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Universal Analytical Forms for
Modeling Image Probabilities

Anuj Srivastava, Xiuwen Liu, and UIf Grenander

Abstract—Seeking probability models for images, we employ a spectral approach where the images are decomposed using bandpass
filters and probability models are imposed on the filter outputs (also called spectral components). We employ a (two-parameter) family
of probability densities, introduced in [11] and called Bessel K forms, for modeling the marginal densities of the spectral components,
and demonstrate their fit to the observed histograms for video, infrared, and range images. Motivated by object-based models forimage
analysis, a relationship between the Bessel parameters and the imaged objects is established. Using L?-metric on the set of

Bessel K forms, we propose a pseudometric on the image space for quantifying image similarities/differences. Some applications,
including clutter classification and pruning of hypotheses for target recognition, are presented.

Index Terms—Image probabilities, spectral analysis, Bessel K forms, clutter classification, target recognition, Gabor filters.

1 INTRODUCTION

STATISTICAL techniques for image analysis and understand-
ing require efficient and tractable probability models for
analyzing the observed images. Given the tremendous
variability associated with the imaged objects, detailed (e.g.,
3D deformable templates) models are not feasible for “all
possible objects.” Therefore, one seeks a balance by designing
low-level, coarse representations that are tractable and yet
capturesignificantimage variation. Here, we study a family of
tractable, coarse probability models that can form building
blocks of a larger image understanding system. Since the
image space is very high-dimensional, a direct modeling of
the joint probabilities is not possible, even if a large number of
observations are provided, and some method for reducing
dimensions is required. There are two general reductionist
approaches adopted in the literature: 1) parameterize the
probability densities using certain (low-dimensional) physi-
cal parameters (relating to the imaged objects) or 2) perform
dimension reduction via purely numerical, nonphysical
approaches.

In the first approach related to high-level vision, images
are parameterized by the physical characteristics of the
objects (such as shapes, textures, reflectance, illumination,
and motion). These quantities are modeled mathematically,
within some acceptable approximation and the resulting
physical variables are used to analyze images. Probability
models on images now consist of: 1) probability models on
these physical variables and 2) the sensing models. An
example of this idea is the deformable template theory [9]
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where images are studied through the transformations that
match the physical templates to the observations. These
models are detailed and capture sufficient variability to
discriminate well even in challenging situations (cluttered
scenes, low SNR, distant images, etc.). One drawback is that
they are computationally expensive to implement, since
they require synthesis of hypothesized images for compar-
ison with the observed images. The second idea relates to
low-level vision and involves one of many techniques that
reduce dimensions using purely numerical considerations.
That is, by not involving any physical consideration on the
imaged objects, or any contextual knowledge, the images
are treated as elements of a vector space and one seeks a
low-dimensional subspace that best represents those num-
bers (under some chosen criterion). Principal components
[16], independent components [5], [3], sparse coding [21],
Fisher’s discriminant [2], local linear embedding [24], and
many other statistical learning algorithms are all instances
of this idea. The main advantage here is the computational
efficiency and the main drawback is knowledge deficiency.
Lack of physical or contextual information leads to a limited
performance, especially in challenging situations.

1.1 Models for Image Analysis

An important idea is to develop an adaptive strategy that
balances these two levels of inferences. In this paper, we
study a framework that provides some interaction between
the pixel-based and the template-based inferences and is
capable of shifting between the two depending on the
available resources, both computational and informational.
Consider a deformable template representation of the
imaged objects, as laid out in [12], [26]. The basic idea is
that images are made up of (images of) objects and their
variability can be represented by physical variables. Using
3D models of objects (including polygonated surfaces,
textures, and reflectance functions), all occurrences of these
objects can be generated by applying similarity transforma-
tions. 3D scenes containing these transformed objects lead
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to 2D images via occlusion and projection. What probability
models on image can result from this model? As stated
earlier, there are two possibilities:

1. The template approach where the set of possible
objects is small and the 3D models are available for all
objects. Also, the tools for synthesizing images of
these objects under all transformations of pose and
illumination are assumed available. Under these
assumptions, a probability distribution on images
can be written explicitly in terms of a joint probability
on the transformation space and the set of objects.
Object recognition is now solved on the product space
[26], [19]. Inference procedures are laid out in the
papers [10], [12], [19].

2. For general problems in image understanding,
3D models cannot be prestored for all objects, and
furthermore, the transformations may not be identifi-
able in all conditions. Therefore, the representations
tend to be less explicit and the image probability is
motivated through empirical studies [20] and not via
the physical parameters.

In this paper, we seek general models that retain some
physical considerations, although not as explicitly as the
template approach. Pursuing the second case, we replace
3D templates by their 2D profiles (call them generators) and
denote them as g¢s. gs are the views (appearances,
signatures, profiles) of randomly chosen objects, taken from
random poses. Let G be the space of all possible generators
associated with all objects, imaged from all angles. Random
translations of 3D objects in a scene will be modeled by
random placements and scalings of gs in an image.

Let I : R*~R, be the image map. Then, each object (with
generator g;) presentin the scene contributes to the pixel value
I(z) according to a;g;(;; (= — zi)). Here, 2 € W = [0, L] x [0, L]
is a variable for pixel location, g; : Wi— R is a generator of a
randomly chosen object, p; € [0, L]isarandomscale,and a; €
R is the random weight associated with g;. g;s are assumed to
be drawn from G according to some probability dG. Although
the physics of imaging dictates using occlusion models, we
simplify the image formation by using the equation:

n 1
I(z) = Zaigi (;(Z* Zi)>7 2,z €W, a; € R, p; € [0,L].
(1)

Replacement of occlusion by superposition is a necessary
simplification towards obtaining analytical probability
models under linear filtering. Assume:

1. the weights g;s are ii.d. standard normal,
the scales p;s are i.i.d. uniform on the interval [0, L],
3. thelocations z;s as samples from a 2D, homogeneous
Poisson process with intensity A > 0 on a compact
set W C R?, and
4. a;s, gis, zs, and p;s are all assumed independent of
each other.
Since g;s are assumed unknown, the related variables n, p;s,
and z;s become indeterminable. However, we aim to derive
probability models on I by implicitly incorporating their
variability.
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Motivated by a growing understanding of early human
vision, a popular strategy has been to decompose images into
their spectral components using a family of bandpass filters.
Following that idea, our definition of a probability model on
images is through its spectral representation. If certain low-
dimensional statistics of these filtered components are found
sufficient, then a significant reduction is achieved. Zhu et al.
[30] have shown that the marginal distributions of spectral
components, obtained using a collection of filters, sufficiently
characterize homogeneous textures. The choice of histograms
as sufficient statistics implies that only the frequencies of
occurrences of (pixel) values in the filtered images are
relevant and the location information is discarded [13], [31],
[15]. Chubb et al. [4] also advocate the use of a histogram in
texture representation. The main focus in these papers has
been to model homogeneous textures, but we will apply
spectral analysis to a general setting of image understanding.
Portilla and Simoncelli [23] have suggested using the lower
order statistics (mean, variance, skewness, kurtosis) to specify
the marginal densities of the wavelet coefficients of the
images. Wainwright et al. [28] have studied a family of
Gaussian mixtures, resulting from different mixing densities,
for modeling the observed histograms. Lee et al. [17]. have
presented a synthesis model for capturing the statistics in the
images of leaves. Donoho and Flesia [7] and Donoho and Huo
[6] have proposed edge-based transforms to account for the
patterns in the observed histograms.

Using a physical model for image formation, we have
proposed a family of two-parameter probability densities
[11], called Bessel K forms, to model the horizontal and the
vertical derivatives of images. In this paper, we extend this
model to a full spectrum of bandpass filters and arbitrary
images. The two parameters associated with this family will
form a sufficient statistic for a spectral component, denoting a
significant reduction in the representation. The parameters
canbe directly estimated from the variance and the kurtosis of
the filtered image pixels, thereby implying a simple estima-
tion procedure. The main results presented here are:
1) demonstration of the success of Bessel K forms in modeling
the spectral components for video, infrared, and range
images of natural and artificial scenes, 2) derivation of an
analytical expression for computing the L?-metric, on the
Bessel family, that leads to a pseudometric on image space,
and 3) use the Bessel K forms (and the pseudometric) as a tool
for clutter classification and for pruning possible hypothesis
set for recognition of objects from their images. The last claim
is based on: 1) motivating the model in (1) by relating it to the
3D deformable template representation, 2) relating Bessel
parameters to certain physical characteristics of the imaged
objects, and 3) an example of pruning hypothesis using the
COIL database. In addition, we will present an asymptotic
approximation of the Bessel K form that can potentially
simplify future inference procedures.

This paper is organized as follows: Section 2 applies
Bessel K forms to model spectral components of images and
associates the estimated Bessel K parameters with the
observed shapes. Section 3 derives an L?-metric on the
Bessel K forms and on the image space, while Section 4
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applies this metric to clutter classification and target
recognition.

2 PRroBABILITY MODELS FOR IMAGE SPECTRA

We start with some notation. Given an image I and a bank of
filters {FVY) j = 1,2,..., K}, we compute for each filter F/) a
filtered image /) = I x F), where x denotes the 2D convolu-
tion operation. As an example, a Gabor filter is a bandpass
filter with a Gaussian kernel centered around a specific
wavenumber (see [14] for details). For a rotation 6 € [0, 27), a
Gabor filter is given by:

F(z) = exp(fi (200" + z§<2>2)) exp<—jm79(”),

where o denotes the resolution associated with the filter and

2= [l ity ) 2] €T

Another filter suggested by Marr [18] to model early vision
is the Laplacian of Gaussian filter whose operation on I is
given by (G x A)I, where G is a Gaussian kernel and A is
the Laplacian operator. In addition to these filters, one can
utilize a wide variety of filters: neighborhood operators,
steerable filters, interpolation filters, etc. Each filter selects
and isolates certain features present in the original image. In
this paper, we do not address the issue of selecting filters to
best accomplish a specific task. Instead, we will assume an
arbitrary choice of filters as long as the resulting spectral
components have marginals that are: 1) unimodal, 2) sym-
metric around the mode, and 3) are leptokurtic, i.e., their
kurtosis are more than that of a Gaussian random variable
with the same variance. Additionally, we want the filters
such that the resulting representation is computationally
efficient which holds for filters with smaller bandwidths.

Remark 1. In this paper, we force the mode to be at zero
by setting V) = 1) — E[1V)].

2.1 Analytical Models
Applying 2D convolution to both sides of (1), we obtain a
spectral component

19 (2) = (I * F(j))(z)

1 . .
= Zaiglw (—(z - zl)), where g,w =FW % g,.
i Pi )

(2)

The conditional density of IU)(z), given the Poisson points { z; },
the scales {p; }, and the profiles { g; }, is normal with mean zero
and variance u, where

Ya! ?
u= Z(gg") <p_ (z— z,)) .
One departure here, from the model used in [11], is that the
generators are now randomly selected and are included at
random scales p;s in (2). Under this model and assuming u
to be a scaled-Gamma random variable, the density
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function of the random variable 7V)(z) has been shown to
be [11]: for p > 0, ¢ > 0,

1 p—0.5 \/5
7o K(,,m( “ol) o R )

where K is the modified Bessel function (see (11) in
Appendix A.1) and Z is the normalizing constant given by

Z(p,¢) = al(p)(2c)" P02,

f(x;p,c) =

Remark 2. If E[IV)] =y is not equal to zero then we can
account for it by defining a three-parameter family:

1 p—0.5 \/5
1y €)= = |z — K, e — €R.
f(.CL’, P, C) Z(p, C) ‘l .u'l (p—0.5) ( C|$ :u‘ , T €

As stated earlier, in this paper, we restrict to only two
parameters by setting 1 = 0.

Let D be the space of all such densities:
D = {f(z;p,c)lp > 0,¢> 0}

We refer to the elements of D as the Bessel K forms and the
parameters (p, c¢) as the Bessel parameters. The elements of
D have the following properties:

1. They are symmetric and unimodal with the mode at
zero. For p =1, f(x;p,c) is the density of a double
exponential. In general, itis the pth convolution power
(for any p > 0) of a double exponential density.
Therefore, it is unimodal with the mode at z = 0. For
the same reason, it is symmetric around zero.

2. The kurtosis of a Bessel K form relates to the term

var(u) .
(Elu])*

Hence, the Bessel K forms are leptokurtic (the tails
are heavier as compared to a normal curve with the
same variance).

3. A Bessel K form is a specific kind of normal
variance-mean mixture where the mixing variable
is a scaled Gamma with parameters p and c. It
becomes a special case of a larger family of self-
reciprocal normal variance mixtures as described by
Barndorff-Nielson et al. [1]. This connection opens
the possibility of a larger family, namely, the
generalized hyperbolic distributions, to be used in
modeling image spectra, if needed. In addition to
the shape and the scale, this family allows for a
location parameter, skewness, and different rates (of
exponential decay) on the two tails. The significance
here for image analysis is that more filters, beyond
the ones that lead to symmetric histograms, can also
be included in the analysis.

4. The family of Bessel K forms is infinitely divisible, i.e.,
any random variable in this family can be written as a
sum of two independent random variables from this
family. However, if I; and I are independent with
densities f(z;p1, 1) and f(x; p2, c2), respectively, with
¢ # ¢, the density of a; I + a2l (a1, a2 € R) may not
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Fig. 1. Images (top panels), their Gabor components (middle panels), and the marginal densities (bottom panels). The observed densities are drawn
in marked lines and the estimated Bessel K forms are drawn in solid lines.

be a Bessel K form but, in certain conditions, can be
approximated by f(z;p, c), where

2 2 2
_ (agprer + a;5p2cy)
-1 2 1.2

a|P1¢y + asPacy

4, .2 4, 2
_P1C) + agpacy
) 2 :

aipicy + azpaca

b

5. ABessel K form is square-integrable only for p > 0.25.
This property is due to the choice of Gamma density
for u and it limits our later derivation of L?-metric to
the Bessel K forms with p-values larger than 0.25.

How does one estimate the Bessel K parameters for a given
filtered image? p and c can be estimated using the equations:
3 SV (1)

¢ =

T SK(I0) =3’ p

P (4)

where SK is the sample kurtosis and SV is the sample
variance of the pixel values in 7). A derivation of these
estimators is omitted here as a similar result is presented in
[11]. The computational task of estimating the marginal
density is that of computing the second and the fourth
moments of the filtered image. We illustrate some estima-
tion results for a variety of images.

e Shown in the top panels of Fig. 1 are some images
taken from the van Hateren [27] database. The middle
panels display their specific filtered forms (or spectral
components) for Gabor filters at arbitrarily chosen
orientations and scales, and the bottom panels plot the
marginal densities. On a log scale, the observed
densities (histograms) are plotted in the marked
(knotted) lines and the estimated Bessel K forms
(f(; b, ¢)) are plotted in the solid lines.

e  For theimage shown in the top panel of Fig. 2, we have
estimated Bessel K forms for many Gabor filters. The
middle panels show the marginals for different filter
orientations (6 = 30,90, 120, and 150 degrees), while
keeping the scale fixed at o = 4.0 and the bottom
panels are for different filter scales (o = 4, 6, 8, and 10)
keeping the orientation fixed at § = 150 degrees.

e Fig. 3 shows examples of estimation when the
images are filtered by Laplacian of Gaussian filters.
The top panels show some natural images from the
van Hataren database [27] and the bottom panels
show the corresponding estimated Bessel K forms.

e Fig. 4 shows estimation results for three infrared face
images when filtered by Gabor filters. These results
suggest the role of Bessel K forms in modeling images
beyond the visual spectrum. For an application of
Bessel K forms in infrared face recognition, please
refer to the article [25].

e Shown in Fig. 5 are some examples of estimating
marginal densities for the case of outdoor range
images taken from the Brown range database of Lee
and Huang. The three images shown in top panels are
filtered using Gabor filters and the resulting densities
are plotted in the bottom panels.

Instead of estimating Bessel parameters using moments, it
may be preferable to use some robust estimation technique to
account for the outliers. A simple idea is to consider a fraction
(say one percent) of the tail as outlier and discard it in
parameter estimation. Using this idea, we have found an
improvementin estimation performance for the cases where p
is quite small (p < 0.1). Other possibilities include maximum-
likelihood estimation of p, ¢, or arobust estimation technique
based on relating quartiles to p and c.
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Fig. 2. Plots of observed and estimated marginals (on a log scale) of the spectral components of a given image (top panel). Middle panels depict the
marginals for different filter orientations while the bottom panels are for different filter scales.

2.2 Performance Analysis of Bessel K Forms

To quantify the performance in modeling observed histo-
grams by estimated Bessel K forms, anumber of quantities can
be used and we choose the Kullback-Leibler (KL) divergence.
For any two density functions f; and fs, the KL divergence is

defined as the quantity:

KL(fi, f2) = /R log (ggi) fi(z)da.

We have computed it by discretizing at the center points of
the histogram bins. To illustrate KL divergence values for
our applications, we start with some examples. Shown in
Fig. 6 are six plots, each containing a pair of densities: one
observed (marked line) and one estimated (solid line), and
the KL divergence between them is listed on the top. These
six cases show a decreasing match, in going from top left to
bottom right. The KL divergence, in that order, is found to
be 0.0008, 0.0058, 0.0105, 0.00591, 0.247, and 0.3341,
respectively.
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Fig. 3. Estimated Bessel K forms for natural images (top panels) when filtered by Laplacian of Gaussian filters.
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Fig. 4. Observed and estimated marginal densities (bottom panels) for the IR face images (top panels) and arbitrary Gabor filters.

Using KL divergence for evaluating matches between the
observed and the estimated densities, we have computed
the performance over two large databases. In each case, for
a large combination of images and filters drawn randomly,
we have averaged the KL divergence over thousands of
resulting filtered marginals. The first database is made up
of 300 natural video images downloaded from the van

Hateren natural image database, and the second database is

made up of 220 infrared face pictures. Shown in Fig. 7 are
the convergence plots of the average KL divergence, plotted
against the sample size. The left plot is for the natural video
images with a limiting value of 0.0719, while the right plot
is for the infrared images with a limiting value of 0.0479. A
comparison of these values with the examples in Fig. 6
underscores a high degree of match between the observed
histograms and the estimated Bessel K forms.
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Fig. 5. Top panels: range images of a forest. Bottom panels: corresponding observed (marked lines) and estimated marginal densities (solid lines).
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2.3 Relating the Shape Parameter to the Imaged
Objects

Before we present some applications of these Bessel K forms,
we first deal with an interesting question. How do the Bessel
K parameters p and ¢, estimated for a spectral component of
an image, relate to the objects that are present in that image?
The physical characteristics of the imaged objects and the
filter used in generating a spectral component, should dictate
the resulting Bessel K form. Since c is essentially a scale
parameter relating to the range of pixel values in I, its role is
not as important as p. Here, we derive a relationship between
the imaged generators and the estimated shape parameter.
We will perform the analysis for the pixel I(z) as composed of
the generators {g; (pL (z—2))} (1), although the analysis
remains the same for any spectral component IU(z)
composed of the generators { ggj ) (ﬂi (z—z))} (2). Let the
characteristic function of the random variable a; be given by

KL Divergence: Natural Image Database

¢(w). (Later, we assume a specific ¢ by choosing a;s to be
standard normal.) The conditional characteristic function of
1U)(2), given the Poisson points {z;}s, the scales {p; }s, and the
generators {g; }s, is:

Pi

Wz, (o o) = Hqs(wg (G-)).

using the ii.d. nature of g;s. Integrating out the uniform,
independent placement of z;s, for a given n, we obtain the
conditional characteristic function:

witetn o o) o< T [ oen (5= 20) )a).

Similarly, integrating out the scales, we get:
n L 1
i=1 \JW i

KL Divergence: IR Database
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Fig. 7. Convergence of average KL-divergence between the observed and the estimated densities as the sample size increases. (a) Average for the
van Hateren database of natural images. (b) Average for the FSU infrared face database.
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Now, integrate out the random selection of the generators g;s.
Recall thateach g; is drawn independently from the generator
space G according to some measure dG. This gives,

oo ([ [ [“ofem (220 Jamasar

The last step is to integrate with respect to n. For the image
defined over the set W, n is a Poisson random variable with
mean \|WW|. To simplify notation, we use A to denote A|WW|in
the following:

U (w) oci
=0

<mzs SR CICTE) Iy
( ([ [ oA Hl)»dmdzld@ll)).

Without loss of generality, we can substitute z=10. To
simplify, assume that the generators g € G are all even
functions. Then,

oirsens (L f o ) )

To find the cumulants of I, we use the relation:

d"log(¥(w))

dwk |w:()'

i =

The two cumulants that we need are:

o[ [, [ 02 anazac),
0w ([ [ 0 (:) )

The kurtosis of I(z), according to this model, is given by:

v OOl 0 (3) doaicn)

145 2"
((lb” <fg fw fo 91( ) dp1d21dG1)>

Comparing this with an earlier result that p =
derived in [11], we get

1 ¢ (fg S by 91( ) dzldGl),

i_1,Where/£— -
3X (¢"'(0 <fg fW fO 91( ) dpldzldG1>
(6)

Remark 3. One can replace g, by gg,;’) to obtain this relation
for any spectral component of I. When a; ~ N(0,1), p; is
fixed to be 1.0, and all the g; = g (i.e., a fixed generator),
then ~ simplifies to

kurtosis(I) =

__ 3
kurtosis(I)—3”

p:
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dzl )

_ (o))
(fu dzl)

This equation provides an important relationship be-
tween a generator g and the parameter p. According to
(6), p < 1 occurs when A < £. If the generator g has sharp,
distinct boundaries (i.e., « is larger), then the p value is
small unless the frequency of occurrence (1)) is large.
Specifically, if a filter F¥) is used to extract a particular
feature (e.g., oriented edges, junctions, bands, etc.) from
the image I, then the value of p is dictated by the
distinctness (x) and the frequency of occurrence (\) of
that feature in the image. For example, shown in Fig. 8 is
a variation of p value when the images are filtered for
extracting vertical edges (¢ = 90). The top row shows
images with increasing frequency of vertical edges in
going from left to right. Correspondingly, the estimated
p value shows an increase (0.102, 0.541, 1.473, and 8.83).
Summarizing the relation between p and «, we have:

If 0<A<k/6 thenp<1
Kk/6 <A< k/3 thenp>1"

2.4 Asymptotic Approximation of Bessel K Forms
Although the proposed Bessel K forms model the observed
histograms very well, their functional form is not easy to
work with. Following the discussion in [1], it is possible to
approximate the tails of Bessel K forms using a gamma
density as follows: For large values of z, the modified Bessel
function K,(z) can be approximated by the function
V25 exp(—z) uniformly over compact sets of p. Since small
values of p imply a large tail, this approximation holds well
for a large part of the domain whenever p is small. The tails
of a Bessel K form with the parameters p and ¢ can be
approximated well by the function:

_ ﬁ (i)wuﬂ exp (\/z:d) .

This result is useful as it provides a simpler expression
although only in an asymptotic setting. Since for p > 1, the
maxima of f (x;p, c) are attained at the points z = +(p — 1),/2
and not at x =0, this approximation is valid only for
p << 1.0. To illustrate this approximation on the filtered
marginals, three example are shown in Fig. 9. The top panels
show original images and the bottom panels show the log
densities for arbitrary Gabor filters. The observed histograms
are plotted in solid lines, the Bessel K forms f(x;,p,c) are
plotted in lines with + signs (- + -), and the asymptotic
approximations f (z; p, c) are plotted in lines with * (-*-).

f(z;p,c)

3 PSEUDOMETRICS FOR COMPARING IMAGES

We have chosen to represent images via the Bessel para-
meters of their spectral components. One distinct advantage,
of having such analytical forms for the marginals of the



1208 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO.9, SEPTEMBER 2002

} T -II}III|||I||||’

1

LMY FE i

LA U
(111

i |
I Hr|,“ll 'J“"I‘ I”!II‘
‘w Il | " |4
|l'l||| ! .'|‘| "n‘n" "

p=0.102, c=13273.01 p=8830, c=105.71
2N
/ N
VAN A\ / \
Ll ol Y4 \
/ \\ e /
- = S /] ]
Mooy NV AN T \ o \
1Y
e - cdimage " ™ ety b Fitered Image * ) - Intensity in Filiered Image

Intenisity In Filtered Image Intensity in Filtered Image

Fig. 8. Variation of p-values for extracting vertical edges (6 = 90). Top panels are the original images, middle panels are the filtered images, and the
bottom panels are the densities (log-scale). The estimated p-values are: 0.102, 0.541, 1.473, and 8.8, respectively.

spectral components, is the resulting theoretical framework only D, and not the full set of pdfs, we suggest that many of
these choices will provide similar results, especially if the

task is classification or hypothesis pruning. The main
drawback of choosing L? is that Bessel K forms are not in
L? for p < 0.25. In the case of natural images, the p-values
. are mostly larger than 0.25, while, for images of objects with
comparlson: . sharp, well-defined edges, p can sometimes be below 0.25.
To quantify the distance between two Bessel K forms, we . . o
have chosen the LZ-metric on D. It is possible that other Remark 4. In cases where an image-filter cqmblnatlon leads
. . . . to p < 0.25, we can choose one of following: 1) drop that
metrics, such as the Kullback-Leibler divergence, Renyi’s filter, 2) replace p by 0.25+¢, and then compute the
a-divergence, or even the L' metric, may prove more useful L*-metric, or 3) compute the L?-metric numerically using
in certain situations. Since we are restricting ourselves to the quadrature integration at a certain resolution.

for image analysis. For instance, we would like to be able to
compare images by directly comparing their respective
Bessel parameters. An analytical form is very useful in the
sense that we do not need to estimate the densities for this
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Fig. 9. Asymptotic approximations of Bessel forms: For the images shown in top panels, the bottom panels plot the observed histogram (solid),
Bessel K form (-+-), and the approximation (-*-).
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(@) (b)

©) (d)

Fig. 10. Examples of the L2-metric on D: (a) p» = 0.5, ¢ = 20, d = 0.063, (b) po = 0.75, 3 = 10, d = 0.114, (€) p» = 1.0, ¢ = 1.0, d = 0.125,

(d) p2 = 2.5, co = 2.0, d =0.161. p; = 0.5 and ¢; = 10.0 are held constant.

For f(z;p1,c1) and f(z;p2, c2) in D, the L2-metric is

d(p1,c1,p2,¢2) = \//(f(x§placl) — f(z;p2, 02)) da.

This metric can be computed in a closed form, under
certain restrictive conditions, as follows.

Theorem 1. The L2-distance between the two Bessel K densities,
parameterized by (py, c1) and (ps, ¢2), respectively, is given by:
fOT’ p1,p2 > 0.25, ¢1,c9 >0,

d(placlap2702) =

(8)

where G(p) ="y and F = F((p1 +p2 — 0.5), paip1 +
po; 1 — ) (F is the hypergeometric function). If e = c; = ¢,
then the metric simplifies to:
( 1 T(0.5)
2V2r e

Proof. Please refer to the Appendix A.2. 0

(G(2p1) + G(2p2) — 26(;n + Pz))-

Shown in Fig. 10 are some examples of this metric. Each
plot shows two Bessel K forms with the parameters (p, ¢;)
and (ps,cy), respectively. In these examples, p; = 0.5 and
¢y = 10.0 are held fixed, while p;, ¢; are varied to
demonstrate different cases. The distance d(pi,cy,pa,cs)
increases from left to right.

Theorem 1 provides a metric between two Bessel K forms
or between two spectral marginals. It can be extended to a
pseudometric on the image space as follows: For any two
images, I; and I, and for a given bank of filters,
FW_ . F) let the Bessel parameter values be given by:
P, )and (péﬁ, i), respectively, for j = 1,2,..., K. Then,
the L2-distance, between the spectral representations of the
two images, is defined as:

di(1, ) = (Zd(m i Y ,cé">)2>. (9)

Note that d; is not a proper metric on the image space because
two different images can have d; = 0 between them. Also, d;

is dependent upon the choice of filters. It has been established
in the literature that different spectral components of the
same image are often correlated and, therefore, this
Euclidean form may not be appropriate. In such cases,
another choice such as the max of all components,
dr(I1, 1) = max; d(pgo,cl),pg ,c2 h, may be pursued. Since
the Gabor filters are sensitive to the image orientations, the
resulting metric also depends upon the orientations. To
enforce rotational invariance, one can define a metric which
selects the supremum over all possible image orientations.
The other choice is to restrict to filters that are rotationally
invariant.

4 APPLICATION OF BESSEL K REPRESENTATIONS

Now, we present some examples of applying Bessel K
formulations and the metric d; to image understanding
problems. We have selected examples from: 1) clutter
classification, 2) target recognition, and 3) texture synthesis.

4.1 Clutter Classification

An important application of this Bessel K representation is
in the classification of clutter for ATR (automated target
recognition) scenarios. In particular, given an observed
image of a target imaged in a cluttered environment, one
would like to characterize the clutter to the extent that it
improves the ATR performance. Some knowledge of the
clutter type, whether it is grass, buildings, trees, or roads,
can help improve the target recognition performance. In
this section, we will utilize Bessel K forms to represent the
image spectra, and will employ d; as defined in (9) to
classify the clutter types from their images. To illustrate the
idea, we will use d; to cluster some images of natural clutter
shown in Fig. 11. For a simple illustration, let the images in
the top row be the training images that are already
classified, and the bottom row be images that are to be
classified. Using 27 small-scale Gabor filters (K = 27, for
nine orientations at three scales each), we have computed
the pairwise distances djs.

Using the nearest-neighbor approach and the metric d;,
one can perform clutter classification. To illustrate a
classification of clutter types, we have plotted a clustering
chart in the left panel of Fig. 12 using the dendrogram
function in matlab. This function generates a clustering tree
for points in a high-dimensional space when their pairwise
distances are given. The clustering of I; with I, Iz with Iy, etc.,
demonstrates the success of this representation and the
metric chosen. For comparison, we ran the same clustering
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Fig. 11. Ten natural images from the van Hateren database: top row consists of the training images and bottom row consists of the test images.

program using an Euclidean metric on a principal subspace of
the given images. We extracted nonoverlapping patches of
size 20 x 30 from the original images, performed principal
component analysis (PCA) in R®, and retained only the first
40 components. Images are then projected onto this linear
subspace to compute the coefficients and the resulting
pairwise Euclidean distances. Shown in the right panel is a
dendrogram clustering based on this metric.

Shown in Fig. 13 is another example of image clustering
using dj.

4.2 Pruning Hypotheses for Target Recognition

Recognition of objects from their observed images corre-
sponds to the selection of hypothesis in presence of the
nuisance parameters [12]. As stated under Case 1 in
Section 1.1, this hypothesis selection is often performed using
detailed models involving physical shapes, texture, pose, and
motion [26], [10], [12]. Such methods are based on low- and
high-dimensional deformations of targets’ templates in order
to match their synthesized images with the observed images.
The deformations capture the variability in pose, motion,
illumination, etc., and form the set of nuisance parameters,
call it S, for hypothesis selection; they typically are compu-
tationally expensive toimplement. Given animage, the task of
searching over all possible templates is demanding and can

Dendrogram clutering using Bessel forms

06

oy of

0.2

benefit from a pruning that places significant probability only
on a small subset of possible hypotheses.
Let A be the set of all possible objects. Define a
probability mass function on A according to: for a € A,
P(all) =

. 2
exp(—ﬂnhues<§:K d(p&i,ﬁﬁ,p A%Z) )/T)

ZO/EA exp (_ minseg (ZK d(p((yb>s7 abe’pfj)ﬂ aj)s> )/T)
(10)

where T controls our confidence (analogous to the
temperature in Gibbs’ energies) in this probability. Here,
(p(()b)s7 g))s) are the estimated parameters for the image / and
filter FUU), and (pY ] c<J)) are the estimated parameters for
the filter ) and the target o rendered at the nuisance
variable s € S. Note that (pas, ) can be precomputed
offline for all « € 4, s€ S, and j€ {1,2,...,K}.

To illustrate this idea, consider the following experiment.
Shown in Fig. 14 are some sample images of objects from the
Columbia object image library (COIL) [22]. This database
consists of 72 images each of a total of 100 objects, taken at five

degree separation in azimuth, and has been widely used in

Dendrogram clutering using PCA

,_:I—
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12. Dendrogram clustering of images in Fig. 11 using d; (a) and using a Euclidean metric on PCA (b).
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Fig. 13. For the images shown in left, a dendrogram clustering plot using Bessel K forms is shown in the right panel.

ol i

Fig. 14. Sample images of objects from COIL image database.
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Fig. 15. Plots of P(«a|I) versus « for six test images in the COIL database. The test images are of objects a1, ai2, a5, 12, 15, and azs, respectively,
for arbitrary orientations. Dotted lines suggest a threshold level for pruning.

testing object recognition algorithms. In this experiment, we ~We have used a bank of K = 39 filters, consisting of gradient
divided 7,200 images into nonoverlapping training and test filters, Laplacian of Gaussian filters, and Gabor filters. For
sets. Some of the images are used as training and the eachimage of the object v at the pose s in the training set, we
remaining for testing, similar to the work presented in [22].  estimate (p{/),,c)), for each filter FU). Then, given a test

s Ca,s
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TABLE 1
Correct Recognition Rate for the Full COIL-100 Data Set Using PCA, ICA, and Bessel Forms
Training/test per object| PCA | ICA |SNoW [29]|SVM [22] Bessel Forms
36 /36 98.58%(98.47%| 95.81% 96.03% 99.89%
18 / 54 96.67%|96.52%| 92.31% 91.30% 99.00%
8/ 64 87.23%|87.91%| 85.13% 84.80% 92.44%
4/ 68 75.82%|76.03%| 81.46% 78.50% 78.65%

image I, the estimated parameters (pgjbl,cffbl) are used to
compute the probability P(«|l) according to (10). Shown in
Fig. 15 are six plots of P(«|l) versus « (at 7' = 0.5) for six
different test images I in the COIL database. All the objects
with probabilities larger than some threshold, say 0.01, can be
shortlisted for detailed hypothesis testing. As an example, the
plot in top left shows P(«|I) for an image I of the first object.
In short-listing by thresholding, we are left with only
14 possible hypotheses, a significant reduction from 100.
The bottom middle plot displays the worst case of the whole
experiment and still shortlists 35 objects.

To support the use of Bessel K models in hypothesis
pruning, we have actually used P(«|I) for object recogni-
tion and have compared results with some other recently
proposed procedures: principal component analysis (PCA),
independent component analysis (ICA), support vector
machines (SVM), and SNoW. Pontil and Verri [22] have
applied SVM (Support Vector Machines) method to 3D
object recognition and have tested it on a subset of the
COIL-100 data set with half for training and the other half
for testing. As pointed out by Yang et al. [29], this dense
sampling of training views simplifies the recognition
problem. Hence, we have presented recognition results for
different training to test ratios in splitting the COIL
database. The number of components selected is such that
complexity remains similar to that of Bessel representations.
Table 1 summarizes that Bessel representations, in addition
to being analytic and parametric, generally outperform
these other methods.

4.3 Texture Synthesis

To further illustrate the strength of Bessel representations,
we present some examples of texture synthesis. For homo-
geneous textures, it is possible to sufficiently characterize
them using their spectral responses. As described in [31],
[30], choosing the filtered marginals for several filters as
sufficient statistics leads to a Gibbs’ distribution on the image
space. This points to a natural Gibbs” type MCMC sampling
method to generate high probability images from the
probability model. Using the same sampling scheme, except
the observed marginals are now replaced by the estimated
Bessel K forms, we have generated high probability samples
on the image space. The Gibbs” distribution on the image is
space is given by:

K
i) = S exp (— Z 1B (19) = f(w:p9, ) ||2/T>,
where H denotes the observed histogram and Z is the
normalizing constant involved. Shown in the top panels of
Fig. 16 are real texture images used to estimate the Bessel K
parameters (for 39 filters) and shown in the bottom panels
are the corresponding samples from a distribution based on
the estimated parameters.

5 CONCLUSION

We have applied Bessel K forms to model the probability
densities of the filtered marginals. The estimated parametric

Fig. 16. Top row: observed images of the textures. Bottom row: synthesized images using the Bessel K densities.
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forms are shown to match well with the observed
histograms for a variety of images: video, infrared, and
range, for gradient, Gabor, and Laplacian of Gaussian
filters. Given the assumptions behind this construction, we
expect this model to perform well in other imaging
modalities such as MRI, PET, and radar imaging. Bessel
parameter p is related to the distinctness and the frequency
of occurrence of the filtered characteristics of imaged
objects. We have used L? metric on the set of Bessel forms
(restricted to p > 0.25) to derive a pseudometric on the
image space. This metric can be used for, among other
things, clutter classification and target recognition.
Although the performance of Bessel representations in
challenging object recognition situations remains to be
tested, their ability to prune possible hypotheses and feed
to a more detailed recognition model seems promising.

APPENDIX

A.1 Bessel Function
The modified Bessel function used in this paper is defined as:

T(v+0.5)(2y)" [*
) / :

B cos(zz)
Bolwy) = =505

22 + yz)y+045

for R(v) > 0.5, 2 > 0, and |arg(y)| < 5.

dz, (11)

A.2 Proof of Theorem 1
To establish the theorem, we will need the integral formula
([8, p. 676, ()]

/ K, (ax) K, (bx)dr =
0
P (1 At pu+ V>F (1 “A—p+ I/)

T(1—\) 2 2
(12)
<1—/\+,u—1/) (I—A—u—y)
r T
2 2
_ oy — 2
p(loAtuty L=A—ptv o B
2 2 a?
where R(a+b) >0, R(A\) <1—|R(p)|—|R(w)|. F is the

hypergeometric function; it is an infinite series in its last
argument.
To derive the L2 -metric, we start with its square:

d(p1,c1,pa, ) :/f(x;pl,cl)Qdm+/f(x;pz,62)2d$

*2/f(x;phm)f(w;pz,c?)dw-

Consider these terms one by one, starting with the first term:

o L o (e oan () 5)
- T P1 K o5 i K B 2. dx
Z(pucl)?.l =09\ /g, w05\ 5,

_ 1 273(201) (21_1‘7(12])1()) 5)

Z(pr, 1)’
B £ 1 T'(2p; —0.5)
=0 T )

L(p1)°T(0.5)
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using the integral formula (12). Similarly, the second term

becomes
V2 0.5)
—F(O 5)(\/_7“2])2) )

Substituting for the integral in the cross term gives:

1
Z(p1,c1)Z(pa, c2)

o — 2 2
/prwp_ 1K(p1—045)(\/c—:l") K(p2—045)(\/£:9 dx
—p1+0.5
:; 32plcp2<\/§> ( g)
Z(p17cl)Z(p2762) c s

L(pi +p2 — 0.5)
WF(pI)F(pz)F(o.za)

C
F((m +p2 —0.5),p2;01 +p2; 1 — ;1)
2

- gr(o.m (\/15 (2) Tt p2 = 05) 5)}')

L(p1 + p2)
Combining these three terms, the result in (8) follows: It
should be noted that the metric is symmetric in the
parameters (p1,c¢;) and (po,c2), even though it does not
appear that way from the expression in (8). The condition
associated with the formula (12) implies that p; and p, must
be greater than 0.25.

p2—0.5
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