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Abstract—Using a differential-geometric treatment of planar shapes, we present tools for: 1) hierarchical clustering of imaged objects

according to the shapes of their boundaries, 2) learning of probability models for clusters of shapes, and 3) testing of newly observed

shapes under competing probability models. Clustering at any level of hierarchy is performed using a mimimum variance type criterion

criterion and a Markov process. Statistical means of clusters provide shapes to be clustered at the next higher level, thus building a

hierarchy of shapes. Using finite-dimensional approximations of spaces tangent to the shape space at sample means, we (implicitly)

impose probability models on the shape space, and results are illustrated via random sampling and classification (hypothesis testing).

Together, hierarchical clustering and hypothesis testing provide an efficient framework for shape retrieval. Examples are presented

using shapes and images from ETH, Surrey, and AMCOM databases.

Index Terms—Shape analysis, shape statistics, shape learning, shape testing, shape retrieval, shape clustering.
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1 INTRODUCTION

AN important goal in image analysis is to classify and
recognize objects of interest in given images. Imaged

objects can be characterized in several ways, using their
colors, textures, shapes, movements, and locations. The past
decade has seen large efforts in modeling and analysis of
pixel statistics in images to attain these goals albeit with
limited success. An emerging opinion is that global features
such as shapes be taken into account. Characterization of
complex objects using their global shapes is fast becoming a major
tool in computer vision and image understanding. Analysis of
shapes, especially those of complex objects, is a challenging
task and requires sophisticated mathematical tools. Appli-
cations of shape analysis include biomedical image analysis,
morphometry, database retrieval, surveillance, biometrics,
military target recognition, and general computer vision.

In order to perform statistical shape analysis, one needs a
shape space and probability models that can be used for
future inferences. We are interested in learning probability
models from a given set of observations on a shape space.
Toward that goal, we will study the following topics.

Problem 1: Hierarchical Clustering. We will consider the
problem of clustering planar objects, or images of objects,
according to the shapes of their boundaries. To improve
efficiency, we will investigate a hierarchy in which the mean
shapes are recursively clustered. This can significantly improve
database searches in systems with shape-based queries. For
instance, testing a query against prototypes of different clusters

to select a cluster, and then testing against shapes only in that
cluster, is much more efficient than testing exhaustively.

Problem 2: Learning Shape Models. Given a cluster of
similar shapes, we want to “learn” a probability model that
captures observed variability. Examples of this problem using
landmark-based shape analysis are presented in [4]. For the
representation introduced in [15], the problem of model
building is more difficult for two reasons: The shape space is
(a quotient space of) a nonlinear manifold, and it is infinite
dimensional. The first is handled by using tangent spaces at
the mean shapes, as suggested in [3], and the second is handled
via finite-dimensional approximations of tangent functions.

Problem 3: Testing Shape Hypotheses. Probability models on
shape spaces can be used to perform statistical shape analysis.
For example, one can study the question: Given an observed
shape and two competing probability models, which model does
this shape belong to? We are interested in analyzing binary
hypothesis tests on shape spaces. More generalm-ary testing is
approached similarly. Hypothesis tests for landmark-based
shape analysis have previously been studied in [3]. Hypothesis
testing, together with hierarchical clustering forms an efficient
tool for shape retrieval.

Furthermore, these tools can also contribute in developing
robust algorithms for computer vision, by incorporating
shape information in imagemodels for recognition of objects.
We will assume that either the shapes have already been
extracted from training images (e.g., Surrey database) or can
be extracted using a standard edge detector (e.g., ETH image
database). Of course, in many applications, the extraction of
contours itself is a difficult problem but we do not focus on
that problem here. However, we remark that this framework
for analyzing shapes is also useful in extracting shapes from
images using informative priors [15], [19].

1.1 Past Research in Shape Analysis

Shapes have been an important topic of research over the past
decade. A significant part has been restricted to “landmark-
based” analysis, where shapes are represented by a coarse,
discrete sampling of the object contours [3], [23]. One
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establishes equivalences with respect to shape preserving
transformations, i.e., rigid rotation and translation, and
nonrigid uniform scaling, and then compares shapes in the
resulting quotient spaces. This approach is limited in that
automatic detection of landmarks is not straightforward, and
the ensuing shape analysis depends heavily on the choice of
landmarks. In addition, shape interpolationwith geodesics in
this framework lacks aphysical interpretation, as exemplified
later. Despite these limitations, landmark-based representa-
tions have been successful inmany applications, especially in
physician-assistedmedical image analysis, where landmarks
are readily available, and have led to advanced tools for
statistical analysis of shapes [3], [14], [10].A similar approach,
called active shape models, uses principal component analysis
(PCA) (of coordinates) of landmarks to model shape
variability [1]. Despite its simplicity and efficiency, its scope
is rather limited because it ignores the nonlinear geometry of
shape space.Grenander’s formulation [6] considers shapes as
points on infinite-dimensional manifolds, and the variations
between the shapes are modeled by the action of Lie groups
(diffeomorphisms) on thesemanifolds [7]. Amajor limitation
here is the high computational cost. Although level set
methods have recently been applied to shape analysis, an
intrinsic formulation of shape analysis using level sets, that is
invariant to all shape-preserving transformations, is yet to be
presented. A large number of studies on shape metrics have
been published with a more limited goal of fast shape
retrieval from large databases.One example is theuse of scale
space representations of shapes, as described in [20]. In
summary, themajority of previouswork on analyzing shapes
ofplanar curves involves either 1)useof adiscrete collectionof
points (landmarks or active shape models) or 2) use of
mappings (diffeomorphism) or functions (level sets) on IR2,
seldom have they been studied as curves!

1.2 A Framework for Planar Shape Analysis

Klassen et al. [15] consider the shapes of continuous, closed
curves in IR2, without any need for landmarks, diffeomorph-
isms, or level sets to model shape variations. Elements of the
shape space here are actually shapes of closed, planar curves.
The basic idea is to identify a space of closed curves, remove
shape-preserving transformations, impose a Riemannian
structure on it, and utilize its geometry to solve optimization
and inference problems. Using the Riemannian structure,

they have developed algorithms for computing geodesic
paths on these shape spaces. We advance this idea here by
developing several tools that can prove to be important in
shape analysis. A pictorial outline of the full framework is
presented in Fig. 1a. As depicted, shapes are extracted from
observed images either manually or automatically, and then
organized using clustering algorithms. Probability models
are learned from this clustereddata foruse in future statistical
inferences involvingobject retrieval, identification, detection,
and tracking.Next, we reproduce and summarizemain ideas
from [15] and refer to that paper for details.

1. Geometric Representation of Shapes: Consider the
boundaries or silhouettes of the imaged objects as
closed, planar curves in IR2 parameterized by the arc
length. Coordinate function �ðsÞ relates to the direc-
tion function �ðsÞ according to _��ðsÞ ¼ ej �ðsÞ, j ¼

ffiffiffiffiffiffiffi
�1

p
.

For the unit circle, a direction function is �0ðsÞ ¼ s. For
any other closed curve of rotation index 1, the
direction function takes the form � ¼ �0 þ h, where
h 2 LL2, and LL2 denotes the space of all real-valued
functions with period 2� and square integrable on
½0; 2��. Tomake shapes invariant to rotation, restrict to
� 2 �0 þ LL2 such that, 1

2�

R 2�
0 �ðsÞds ¼ �. Also, for a

closed curve, � must satisfy the closure condition:R 2�
0 expðj �ðsÞÞds ¼ 0. Summarizing, one restricts to
the set C ¼ f� 2 �0 þ LL2j 1

2�

R 2�
0 �ðsÞds ¼ �;

R 2�
0 ej�ðsÞ

ds ¼ 0g. To remove the reparametrization group
(relating to different placements of s ¼ 0 on the same
curve),define thequotient spaceS � C=S1 as the space
of continuous, planar shapes.

For an observed contour, denoted by a set of
nonuniformly sampled points in IR2, one can
generate a representative element � 2 S as follows.
For each neighboring pair of points, compute the
chord angle �i and the Euclidean distance si between
them. Then, fit a smooth � function, e.g., using
splines, to the graph formed by fð

Pi
j¼1 sj; �iÞg .

Finally, resample � uniformly (using arc-length
parametrization) and project onto S.

2. Geodesic Paths between Shapes: An important tool
in a Riemannian analysis of shapes is to construct
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Fig. 1. (a) An overview of a statistical modeling approach to object detection, identification, and tracking, with a focus on shape analysis. (b) A

cartoon diagram of a shooting method to find geodesics in shape space.



geodesicpathsbetweenarbitraryshapes.Klassenetal.
[15] approximate geodesics on S by successively
drawing infinitesimal line segments in LL2 and
projecting them onto S, as depicted in Fig. 1b. For
any two shapes �1; �2 2 S, they use a shootingmethod to
construct the geodesic between them. The basic idea is
search for a tangent direction g at the first shape �1,
such that a geodesic in that direction reaches the
second shape �2, called target shape, in unit time. This
search is performed byminimizing a “miss function,”
defined as a LL2 distance between the shape reached
and�2, usingagradientprocess.Thispath isageodesic
with respect to the LL2 metric hg1g2i ¼

R 2�
0 g1ðsÞg2ðsÞds

on the tangent space of S. This choice implies that a
geodesic between two shapes is the path that uses
minimum energy to bend one shape into the other.

We will use the notation �ð�; g; tÞ for a geodesic
path starting from� 2 S, in thedirection g 2 T�ðSÞ, as a
function of time t. Here, T�ðSÞ is the space of tangents
to S at the point �. In practice, the function g is
representedusing anorthogonal expansion according
togðsÞ ¼

P1
i¼1 xieiðsÞ,wherefei; i ¼ 1; . . . ; g formsan

orthonormal basis of T�ðSÞ and the search for g is
performed via a search for corresponding x ¼
fx1; x2; . . . ; g. An additional simplification is to let
feig be a basis for LL2, represent g using this basis, and
subtract its projection onto the normal space at � to
obtain a tangent vector g. On a desktop PC with
Pentium IV 2.6GHz processor, it takes on average
0.065 seconds to compute a geodesic between any two
shapes. In this experiment, the direction functions
were sampled at 100 points each and g is approxi-
mated using 100 Fourier terms.

Empirical evidence motivates us to consider
shapes of two curves that are mirror reflections of
each other as equivalent. For a � 2 S, its reflection is
given by: �RðsÞ ¼ 2�� �ð2�� sÞ. To find a geodesic
between two shapes �1; �2 2 S, we construct two
geodesics: one between �1 and �2 and the other
between �1 and �2R. The shorter of these two paths
denotes a geodesic in the quotient space.With a slight
abuse of notation, from here on, we will call the
resulting quotient space as S.

3. MeanShape inS: Klassen et al. [15] suggest the use of
Karchermean todefinemean shapes. For �1; . . . ; �n inS,
and dð�i; �jÞ the geodesic length between �i and �j, the
Karcher mean is defined as the element � 2 S that
minimizes the quantity

Pn
i¼1 dð�; �iÞ

2. A gradient-
based, iterative algorithm for computing the Karcher
mean is presented in [16], [13] and is particularized to
S in [15]. Statistical properties, such as bias and
efficiency, of this estimator remain to be investigated.

1.3 Comparison with Previous Approaches

Some highlights of the abovementioned approach are that it:

1. analyzes full curves and not a coarse collections of
landmarks, i.e., there is no need to determine land-
marks a priori,

2. completely removes shape-preserving transforma-
tions from the representation and explicitly specifies
a shape space,

3. utilizes nonlinear geometry of the shape space (of
curves) to define and compute statistics,

4. seeks full statistical frameworks and develops priors
for future Bayesian inferences, and

5. can be applied to real-time applications.

Existing approaches seldom incorporate all of these
features: Kendall’s representations are equipped with 2-5
but using landmark-based representations; active shape
models are fast and efficient but do not satisfy 2 and 3.
Diffeomorphism-based models satisfy 1-4 and can addi-
tionally take into account image intensities, but are currently
slow for real-time applications. Curvature scale space
methods are not equipped with either 3 or 4. It must be
noted that for certain specific applications, existing ap-
proaches may suffice or maybe more efficient than the
proposed approach. For example, for retrieving shapes from
a database, a simple metric using either Fourier descriptors
or a PCA of coordinate vectors, or scale-space shape
representations, may prove sufficient. However, the pro-
posed approach is intended as a comprehensive framework
to handle a wide variety of applications.

An interesting point relating to nonself-intersecting closed
curves deserves a separate mention. Although our interest

lies in shapes of simple (i.e., nonself-intersecting), closed

curves, no explicit constraint has been imposed on the

elements of S to avoid self-intersection. Experimental results
show that the representation given in Section 1.2 is “stable”

with respect to this property. That is, a geodesic path between

two simple, closed curves seldom passes through a self-
intersecting closed curve. As an illustration, Fig. 2a shows a

few examples of geodesic paths in S between some intricate

shapes. For comparison, Fig. 2b shows corresponding
geodesic paths using Kendall’s Procrustean analysis. All

the paths in Fig. 2b have shapes that self intersect, while none

in Fig. 2a does so. We attribute this behavior to the direction-
function representation chosen in S and the resulting

bending energy criterion for finding geodesic paths.
Additionally, representation of shapes by their direction

functions allows for using tools from functional analysis in
compression, denoising, or multiresolution studies of
shapes. These tools are not available in point-based repre-
sentations of shapes.

2 ANALYSIS OF NOISY SHAPES

Often in practical situations, observed shapes are corrupted
by noise or clutter present in images. For instance, shapes
extracted from low-resolution images may exhibit pixel-
lated boundaries. The noise mainly leads to rough
boundaries and a smoothing procedure may be helpful.
Similar to considerations in image denoising and restora-
tion, a balance between smoothing and preservation of true
edges is required, and the required amount of smoothing is
difficult to predict. In this section, we briefly discuss three
ways to avoid certain noise effects:

1. Robust Extraction. Use a smoothness prior on
shapes during Bayesian extraction of shapes. For a
shape denoted by �, one can use elastic energy,
define as

R
_��ðsÞ2ds, as a roughness prior for Bayesian

extraction of shapes from images.
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2. Shape Denoising. Since shapes are represented as
parameterized direction functions, one can use tools
from functional analysis for denoising. In case the
extracted shapes have rough parts, one can replace
them with their smooth approximations. A classical
approach is to use wavelet denoising or Fourier
smoothing. For example, shown in Fig. 3 are examples
of denoising the direction function of a noisy shape
using 1) wavelets (Daubechies, at level 4 in Matlab)
and 2) Fourier expansion using first 20 harmonics.

3. Tangent Denoising. Another possibility is to denoise
the tangent function, rather than the original direction

functions (denoting shapes), as follows. A geodesic
path between two given shapes is found using a
shootingmethod. By restricting the search for tangent
direction g to a set of smooth functions, one can avoid
certain noise effects. Shown in Fig. 4 is an example of
this idea,where the target shape is corrupted bynoise.
In Fig. 4a, each curve shows the gradient-based
evolution of “miss function” versus the iteration
index. Different curves correspond to different num-
ber of terms used in Fourier expansion for the tangent
direction; increasing the number of Fourier terms
results in a better approximation of optimal g, and a
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Fig. 2. (a) Shows geodesics in S, while (b) shows Procrustean geodesics using landmarks.

Fig. 3. (a) Noisy shape, (b) wavelet denoised shape, and (c) Fourier denoised shape. (d) Difference (residual) between noisy and denoised direction

functions.

Fig. 4. Tangent denoising. (a) Shows evolutions of “misfunction” versus iteration index for an increasing number of Fourier components of the
tangent vector and (b) shows resulting geodesic lengths plotted against Fourier resolution. (c) Shows the direction functions reached for 10 and
60 terms. (d) Shows a geodesic path using 10 Fourier terms, while (e) shows a path using 60 terms.



smaller value of “miss” function. Fig. 4b shows
resulting geodesic lengths plotted against the Fourier
resolution. A tangent function with smaller Fourier
terms can help avoid the problem of overfitting that
often occurs with the noisy data. Figs. 4d and 4e show
the resulting geodesics for two different tangent
resolutions: The left path results from restricting the
tangent direction to the first 10 terms, and the right
path shows over fitting to noise in the target shape
using 60 terms. Fig. 4c shows the direction functions
reached in unit time for these two cases.

3 PROBLEM 1: SHAPE CLUSTERING

An important need in statistical shape studies is to classify
and cluster observed shapes. In this section, we develop an
algorithm for clustering objects according to shapes of their
boundaries. Classical clustering algorithms on Euclidean
spaces are well-researched and generally fall into two main
categories: partitional and hierarchical [12]. Assuming that
the desired number k of clusters is known, partitional
algorithms typically seek to minimize a cost function Qk

associatedwith a givenpartition of the data set into k clusters.
Hierarchical algorithms, in turn, take a bottom-up approach
where clustered aremerged successively until the number of
clusters is reduced to k. Commonly used metrics include
distances between means of clusters, minimum distances
between elements of clusters, and average distances between
elements of the clusters.

3.1 Minimum-Variance Clustering

Consider the problem of clustering n shapes (in S) into
k clusters.Ageneral approach is to formclusters in suchaway
that they minimize total “within-cluster” variance. Let a
configurationC consists of clusters denotedbyC1; C2; . . . ; Ck,
and let�isbe themeanshapes inCis andnisbe the sizesofCis.
There are several cost functions used for clustering, e.g., the
sum of traces of covariances within clusters. However, the
computation of means �is of large shape clusters and,
therefore, their variances, is computationally expensive,
especially when they are to be updated at every iteration.
As a solution, one often uses a variation, called pairwise
clustering [9], where the variance of a cluster is replaced by a
scaled sum of distances (squared) between its elements:

QðCÞ ¼
Xk
i¼1

2

ni

X
�a2Ci

X
b<a;�b2Ci

dð�a; �bÞ2
 !

: ð1Þ

We seek configurations that minimize Q, i.e., C� ¼
argminQðCÞ.

An important question in any clustering problem is: How
to choosek? In caseof shape retrieval applications, the answer
is easier. Here, k determines a balance between the retrieval
speed and performance, and awide range of k can be tried. In
the worst case, one can set k ¼ n=2 at every level of hierarchy
(described later) and still obtain OðlogðnÞÞ retrieval speeds.
(This assumes that the shapes areuniformlydistributed in the
clusters.) However, the choice of k ismuchmore important in
the case of learning. Probability models estimated from the
clustered shapes are sensitive to the clustering performance.
Toobtain apossible k automatically, oneoption is to study the
variation ofQðC�Þ for different values of k and select a k that
provides the largest decrease inQðC�Þ from its value at k� 1.
Anotherpossibility is tousehumansupervision in selectingk.

Ideas presented in [5] can also used for unsupervised
clustering.

3.2 Clustering Algorithm

We will take a stochastic simulated annealing approach to
solve for C�. Several authors have explored the use of
annealing in clustering problems, including soft clustering
[22] and deterministic clustering [9]. An interesting idea
presented in [9] is to solve an approximate problem termed
mean-field approximation, where Q is replaced by a
function in which the roles of elements �is are decoupled.
The advantage is the resulting efficiency although it comes
at the cost of error in approximation.

Wewillminimize the clustering cost using aMarkov chain
search process on the configuration space. The basic idea is to
start with a configuration of k clusters and to reduce Q by
rearranging shapes amongst the clusters. The rearrangement
isperformed ina stochastic fashionusing twokindsofmoves.
These moves are performed with probabilities proportional
to the negative exponential of the Q-values of the resulting
configurations. The two types of moves are:

1. Move a shape. Here, we select a shape randomly and

reassign it to another cluster. Let Q
ðiÞ
j be the

clustering cost when a shape �j is reassigned to the

cluster Ci keeping all other clusters fixed. If �j is not a

singleton, i.e., not the only element in its cluster, then

the transfer of �j to cluster Ci is performed with
probability:

PMðj; i;T Þ ¼
expð�QðiÞ

j =T ÞPk
i¼1 expð�Q

ðiÞ
j =T Þ

;

i ¼ 1; 2; . . . ; k. Here, T plays a role similar to tempera-
ture in simulated annealing. If �j is a singleton, then
moving it is not allowed in order to fix the number of
clusters at k.

2. Swap two shapes. Here, we select two shapes
randomly from two different clusters and swap them.
Let Qð1Þ and Qð2Þ be the Q-values of the original
configuration (before swapping) and the new config-
uration (after swapping), respectively. Then, swap-
ping is performed with probability:

PSðT Þ ¼
expð�Qð2Þ=T ÞP2
i¼1 expð�QðiÞ=T Þ

:

Additional types of moves can also be used to improve the
search over the configuration space although their computa-
tional cost becomes a factor too. In view of the computational
simplicity of moving a shape and swapping two shapes, we
have restricted our algorithm to these two moves.

In order to seek global optimization, we have adopted a
simulated annealing approach. That is, we start with a high
value of T and reduce it slowly as the algorithm searches for
configurations with smaller variances. Additionally, the
moves are performed according to an acceptance-rejection
procedure that is a variant of more conventional simulated
annealing (see, for example, Algorithm A.20, p. 200 [21] for a
conventional procedure). Here, the candidates are proposed
randomlyandacceptedaccording to certainprobabilities (PM
and PS are defined above). Although simulated annealing
and the random nature of the search help in avoiding local
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minima, the convergence to a global minimum is difficult to

establish.Asdescribed in [21], theoutput of this algorithm is a

Markov chain that is neither homogeneous nor convergent to

a stationary chain. If the temperature T is decreased slowly,

then the chain is guaranteed to converge to a global

minimum. However, it is difficult to make explicit the

required rate of decrease in T and, instead, we rely on

empirical studies to justify this algorithm. First, we state the

algorithm and then describe some experimental results.

Algorithm 1. For n shapes and k clusters, initialize by randomly

distributing n shapes among k clusters. Set a high initial

temperature T .

1. Compute pairwise geodesic distances between all
n shapes. This requires nðn�1Þ=2 geodesic
computations.

2. With equal probabilities pick one of the two moves:

. Move a shape. Pick a shape �j randomly. If it is
not a singleton in its cluster, then compute Q

ðiÞ
j

for all i ¼ 1; 2; . . . ; k. Compute the probability
PMðj; i;T Þ for all i ¼ 1; . . . ; k and reassign �j to
a cluster chosen according to the probability PM .

. Swap two shapes. Select two clusters randomly
and select a shape from each. Compute the
probability PSðT Þ and swap the two shapes
according to that probability.

3. Update the temperature using T ¼ T=� and return to
Step 2. We have used � ¼ 1:0001.

It is important to note that once the pairwise distances are

computed, they are not computed again in the iterations.

Second, unlike k-mean clustering, the mean shapes are never

calculated in this clustering. These factors make Algorithm 1
efficient and effective in clustering diverse shapes.

Now, we present some experimental results generated
usingAlgorithm 1.We startwith a small example to illustrate
the basic idea. We have clustered n ¼ 25 shapes taken from
the Surrey fish database, shown in Fig. 5, in to k ¼ 9 clusters.
In each run of Algorithm 1, we keep the configuration with
minimumQ value. To demonstrate effectiveness of the swap
move, we also compare results obtained with and without
that move. In Fig. 5a, we show an example evolution of the
search process, without the swap move, where the Q values
are plotted against the iteration index. In Fig. 5b, we show a
histogram of the best Q values obtained in each of 200 such
runs, each starting from a random initial configuration. In
Figs. 5c and 5d, we present corresponding results with the
swap move as stated in Algorithm 1. It must be noted that
90 percent of these runs result in configurations that are quite
close to the optimal. Computational cost of this clustering
algorithm is small; once pairwise distances between shapes
are computed, it takes approximately five seconds to perform
250,000 steps of Algorithm 1 in Matlab, for n ¼ 25 and k ¼ 9.
Fig. 6 displays the configuration with smallest Q value; each
column shows a cluster with two, three, or five shapes in it.
The success of Algorithm 1 in clustering these diverse shapes
is visible in these results, similar shapes have been clustered
together.As a comparison, thedendrogramclustering results
are shown in Fig. 5e. It is easy to see that a dendrogram for
k ¼ 9 clusters will not give a satisfactory configuration.

3.3 Hierarchical Organization of Shapes

An important goal of this paper is to organize large databases
of shapes in a fashion that allows for efficient searches. One
way of accomplishing this is to organize shapes in a tree
structure, such that shapes display increasing resolution as
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Fig. 5. (a) A sample evolution of Q under Algorithm 1 without using the swap move. (b) A histogram of the minimum Q values obtained in 200 runs of
Algorithm 1 (without swap move) each starting from a random initial condition. (c) and (d) Sample evolution and a histogram of 200 runs with the
swap move. (e) A clustering result using the dendrogram function in Matlab.



wemove down the tree. In otherwords, objects are organized
(clustered) according to coarser differences (in their shapes)
at top levels and finer differences at lower levels. This is
accomplished in a bottom-up construction as follows: Start
with all the shapes at the bottom level and cluster them
according to Algorithm 1 for a predetermined k. Then,
compute amean shape for each cluster andat the second level
cluster these means according to Algorithm 1. Applying this
idea repeatedly, one obtains a tree organization of shapes in
which shapes change from coarse to fine as we move down
the tree. Critical to this organization is the notion of mean
shapes forwhichweutilizeKarchermeansmentionedearlier.

We present some experimental results using the ETH
object database. This database contains eight different classes
of objects—apples, tomatoes, cars, pears, cows, cups, dogs,

and horses—each class contains 400 images of 3D objects
imaged from different viewing angles. We have used an
automated procedure, using standard edge-detection tech-
niques, to extract 2D contours of imaged objects, resulting in
3,200 observations of planar shapes. Shown in Fig. 7 are some
examples of these shapes. For these 3,200 shapes, shown in
Fig. 10 is a hierarchical organization into seven levels. At
the very bottom, the 3,200 shapes are clustered into
k ¼ 25 clusters. It currently takes approximately 100 hours
on one computer to compute all pairwise geodesics for these
3,200 shapes; one can use multiple desktop computers, or
parallel computing, to accomplish this task more efficiently.
Shown in Fig. 8a is an evolution of Algorithm 1 for this data,
and in Fig. 9 are some examples shapes in some of these
clusters. Fig. 8b shows a histogram of optimal Q-values
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Fig. 6. A clustering of 25 fish shapes into nine clusters with Q ¼ 0:933. Each column shows the shapes that are clustered together.

Fig. 7. Some examples of shapes contained in ETH object database.

Fig. 8. (a) An evolution of Q versus iteration index under Algorithm 1 for n ¼ 3; 200 and k ¼ 25. (b) Histogram of minimum Q-values obtained in
100 different runs.



obtained in 100 runs of Algorithm 1. The clustering, in
general, agrees well with the known classification of these
shapes. For example, apples and tomatoes are clustered
togetherwhile cups and animals are clustered separately. It is
interesting to note that, with a few exceptions, shapes
corresponding to different postures of animals are also
clustered separately. For example, shapes of cows sitting
(cluster 25), animal shapes from side views (cluster 6), and
animal shapes from frontal views (cluster 23), are all clustered
separately. It takesapproximately40minutes inMatlab to run
50K steps of Algorithm 1 with n ¼ 3; 200 and k ¼ 25. At the
next level of hierarchy, statistical means of elements in each
cluster are computedandare clusteredwithn ¼ 25andk ¼ 7.
These 25means are shown at level F in Fig. 10. This process is
repeated until we reach the top of the tree.

It is interesting to study the variations in shapes as we

follow a path from top to bottom in this tree. Three such

paths are displayed in Fig. 11, showing an increase in

shape features as we follow the path (drawn left to right

here). This multiresolution representation of shapes has

important implications. One is that very different shapes

can be effectively compared at a low resolution and at high

speed, while only similar shapes require high-resolution

comparisons.

4 SHAPE LEARNING

Another important problem in statistical analysis of shapes is

to “learn”probabilitymodels fromobservedshapes.Once the

shapes are clustered, we assume that elements in the same
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Fig. 9. Examples of shapes in clusters 6, 16, 18, 21, 23, 24, and 25.



cluster are samples from the same probability model and try
to learn this model. Thesemodels can then be used for future
Bayesian discoveries of shapes or for classification of new
shapes. To learn a probability model amounts to estimating a
probability density function on the shape space, a task that is
rather difficult to performprecisely. The twomaindifficulties
are: nonlinearity and infinite-dimensionality of S and they
are handled here as follows:

1. Nonlinearity. S is a nonlinear manifold, so we
impose a probability density on a tangent space
instead. For a mean shape � 2 S, T�ðSÞ � LL2, is a
vector space and more conventional statistics apply.

2. Dimensionality.Weapproximatea tangent function g
by a finite-dimensional vector, e.g., a vector of Fourier
coefficients and, thus, characterize a probability
distribution on T�ðSÞ as that on a finite-dimensional
vector space.

Let a tangent element g 2 T�ðSÞ be represented by its Fourier
approximation: gðsÞ ¼

Pm
i¼1 xieiðsÞ, for a large positive

integer m. Using the identification g � x ¼ fxig 2 IRm, one
can define a probability distribution on elements of T�ðSÞ via
one on IRm.

We still have to decide what form does this probability
distribution take. Following are three possibilities:

1. Multivariate normal model for principal coeffi-
cients. A common approach is to assume a

multivariate normal model on vector x. Assume
that variations of x are mostly restricted to an
m1-dimensional subspace of IRm, called the princi-
pal subspace, with an orthogonal basis fv1; . . . ; vm1

g
for some m1 << m. We denote the linear projec-
tion of x to the principal subspace by ~xx and let
~xx? 2 IRm�m1 be such that x ¼ ~xx� ~xx?, � denotes
the direct sum. Now, model ~xx � Nð0; KÞ, for a
K 2 IRm1�m1 , and model ~xx? � Nð0; �Im�m1

Þ, for a
small � > 0. Note that this procedure uses a local
PCA in the tangent space T�ðSÞ and should be
distinguished from a global PCA of points in a
shape space, as is done in active shape models
[1]. T�ðSÞ is a linear space, and its principal
elements are mapped to S via a nonlinear map  ,
as opposed to a direct linear (PCA) approxima-
tion of a shape space.

Estimation of � and K from observed shapes is
straightforward. Computation of a mean shape � is
described in [15]. Using � and an observed shape �j,
find the tangent vector gj 2 T�ðSÞ such that the
geodesic from � in the direction gj reaches �j in unit
time. This tangent vector is actually computed via a
finite-dimensional representation and results in the
corresponding vector of coefficients xj. From the
observed values of xj 2 IRm, one can estimate the
principal subspaceand the covariancematrix. Extract-
ing the dominant eigenvectors of the estimated
covariance matrix, one can capture the dominant
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Fig. 10. Hierarchical Clustering of 3,200 shapes from the ETH-80 database.

Fig. 11. Paths from top to bottom in the tree show increasing shape resolutions.



modes of variations. The density function associated

with this family of shapes is given by:

hð�;�;KÞ / exp �~xxTK�1~xx=2� k~xx?k2=ð2�Þ
� �

=
�
detðKÞ

� �ðm�m1Þ
�
; for � �;

Xm
i¼1

xiei; 1

 !
¼ �:

ð2Þ

2. Nonparametric models on principal coefficients.
Instead of assuming a parametric model for ~xx, here
we estimate the probability density function of each
component using kernel density estimation (with a
Gaussian kernel). Shown in Fig. 12 are some
examples of estimated density functions. The first
three plots show density functions of the three
dominant components for shapes in cluster 18. These
histograms seem typical of the larger database in the
sense that both unimodal and multimodal densities
occur frequently. In principle, one should form joint
density estimates from the observed coefficients, as
they maybe dependent. However, in this paper, we
ignore their dependence and coarsely approximate
their joint probability density by a product of the
estimated marginals.

3. Nonparametricmodels on independent coefficients.
In this case, we use independent components, instead
of the principal components, to estimate marginal
density functions, and can form a joint density by
multiplying themarginals. However, themain limita-
tion of independent components is the lack a natural
technique to choosem1. For computing ICA, we have
used the FastICA algorithm presented in [11]. Shown
in the last three plots of Fig. 12 are examples of these
estimated density functions for independent coeffi-
cients, for elements in cluster 18.

We have studied these shape models using ideas
from random sampling and shape testing. Sampling
results are presented here while testing results are
presented in the next section.

Sampling. Shown in Fig. 13 is an example of random
sampling from estimated models. Eighteen observed shapes
�1; . . . ; �18 of M60 tanks are shown in Fig. 13a and are
analyzed for learning a probability model. The Karcher
mean shape and estimated eigenvalues of the sample
covariance matrix are shown in Fig. 13b. Generating
random samples from ~xx � Nð0; K̂KÞ and computing
�ð�;

Pm1

i¼1 ~xxivi; 1Þ, we have synthesized new shapes from
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Fig. 12. Estimated densities of four dominant components: 1) PCA (first three) and 2) ICA (last three), for shapes in cluster 18.

Fig. 13. (a) 18 observed M60 tank shapes, (b) top shows the mean shape and bottom plots the principal eigenvalues of tangent covariance, (c) shows

random samples from multivariate normal model, and (d) shows samples from a nonparametric model for principal coefficients.

Fig. 14. Principal modes of variations in the 18 observed shapes shown in Fig. 13.



the model learned shown in Fig. 13c. Four principal modes
of shape variations for this data set are shown in Fig. 14. As
a comparison, shown in Fig. 13d are samples from a
nonparametric model (on principal coefficients), where the
marginal densities of principal coefficients have been
estimated from the observed data using a Gaussian kernel.

5 HYPOTHESIS TESTING AND SHAPE RETRIEVAL

This framework for shape representations and statistical
models on shape spaces has important applications in
decision theory. One is to recognize an imaged object
according to the shape of its boundary. Statistical analysis
on shape spaces can be used to make a variety of decisions
such as: Does this shape belong to a given family of shapes?
Do the given two families of shapes have similarmeans and/
or variances? Given a test shape and two competing
probability models, which one explains the test shape better?

Shape Testing. We start with binary hypothesis testing
under the proposed shape models. Consider two shape
families specified by their probability models: h1 and h2. For
an observed shape � 2 S, we are interested in selecting one of
two following hypotheses: H0 : � � h1 or H1 : � � h2. We
will select a hypothesis using the log-likelihood ratio:
lð�Þ � logðh1ð�Þh2ð�ÞÞ. Substituting fornormaldistributions (2),h1 �
hð�;�1; K1Þ and h2 � hð�;�2; K2Þ, we can obtain sufficient
statistics for this test.Letxi be thevectorofFourier coefficients
that encode the tangent direction from �i to � such that
xi ¼ ~xxi � ~xx?

i , i ¼ 1; 2. It follows that

lð�Þ ¼ � ~xxT1K
�1
1 ~xx1 þ ~xxT2K

�1
2 ~xx2 � ðk~xx?

1 k
2 � k~xx?

1 k
2Þ=ð2�Þ

� logðdetðK1ÞÞ þ logðdetðK2ÞÞ:

In the special case, when m ¼ m1 and K1 ¼ K2 ¼ Im (iden-
tity), the log-likelihood ratio is given by lð�Þ ¼ kx1k2 � kx2k2.
Multiple hypothesis testing can be accomplished similarly
using the most likely hypothesis. The curved nature of the
shape space S makes an analytical study of this test difficult.
For instance, one may be interested in the probability of type
one error but that calculation requires a probabilitymodel on
~xx2 whenH0 is true.

Wenowpresent results from an experiment on hypothesis
testing using the ETH database. In this experiment, we
selected 12 out of 25 clusters shown at the bottom level of
Fig. 10. Shown inFig. 15a aremean shapes of these 12 clusters.
In each class (or cluster), we used 50 shapes as training data
for learning the shape models. A disjoint set of 2,500 shapes

(total), drawn randomly from these clusters, was used to test
the classification performance; a correct classification implies
that the test shape was assigned to its own cluster. Shown in
Fig. 15b is a plot of classification performance versusm1, the
number of components used. This plot shows classification
performancesusing: 1)multivariatenormalmodel on tangent
vectors, and 2) nonparametric models on principal coeffi-
cients. We remark that, in this particular instance, nearest-
mean classifier also performs well since that metric matches
well with the cost function (1) used in clustering.

Hierarchical Shape Retrieval. We want to use the idea of
hypothesis testing in retrieving shapes from a database that
has been organized hierarchically. In view of this structure, a
natural way is to start at the top, compare the query with the
shapes at each level, and proceed down the branch that leads
to thebestmatch.Atany levelof the tree, there isanumber, say
k, of possible shapes, and our goal is to find the shape that
matches the query � best. This can be performed using
k� 1 binary tests leading to the selection of the best
hypothesis. In the current implementation,we have assumed
asimplification that thecovariancematrices forallhypotheses
at all levels are identity and only themean shapes are needed
to organize the database. For identity covariances, the task of
finding the best match at any level reduces to finding the
nearestmeanshapeat that level.Let�i be thegiven shapesat a
level and let xi be the Fourier vector that encode tangent
direction from � to �i. Then, the nearest shape is indexed by
îi ¼ argmini kxik. Proceeddown the tree following the nearest
shape �îi at each level. This continues until we reach the last
level and have found an overall match to the given query.

Wehave implemented this idea using test images from the
ETH database. For each test image, we first extract the
contour, compute its shape representation as � 2 S, and
follow the tree, shown in Fig. 10, for retrieving similar shapes
from the database. Fig. 16 presents some pictorial examples
from this experiment. Shown in the left panels are the original
images and in the second left panels their automatically
extracted contours. The third column shows six nearest
shapes retrieved in response to the query. Finally, the last
panel states the time taken for the hierarchical search. A
summary of retrieval times is as follows:
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Fig. 15. (a) Mean shapes of 12 clusters. (b) Plots of classification performance versus the number of components used for: 1) multivariate normal
modal on principal components and 2) independent nonparametric models on principal components.



The time for exhaustive search is computed by considering
all 3,200 comparisons, while the search times for hierarch-
ical technique are for approximately 50 query images used
in this experiment. These results show a significant
improvement in the retrieval times while maintaining a
good performance.

In this experiment, retrieval performance is defined with
respect to the original labels, e.g., apple, cup, cow, pear, etc.
Shown in Fig. 17 are plots of retrieval performances,
measured using two different quantities. The first quantity
is the precision rate, defined as the ratio of number of
relevant shapes retrieved, i.e., shapes from the correct class,
to the total number of shapes retrieved. Ideally, this quantity
should be one, or quite close to one. The second quantity,
called the recall rate, is the ratio of number of relevant shapes
retrieved to the total number of shapes in that class in the
database. Fig. 17a shows average variation of precision rate
plotted against the number of shapes retrieved, for four
different classes—apple, car, cup, and pear. As these curves
indicate, the retrieval performance of apple falls quickly
while that for the other classes remains high. The reason for a
low-retrieval performance of apple shapes is their close
resemblance in shape to tomatoes. Fig. 17b shows plots of
recall rate plotted against the number of shapes retrieved,
and Fig. 17c plots precision rate against the recall rate, for the
same four classes. These results for retrieving images using
shapes of objects are very encouraging. Of course, a more

general retrieval system using additional features, such as
colors, should perform even better.

It must be noted that this search will potentially produce
incorrect results if the clustering process puts very different
shapes in the same cluster. In this case, the mean shape of
such a cluster will not be a good indicator of the cluster
elements and the search procedure can fail. One can guard
against this situation by keeping a high number of clusters
at each level, thus ensuring that different shapes are indeed
grouped in different clusters.

6 SUMMARY AND EXTENSIONS

Building on adifferential geometric representation of shapes,
and geodesic lengths as shape metrics, we have presented
tools that enable a statistical analysis of shapes. We have
presented methods and algorithms for shape clustering,
learning shapemodels, and shape testing.Wehavepresented
a clustering algorithm, followed by an evaluation of cluster
means to perform hierarchical clustering. Using tangent-
space probability models, we have defined a technique for
performing hypothesis testing in the shape space, and have
applied it to the problem of shape retrieval. Future research
can be directed along these lines:

1. Statistical Properties of Mean Estimator on S. Bias,
consistency, efficiency, etc., of the Karcher mean
estimator should be investigated either analytically
or empirically.

2. ProbabilityModelsonTangentSpaces. It isdesirable
to have parametric models that capture the non-
Gaussian behavior of observed tangents. Further
investigations are needed to determine if certain
heavy-tailed models, such as Bessel K forms [8] or
generalized Laplacian [17], or some other families,
may better explain the observed data.

3. Elastic Shapes. One limitation of the proposed
approach is that arc-length parametrization results
in shape comparisons solely on the basis of
bending energies, without allowing for stretching
or compression. In some cases, matching via
stretching of shapes is more natural [2]. An
extension that incorporates stretch elasticity by
allowing reparameterizations of curves by arbi-
trary diffeomorphisms is presented in [18]. A
curve � is represented by a pair ð�; �Þ such that
_��ðsÞ ¼ e�ðsÞej�ðsÞ. Appropriate constraints on ð�; �Þ
define a preshape manifold C, and the shape
space is given by C=D, where D is the group of
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Fig. 16. Some examples of shape retrieval using hierarchical

organization.

Fig. 17. (a) Precision rate versus number of shapes retrieved, (b) recall rate versus number retrieved, and (c) precision rate versus recall rate.



diffeomorphisms from ½0; 1� to itself. The action of
a diffeomorphism � on a shape representation is
given by: ð�; �Þ ¼ ð� 	 � þ logð _��Þ; � 	 �Þ. Computa-
tional details are presented in [18].
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