
various thresholding methods and classification techniques
have limited success. We have applied our extended LE-
GION algorithm to satellite images. The images used in our
simulations are provided by the U.S. Geological Survey.
These high-resolution satellite images are processed using a
nonlinear transformation to compensate variations in actual
pixel sizes on the ground due to perspective projection. In our
simulations, two types of experiments are conducted: to extract
hydrographic objects and to segment images entirely.

Extracting a hydrographic object refers to grouping the pixels
corresponding to a water body, e.g., river, together and putting
other objects into the background. It is critical for creating a ge-
ographic information system. Hydrographic objects tend to be
more homogeneous in comparison with other kinds of objects.
When LEGION is applied, we can utilize this property to gen-
erate leaders so that only oscillators belonging to hydrographic
objects are identified as leaders and other objects are naturally
put into a background. In simulations, we use a set of special
parameters, , , and , to generate leaders and fix most of
other parameters, i.e.,, , , and . With this set of param-
eters leaders can be only those oscillators within very homo-
geneous regions so as to reflect hydrographic objects. Other pa-
rameters as listed in Table II are determined based on one image
and then used in all the simulations on extracting hydrographic
objects including those not reported here.

Fig. 6(a) shows a satellite image that contains a river. The
docks cause the river boundaries to be irregular. Fig. 6(b) shows
the extraction result. To facilitate comparisons, we display the
river by marking it as white and superimposing it on the orig-
inal image. To demonstrate the effectiveness of our algorithm,

Fig. 6(c) provides the corresponding part of the USGS 1:24 000
topographic map. It is evident that our algorithm extracts the
river precisely even along the noisy lower bank. Moreover, im-
portant details are preserved, such as the small island near the
uppermost river branch. Fig. 6(d) shows a more difficult image
in which there are several hydrographic objects. Almost all the
boundaries are noisy. Fig. 6(e) shows the extraction result, and
Fig. 6(f) gives the corresponding part of the topographic map.
Again, our algorithm extracts those major hydrographic objects
well, even along some narrow river branches. A careful compar-
ison between the extracted regions and the maps indicate that the
former portray the images even a little better because stationary
maps do not reflect well the changing nature of geography.

Next, we show the entire segmentation results on two other
aerial images. Fig. 7(a) shows an aerial image severely cor-
rupted by noise. Again, we use a gray map to display the seg-
mentation results. As illustrated in Fig. 7(b), the image is sepa-
rated into seven regions and a background indicated by the black
scattered areas. Our segmentation results show that the salient
regions, e.g., the water body and the island, are segmented with
high accuracy. Fig. 7(c) shows another satellite image, where a
river is separated by a bridge. The segmentation result is shown
in Fig. 7(d) and the image is segmented to 69 regions and a back-
ground indicated by the black areas. Fig. 7(d) shows that most
of homogeneous regions are segmented and the two parts of the
river are both segmented with good accuracy (see the three is-
lands). Moreover, many regions with high variations are put into
the background since no leader can be generated from them.

C. MRI Images

With the wide use of MRI techniques in medicine, automatic
MRI image processing is increasingly demanded in practice. We
use MRI images of human heads to further test our extended LE-
GION algorithm for segmentation. Fig. 8 shows six MRI im-
ages with different views and the corresponding segmentation
results.

Fig. 8(a) shows a midsagittal MRI image. The segmentation
result is shown in Fig. 8(b) by a gray map. The image is
segmented to 43 regions plus a background indicated by the
black regions. Many salient regions are separated such as the
cerebral cortex, the cerebellum, the corpus callosum and fornix
area, parts of the extracranial tissue and the bone marrow, and
several other anatomical structures. The next image is another
sagittal section, as illustrated in Fig. 8(c). This image contains
the cortex, the cerebellum, the lateral ventricle (the black hole
embedded in the cortex), the eye, the sinus (the black hole below
the eye), the extracranial soft tissue, and the bone marrow.
Fig. 8(d) shows the segmentation result with 46 segments plus
a background. It is evident that most of aforementioned salient
regions are separated correctly. In particular, the cerebellum
is segmented with high accuracy despite low contrast with its
adjacent cortex. However, a small part of extracranial tissue is
put into the background. It is worth pointing out that these two
MRI images are used to test the original LEGION algorithm
[39], and our algorithm yields considerably better results.

Fig. 8(e) is an image of a coronal section, and Fig. 8(f) shows
its segmentation. The image is segmented to 25 regions plus a
background. Salient regions segmented are the cortex, the cere-
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Fig. 6. Results of extracting hydrographic objects from two satellite images. (a) Original image containing a river (670� 606 pixels). (b) Extraction result for
the image in Fig. 6(a) with� = 0:01 andW = 70:0. (c) The topographic map corresponding to the image in Fig. 6(a). (d) Original image containing several
hydrographic objects (640� 606 pixels). (e) Extraction result for the image in Fig. 6(d) with� = 0:03 andW = 80:0. (f) The topographic map corresponding
to the image in Fig. 6(d).

bellum, and the lateral ventricles. Fig. 8(g) is another coronal
section, and the image is segmented into 30 regions plus a back-
ground as shown in Fig. 8(h). Similarly, those significant re-
gions are also segregated. However, much extracranial tissue
is suppressed into the background since no leader can be gen-
erated. Next, we use a horizontal section shown in Fig. 8(i).
Fig. 8(j) shows the result, and the image is segmented into 55 re-
gions plus a background. Salient regions segmented include two

hemispheres, two eyeballs, and the third ventricle at the center.
Fig. 8(k) is the same image of Fig. 8(i) with the resolution re-
duced by half. As shown in Fig. 8(l), the image is separated into
41 regions plus a background. Although two eyeballs and the
third ventricle are well segmented, the brain is grouped together.

We have applied our extended LEGION algorithm to many
other images and our algorithm yields segmentation results of
similar quality as demonstrated above. In particular, our simu-
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Fig. 7. Segmentation results for two satellite images. (a) Original image consisting of 181� 181 pixels. (b) Segmentation result of the image in Fig. 7(a) with
� = 60:0 andW = 95:0. (c) Original image consisting of640� 640 pixels. (d) Segmentation result of the image in Fig. 7(c) with� = 40:0 andW = 70:0.

lations show that weight adaptation is relatively immune to the
termination problem. In our simulations, the same termination
condition is always used for a type of images. Finally, com-
puting times taken by our algorithm are similar to those taken
by the original LEGION algorithm [39] for the same images,
which indicates that weight adaptation does not involve expen-
sive computation.

D. Parameter Choice

Based on simulation results, we discuss parameters in our
extended LEGION algorithm. In original LEGION [33], [39],
there are several parameters that determine its dynamics. Due
to approximation, most of them, i.e.,, , , , and disap-
pear. However, there are still parameters that need to be ad-
justed in our extended LEGION algorithm. Most of parame-
ters may be fixed for a natural image category, e.g., satellite
imagery. As shown in Table II, these include the parameter
to determine the size of the lateral neighborhood and those for
generating leaders , , and . Since images belonging to

a natural category are of similar statistical properties, we can
determine these parameters by analyzing only one image for a
class of images in our simulations. is a termination parameter
used in weight adaptation. As shown in simulations reported in
this paper including the next section, the similar effects in both
smoothing and segmentation are achieved for a large interval of

. As for for segmentation, its role and effect were dis-
cussed at length by Wang and Terman [39].

In the sequel, we focus on the other three parameters used
in weight adaptation. The parameterdetermines the magni-
tude of the edges to be preserved during the adaptation process
in terms of local discontinuities. The parameter can be viewed
equivalently as the scale used in a diffusion scheme if the termi-
nation condition or the number of iterations is fixed [28]. In a
diffusion scheme, a large scale causes all the discontinuities to
disappear, while a small scale causes all the discontinuities to be
preserved. The parameterplays a similar role in our method
though it is not the only way to determine whether discontinu-
ities will be preserved due to two types of discontinuity used
in our algorithm. Our simulations show that a proper choice of
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Fig. 8. Segmentation results for MRI images. (a) Original image consisting of 257� 257 pixels. (b) Segmentation result of the image in (a) with� = 80:0;

� = 0:01; s = 6:0, andW = 45:0. (c) Original image consisting of 257� 257 pixels. (d) Segmentation result of the image in Fig. 8(c) with the same
parameters as in (b). (e) Original image consisting of 175�175 pixels. (f) Segmentation result of the image in Fig. 8(e) with� = 100:0; � = 0:009; s = 5:0,
andW = 65:0. (g) Original image consisting of 256� 256 pixels. (h) Segmentation result of the image in Fig. 8(g) with the same parameters as in (f). (i) Original
image consisting of 256� 256 pixels. (j) Segmentation result of the image in Fig. 8(i) with� = 80:0; � = 0:02; s = 7:0, andW = 42:0. (k) Original image
consisting of 256� 256 pixels. (j) Segmentation result of the image in Fig. 8(i) with the same parameters as in (k).

can often be used in a category of images, e.g., satellite im-
agery, as shown in Table II. For preserving tiny but nontrivial
structures, e.g., MRI imagery, a slight adjustment ofmay be
needed within a small interval, as also shown in Table II. The
parameter plays two roles; one is to determine the speed of
weight adaptation, and the other is to determine what discon-
tinuities should be preserved. In general, a small value ofre-
sults in fast adaptation and reduces discontinuities, while a large
value results in slow adaptation and preserves discontinuities.
Its choice depends upon domain tasks; a large value should be
chosen if detailed structures should be preserved (e.g., for MRI
images), while a small value should be chosen if only major
structures are needed (e.g., for noisy synthetic images). The last
parameter is used for reducing noise effects. Suppose that
noise is independent of original image data, the variance calcu-
lated in (6) is the summation of the variance of noise-free image
data and the variance of noise, regardless of noise type. If we
know its type or distribution, the variance of noise may be esti-
mated more accurately. Unfortunately, real images are generally

corrupted by noise from various unknown sources, and it is im-
possible to calculate the exact variance of noise. In our method,
we use the parameter to reduce the effects of noise instead
of directly evaluating the variance of noise. A small tends
to preserve detailed structure and a large value tends to extract
only major regions. These three parameters are tuned based on
statistical properties of an image, e.g., histogram of intensities.
As shown in Table II, the change of these three parameters for
a category of images is within a small interval.

V. COMPARISONS

In this section, we present comparative results in terms of
segmentation and smoothing. Multiscale-based techniques have
been shown to be effective for image processing. First, we use
a recent multiscale adaptive segmentation method [4] for com-
parison in image segmentation. As mentioned before, the pro-
posed weight adaptation scheme can be connected to a nonlinear
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Fig. 9. Segmentation results by the multiscale adaptive segmentation method of Caelli and Bischof. (a) Segmentation result of the image in Fig. 4(a).(b)
Segmentation result of the image in Fig. 5(b). (c) Segmentation result of the image in Fig. 7(a). (d) Segmentation result of the image in Fig. 7(c). (e) Segmentation
result of the image in Fig. 8(c). (f) Segmentation result of the image in Fig. 8(e).

smoothing method. Thus, we also compare results with several
recent nonlinear smoothing methods.

A. Comparison in Segmentation

A multiscale adaptive method was recently proposed by
Caelli and Bischof for image segmentation [4]. The basic idea
underlying the method is to use region characteristics to decide
whether a given region should be segmented at a finer scale.

The algorithm uses both edge and region attributes at multiple
scales to adaptively and automatically choose the best scale for
segmenting various parts. The algorithm results in a recursive
procedure of integrating edge detection and region growing
from coarse to fine scale to achieve optimal segmentation
and has been successfully applied in various kinds of real
images [4]. Features of this multiscale algorithm include that
no parameter needs to be tuned by users and the algorithm
segments an image entirely.
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Fig. 10. Smoothing results for the synthetic image in Fig. 5(b) by different smoothing algorithms, where each row shows a set of snapshots for a smoothing
algorithm. For the AS algorithm,k = 13:0; for the ADS algorithm,K = 4:0; for the EDS algorithm,� = 3:5 and� = 3:0; for the FPS algorithm,R = 9;

s = 12:0; � = 10:0, and� = 0:7.

As suggested in [4], we use three scales in their algorithm.
The same images for testing our algorithm are used for com-
parison. These images belong to three different types: two syn-
thetic images for comparing the capability of noise removal, two
satellite images with complicated boundaries for comparison in
performance in real images and two MRI images with low con-
trasts for comparison in feature preservation. Fig. 9 shows those
gray maps of their segmentation results. Fig. 9(a) and (b) show
the results on the synthetic images in Fig. 4(a) and 5(b), respec-
tively. The results are rather poor, and the two synthetic images
are segmented to 98 and 51 fragments, respectively. The reason
is probably that edges cannot be reliably detected in very noisy
images, despite multiple scales used. Fig. 9(c) and (d) show the
segmentation results of the aerial images in Fig. 7(a) and (c). In
Fig. 9(c), the image is segmented to 48 regions. The river and
the island are segmented and the boundary of the island is rea-

sonably accurate. However, the boundary between the river and
its bank cannot be correctly segmented due to noise. In addi-
tion, the island is segmented to a large region as well as many
fragments. In Fig. 9(d), the image is segmented to 198 regions.
The right part of the river is accurately segmented, but the left
part cannot be segmented. Fig. 9(e) and (f) show the segmenta-
tion results of the MRI images in Fig. 8(c) and (e), where the
two images are segmented to 97 and 98 regions, respectively. In
Fig. 9(e), most of salient regions are partially segmented such
as the cerebral cortex, the cerebellum, the lateral ventricle, and
the extracranial tissue. In particular, the extracranial tissue is
completely extracted. However, the cerebellum is undesirably
segmented to several regions. In Fig. 9(f), significant segments
include the cerebral cortex, the cerebellum, and parts of the ex-
tracranial tissue. Although much of the cerebellum is extracted,
it is shrunk, and so is the segmented cortex.
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Fig. 11. Comparisons in restoration and computing time. (a) MSE’s for the
optimal snapshots in different smoothing algorithms. (b) Relative CPU times
for 2000 iterations, where the EDS algorithm takes 968 s on an HP/C160
workstation.

In general, the multiscale adaptive method of Caelli and
Bischof is relatively sensitive to noise, which results in either
failure to yield meaningful objects in some cases or overseg-
mentation. In comparison, our algorithm yields considerably
better segmentation results.

In addition, another modified LEGION network was recently
proposed for specially segmenting medical images [32]. This al-
gorithm produces satisfactory results for MRI images. In com-
parison, our algorithm yields more homogeneous regions and
more precise boundaries between different regions though it
produces worse results in extracting extracranial tissue.

B. Comparison in Smoothing

Nonlinear smoothing techniques have been recognized as
an effective way of preprocessing in early vision. A nonlinear
smoothing technique can remove noise and preserve significant
discontinuities. Adaptive smoothing is a classical way to
perform nonlinear smoothing, applying a smoothing operator

Fig. 12. Smoothing results for the aerial image in Fig. 7(c) by different
smoothing algorithms, where each row shows a set of snapshots for a smoothing
algorithm. For the AS algorithm,k = 6:0; for the ADS algorithm,K = 1:5;
for the EDS method with� = 3:0 and� = 1:5; for the FPS algorithm,R = 2;

s = 8:0; � = 40:0, and� = 0:02.

that adapts itself to local image structure [8], [19], [25], [28],
[40]. In order to demonstrate its effectiveness, we compare our
FPS algorithm to three other adaptive smoothing algorithms:
adaptive smoothing (AS) [28], anisotropic diffusion smoothing
(ADS) [25], and edge-enhanced diffusion smoothing (EDS)
[40], respectively. These algorithms have proved to be useful in
many domains of image processing [41]. Like comparison in
segmentation, we use three images belonging to different types
for comparison. In simulations, we determine parameter values
in the aforementioned smoothing algorithms by searching for
the parameter space as suggested in their original work, and we
report only the best results here.

Fig. 12 shows the smoothing results for the aerial image in
Fig. 7(c) produced by the four algorithms. Due to unavailability
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Fig. 13. Smoothing results of the MRI image in Fig. 8(c) by different smoothing algorithms, where each row shows a set of snapshots for a smoothing algorithm.
For the AS algorithm,k = 4:5; for the ADS algorithm,K = 1:5; for the EDS algorithm,� = 3:0 and� = 1:0; for the FPS algorithm,R = 1; s = 6:0;

� = 80:0, and� = 0:01.

of its ground truth for a real image, we manually select the
best possible results based on edge maps For each algorithm,
two snapshots are shown and arranged in the same way
as in Fig. 10. The first snapshot corresponding to the best
possible result and the second one is the smoothed image
when the algorithms are terminated after 400 iterations. As
shown in the first snapshot, nonlinear smoothing effects are
reasonably achieved by the four algorithms. Except for the
AS algorithm, the results produced by the other three preserve
most of significant features; e.g, the bridge and boundaries
between the river and its surroundings (the bank and the
islands). As shown in the second snapshot, however, further
smoothing in 400 iterations causes some significant features,
e.g. the boundaries between the river and the islands, to
vanish in all those except our algorithm. This demonstrates
that our algorithm is the only one that does not suffer from
the termination problem.

Fig. 13 shows smoothing results of the MRI image in Fig. 8(c)
produced by the four algorithms. The same method as described
above is used to select the best possible results. For each algo-
rithm, four snapshots are shown and arranged in the same way
as in Fig. 10. All the algorithms can preserve most of the sig-
nificant discontinuities in the image after a few iterations. For
instance, the cortex and the cerebellum become more homoge-
neous and their boundary gets clearer. Except for our algorithm,
however, further smoothing causes most of the important fea-
tures to disappear.

In general, the above results as well as others not reported due
to space demonstrate that our smoothing algorithm in compar-
ison yields good results though two more parameters are used
in our algorithm. In particular, our algorithm does not suffer
from the termination problem and manages to preserve signifi-
cant features for a long iteration period, which distinguishes our
algorithm from other smoothing algorithms [41].
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VI. DISCUSSIONS

The fundamental goal in adaptive smoothing is to preserve
discontinuities due to significant features while eliminating
variations due to noise and irrelevant features. For most existing
adaptive smoothing algorithms such as those in [25], [28],
[40], only a local discontinuity measure, e.g., spatial gradient,
is used to determine significant features, which tends to be
sensitive to noise. In order to obtain good results, one needs to
specify a nonlinear mapping from a local discontinuity measure
to a diffusion speed and then choose a termination time to
achieve a compromise between noise removal and feature
preservation. Unlike those algorithms, our method adopts two
complementary discontinuity measures. Lateral discontinuities
provide a useful context to distinguish discontinuities due to
significant features from those due to noise. Moreover, they
are used to control the diffusion speed, which results in more
robust performance. This also greatly alleviates the termination
problem; as shown by our numerical simulations, our algorithm
can reach a near steady state in a few iterations for most tasks.

LEGION is a neurocomputational mechanism for oscillatory
correlation [33], [38].The notions of lateral potential and dy-
namic normalization were proposed [39] and these mechanisms
were supposed to operate in the initialization stage, where
weights rapidly reach a steady state. As a result, the initializa-
tion process does not change the dynamics of LEGION and
the rigorous results on LEGION [33] still hold. Our proposed
weight adaptation method provides an alternative way for fast
weight dynamics to remove noise and to extract features. It
still operates in the initialization stage. Simulation results show
that only a few iterations are required for most tasks, which
indicates that our weight adaptation can reach near steady state
rapidly. Like [39], our proposed weight adaptation method
does not alter LEGION dynamics. However, our method leads
to substantial performance improvements in noise removal and
feature preservation.

As mentioned earlier, iterative smoothing has been widely
used to deal with noisy images, and some form of smoothing
seems inescapable for early visual processing. How can this be
achieved in the visual system? Our notion of smoothing through
weight dynamics points to a possible way by which smoothing
effects can be achieved in the brain. Fast-changing synapses
were suggested by von der Malsburg [35], [36] who forcefully
argued for its biological plausibility (see also [6]). On the same
conceptual ground, dynamic weight normalization was used to
enhance the quality of synchronization in a network of neural
oscillators [33], [37], [38]. Our suggestion for weight adapta-
tion follows the same line of argument. What is important is that
such weight dynamics is temporary in nature and adapts to new
stimuli (images) rapidly without keeping any permanent trace.
Given that many powerful learning (weight update) methods
have been proposed in neural networks, it is reasonable to ex-
pect that future research along the same path will reveal more
effective techniques for image processing and computer vision.
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