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An important off-road driving rule is to keep the vehicle wheels in existing ruts when possible. Rut following
has the following benefits: (1) it prevents the ruts from serving as obstacles that can lead to undesirable vehicle
vibrations and even vehicle instability at high speeds; (2) it improves vehicle safety on turns by utilizing the
extra lateral force provided by the ruts to reduce lateral slippage and guide the vehicle through its path; (3)
it improves the vehicle energy efficiency by reducing the energy wasted on compacting the ground; and (4) it
increases vehicle traction when traversing soft terrains such as mud, sand, and snow. This paper first presents
a set of field experiments that illustrate the improved energy efficiency and traction obtained by rut following.
Then, a laser-based rut detection and following system is proposed so that autonomous ground vehicles can
benefit from the application of this off-road driving rule. The proposed system utilizes a path planning algo-
rithm to aid in the rut detection process and an extended Kalman filter to recursively estimate the parameters
of a local model of the rut being followed. Experimental evaluation on a Pioneer 3-AT robot shows that the
proposed system is capable of detecting and following ruts in a variety of scenarios. C© 2010 Wiley Periodicals, Inc.

1. INTRODUCTION

Autonomous ground vehicles (AGVs) are increasingly be-
ing considered and used for challenging outdoor applica-
tions. These tasks include polar exploration, firefighting,
agricultural applications, and search and rescue, as well as
military missions. In these outdoor applications, ruts are
usually formed in soft terrains such as mud, sand, and
snow as a result of habitual passage of wheeled vehicles
over the same area. Figure 1 shows a typical set of ruts for-
med by the traversal of manned vehicles on off-road trails.

Through experience, expert off-road drivers have real-
ized that ruts can offer both great help and great danger
to a vehicle (Baker, 2008; Blevins, 2007). When a vehicle
is not performing rut following, the ruts essentially serve
as obstacles that can cause undesirable vehicle vibrations
and at high speeds can lead to vehicle instability, includ-
ing vehicle tip over. However, when traversing soft and
slippery terrains, rut following can improve vehicle safety
on turns and slopes by utilizing the extra lateral force pro-
vided by the ruts to reduce lateral slippage and guide the

Multimedia files may be found in the online version of this article.

vehicle through the desired path (Allen, 2002; Baker, 2008;
Blevins, 2007; Thurman, 2004). On soft terrains, ruts im-
prove vehicle performance by reducing the energy wasted
on compacting the ground as the vehicle traverses the ter-
rain (Muro & O’Brien, 2004; Ordonez, Chuy, Collins, & Liu,
2009a). In the same vein, the more compacted terrain as-
sociated with ruts can lead to improved vehicle traction.
Hence, an AGV can use rut detection and following to im-
prove its efficiency and safety on missions involving traver-
sal of challenging outdoor terrains.

Besides the benefits of rut following already explained,
proper rut detection and following can be applied in di-
verse applications. Rut detection can signal the presence
of vehicles in the area and also can help in the guidance
of loose convoy operations. In forestry, rut detection and
following can minimize the impact of heavy machinery on
the ground. In agriculture, rut following can help automate
seed planting and harvesting. A rut detection system can be
used as a robot sinkage measurement system, which is key
in the prediction of high-centering situations. Automatic
rut detection can also be employed to determine the coeffi-
cient of rolling resistance (Saarilahti & Anttila, 1999) (a vital
parameter in robot dynamic models) and in general can be
used to learn different properties of the terrain being tra-
versed.
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Figure 1. Typical off-road ruts created by manned vehicles (a) along a low-curvature trail and (b) at the bottom of a side slope.

Initial research on rut detection (Laurent, Talbot, &
Doucet, 1997; Ping, Yang, Gan, & Dietrich, 2000) focused on
surface inspection for paved roads. In particular, Laurent
et al. (1997) presented a system to measure the depth of
ruts in the pavement, and Ping et al. (2000) introduced a
methodology to reduce the size of rut data sets in pavement
management applications. A rut detection method for mo-
bile robots traversing on soft dirt was presented in Ordonez
and Collins (2008). The approaches of Laurent et al. (1997)
and Ordonez and Collins (2008) were based on the detec-
tion of ruts using single laser scans without considering the
spatial continuity of the ruts and did not address the rut
following problem. An improved rut detection and follow-
ing system that incorporated the spatial continuity of the
ruts by modeling the ruts locally using second-order poly-
nomials was presented in Ordonez et al. (2009a). However,
the approach of Ordonez et al. (2009a) did not make use
of the spatiotemporal coherence that exists between the de-
tections from consecutive laser scans while the vehicle is
in motion. The research of Ordonez, Chuy, Collins, and Liu
(2009b) incorporates the spatiotemporal coherence between
measurements by using a rut detection and tracking mod-
ule based on an extended Kalman filter (EKF) that recur-
sively estimates the parameters of the ruts (tracking) and
uses these estimates to improve the detection of the ruts
for subsequent laser scans. In addition, the EKF generates
smooth state estimates of the relative position and orienta-
tion (i.e., the ego state) of the vehicle with respect to the
ruts, which are the inputs to the steering control system
used to follow the ruts. However, the work presented in
Ordonez et al. (2009b) included only simulation results.

Work related to the recursive estimation of the
rut model parameters involves the estimation of road
centerlines and road lanes. The vast majority of road track-
ing approaches rely on vision systems that detect the
lane markings in the roads and then utilize techniques
such as Kalman or particle filtering to recursively esti-
mate the parameters of the road centerlines (Dickmanns

& Mysliwetz, 1992; Khosla, 2002; Kim, 2006; Redmill,
Upadhya, Krishnamurthy, & Ozguner, 2001; Zhou, Xu,
Hu, & Ye, 2006). Because vision-based systems are eas-
ily affected by illumination changes and road appear-
ance (e.g., changes from paved surfaces to dirt), other re-
searchers have used laser range finders as the main sensor
to detect and track road boundaries (Cremean & Murray,
2006; Kirchner & Heinrich, 1998; Wijesoma, Kodagoda, &
Balasuriya, 2004).

Additional research that is related to rut detection is
the development of a seed row localization method us-
ing machine vision to assist in the guidance of a seed drill
(Leemand & Destain, 2006). This system was tested in agri-
cultural environments and was limited to straight seed
rows. In Reina, Ishigami, Nagatani, and Yoshida (2008) a
vision-based system is designed to detect the rut (i.e., the
trace) left by a robot during its traverse on sandy terrain.
The system utilizes the orientation of the detected rut to es-
timate the robot slip angle.

Furthermore, an evaluation of different models to pre-
dict rut formation is presented in Saarilahti and Anttila
(1999). The different models show that there is a correla-
tion between rut depth and rolling resistance. However,
this work did not present a methodology for actually de-
tecting the ruts.

The main contributions of this paper are the inclusion
of a new rut detection method based on a path planner,
which is used to detect a set of ruts (from multiple candi-
dates) that point in the general direction of the goal and
to provide the initial state estimates required by the rut
tracking and the steering control system. In addition, the
paper presents an experimental evaluation of the rut track-
ing module and steering controller originally proposed and
simulated in Ordonez et al. (2009b).

The remainder of the paper is organized as follows.
Section 2 contains a series of motivational experiments with
two different robotic platforms and two different terrains.
In addition, it outlines the proposed approach. Sections 3
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and 4, respectively, present detailed descriptions of the
proposed approaches for rut detection and rut following.
Section 5 introduces the experimental setup and shows
experimental results. Finally, Section 6 presents conclud-
ing remarks, including a discussion of future research. A
Nomenclature appears at the end of the paper.

2. MOTIVATIONAL EXPERIMENTS
AND PROPOSED APPROACH

This section begins with a series of experiments on two
robotic platforms of different scales and operating on dif-
ferent terrains that provide quantitative verification of two
of the benefits of rut following: increased energy efficiency
and increased traction. The section concludes with a brief
outline of the proposed approach for rut detection and
following.

2.1. Experiments Illustrating the Importance of Rut
Detection and Following

To show the increase in energy efficiency and traction ob-
tained by rut following, three controlled experiments were
performed using the Pioneer 3-AT traversing sand and the
eXperimental Unmanned Vehicle (XUV) moving in mud
(see Figure 2). In these experiments, energy efficiency is
measured by power consumption. Traction is assumed to
be proportional to the absence of sliding and slipping and
is measured by the velocity tracking error, which is small
when no slipping or sliding occurs. The main objective
was to compare the two robot performance metrics (power
consumption and velocity tracking) when the robot tra-
verses a predetermined path where ruts are not present
against subsequent traversals of the same path following
the created ruts. It is important to note that these moti-
vational experiments show the relevance of rut following
for off-road robot navigation but did not use the proposed

rut detection and following algorithm. Instead the robots
achieved rut following by following a set of preassigned
waypoints. Because the Pioneer 3-AT used only odome-
try for localization, the experiments involving this vehicle
were performed on short and straight ruts (approximately
6 m in length), and the vehicle was carefully placed and
aligned at the starting point of the ruts. In contrast, the
XUV employed more accurate localization based on differ-
ential global positioning system (GPS) and a high-cost iner-
tial measurement unit (IMU). Hence, the XUV experiments
were performed with substantially longer ruts (over 40 m
in length).

In the motivational experiments, power consumption
and velocity tracking were used as the primary perfor-
mance metrics. The power consumption was computed as
the rms value of the power pc = frvv , where fr is the force
required to overcome the rolling resistance when the vehi-
cle is moving at constant velocity vv . The velocity tracking
performance was computed as the rms value of the velocity
error ev(t) = vv(t) − vc(t), where vv is the robot velocity and
vc is the commanded velocity.

First, a Pioneer 3-AT robotic platform was commanded
to follow a set of ruts over sandy terrain at 0.8 m/s. Six
trials were performed; the first run was used as a baseline
because it corresponds to the no-rut case (i.e., the robot is
beginning the first creation of ruts). Figure 3 shows a com-
parison of the power consumption for the first (no ruts)
pass and the sixth pass. Notice that by following the ruts,
there is an average reduction in power consumption of
18.3%. Furthermore, the experiments revealed that as early
as the second pass, there is an average reduction in power
consumption of 17.9%.

A second experiment was performed on mud with the
XUV robotic platform. The robot was commanded to fol-
low a set of waypoints along a straight line at a speed of
2.23 m/s. This experiment showed that by following the

Figure 2. (a) Pioneer 3-AT robotic platform on sand; (b) XUV robotic platform on mud.
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Figure 3. Decrease in power consumption by following ruts
(Pioneer 3-AT on sand).

Figure 4. Velocity tracking improvement by following ruts
(XUV on mud).

ruts, there was a reduction in power consumption of 12.6%
for the second pass.

A third experiment was performed on mud with the
XUV robotic platform. The robot was commanded to fol-
low a set of waypoints along a curved path at 4.92 m/s,
and three trials were performed. Figure 4 shows the robot
velocity profiles for the first and third runs. Notice how
on the first run, when there were no ruts, the vehicle was
not capable of generating enough torque to track the com-
manded speed. This caused the motor to stall, and the ve-
hicle was not able to complete its mission. On the contrary,
in the third trial the robot was able to complete its mission
by using the ruts created during the first two passes. The
velocity tracking error was reduced from 46.2% for the first
run to 19.3% for the third run. It is also worth mentioning
that the robot finished the mission successfully on the sec-
ond pass and exhibited a velocity tracking error of 20%.

In the above experimental results, it is clear that rut
following improved the vehicle performance. This is im-
portant from a practical standpoint because it means that
a robot in the field can benefit from detecting and follow-
ing ruts, even those that are freshly formed.

2.2. Outline of the Proposed Approach

Figure 5 presents a schematic of the proposed approach.
Notice that the system is divided into two primary sub-
systems: (1) a reactive control system to generate low-level
control commands needed to place the robot wheels in the

Figure 5. Schematic of the proposed approach to rut detection
and following.

ruts and (2) a deliberative planning system that selects the
best rut to follow among a set of possible candidates based
on a predefined cost function. Note that the optimal rut de-
termined by the deliberative system is the primary infor-
mation needed to initialize the reactive system. Sections 3
and 4 detail the components and subcomponents of the
proposed approach.

3. RUT DETECTION FOR THE REACTIVE AND
DELIBERATIVE SYSTEMS

This section describes in detail the proposed approach for
rut detection, which is performed at different levels of ab-
straction depending on whether it is being used by the re-
active or by the deliberative system. As shown in Figure 5,
the reactive system takes as inputs laser readings at short
range (<1 m) and is in charge of generating fine control
commands to place the robot wheels in the ruts. Therefore,
it requires an efficient rut detection method to determine
the center of the rut being followed, which is achieved by
performing rut detection using short-range sensing in con-
junction with a rut tracking module. On the other hand, the
deliberative system takes as its input a map of the terrain
surrounding the robot (for the Pioneer 3-AT experiments, a
6 ×6 m area), which is generated using midrange laser sens-
ing; it also requires a more elaborate rut detection method
to provide the system with the ability to determine the opti-
mal rut to follow and decide whether this rut deserves to be
followed. This section starts with a description of the low-
level rut detection module for the reactive system and then
builds upon this result to develop a high-level rut detection
module for the deliberative system.

3.1. Low-Level Rut Detection
for the Reactive System

This section describes the low-level rut detection system in
detail. However, it is important to remember that, as shown

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. Coordinate systems.

in Figure 5, this system works in parallel with the rut track-
ing module described later in Section 4.1.

In this research, it is assumed that the AGV is equipped
with a laser range finder that observes the terrain in front of
the vehicle and relies on the coordinate systems illustrated
in Figure 6: the inertial system N , the sensor frame S, the
vehicle frame B, and the rut detection frame B ′, which is
coincident with the vehicle kinematic center B and has the
x′
B axis oriented with the robot and the z′

B axis perpendicu-
lar to the terrain. For rut detection, the algorithm starts by
transforming the laser scans from sensor coordinates to the
B ′ frame, which is a convenient transformation because it
compensates for the vehicle roll and pitch. In addition, the
laser scans are sampled at equally spaced points along the
y′
B axis.

Because rut shapes are terrain and vehicle dependent,
it is desired to develop experimental models of traversable
ruts (ruts that do not violate body clearance and that have
a width similar to that of the vehicle tire) that can be used
for rut detection. Notice that these models can be generated
offline on the terrains of interest and/or they can be up-
dated online by using a laser sensor to observe the ruts be-
ing created by the robot as it traverses the terrain. In this pa-
per, we obtain the experimental models offline, using laser
data from ruts created by a vehicle prior to the mission.
The vehicle used to conduct experiments in this research
is a Pioneer 3-AT robot with a body clearance bc of 8 cm
and a tire width tw of 10 cm. In the following discussion,
we assume that ruts with depths in the range [0.4bc, 0.8bc]
and widths in the range [tw, 1.5tw] are traversable and form
what is referred to here as the acceptable region, shown in
Figure 7.

To generate the experimental models of the ruts, a set
S1 of 100 rut cross sections was manually selected with the
vehicle having relative orientations with respect to the ruts.
In particular, 20 rut cross sections were chosen for each of
the following orientations: −20, −10, 0, 10, and 20 deg. Dif-
ferent orientations were used because the shape of the rut
changes depending on the relative angle between the vehi-
cle and the rut. Each rut sample in S1 contains 31 points

Figure 7. Assumed range of rut widths and depths for
traversable ruts (the acceptable region).

equally spaced in their horizontal coordinates with 1-cm
resolution and is chosen such that the center of the rut cor-
responds with the center of the sample. Figure 8 describes
the depth and width of each of the rut samples in S1.

One could use all of the rut samples in S1 as the rut
templates for rut detection. However, this number is large,
which can lead to slow online implementation. Hence, this
data set was used to construct a small set of rut templates
for rut detection. The acceptable region for the Pioneer 3-
AT was divided uniformly into four quadrants as shown in
Figure 8. Then a set of average templates {Ti : i = 1, 2, 3, 4}
was constructed for the quadrants as shown in Figure 9.
However, it is expected that a larger vehicle may encounter
a wider variety of rut shapes and therefore may require a
larger number of templates, which can be generated by us-
ing a template scaling procedure such as the one used in
Ordonez et al. (2009b).

In the rut detection process, the closeness between the
31 laser points in a window of 30 cm (which is the width

Figure 8. The depth and width of each of the rut samples (in-
dicated by a dot) used to generate the average rut templates
for each of the four quadrants of the acceptable region for the
Pioneer 3-AT.
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Figure 9. Rut templates for the quadrants of the acceptable
region for the Pioneer 3-AT.

of the templates) and each rut template Ti is determined by
computing the sum of the squared error e2

i . Then, e2
min =

min{e2
1, e

2
2, e

2
3, e

2
4} is used as the feature to estimate the pos-

terior probabilities P (wj |e2
min) for j = 1, 2, where w1 corre-

sponds to the class “no rut” and w2 corresponds to the class
“rut.” Bayes’ theorem yields

P
(
wj

∣∣∣e2
min

)
=

p
(
e2

min

∣∣∣wj

)
P (wj )∑2

j=1 p
(
e2

min

∣∣∣wj

)
P (wj )

, j = 1, 2, (1)

where P (wj ) is the prior probability of each class and
it is assumed that P (w1) = P (w2) = 0.5; the likelihoods
p(e2

min|wj ) are estimated using the maximum likelihood ap-
proach (Duda, Hart, & Stork, 2001) and a training set Strain
that consists of the 100 positive rut samples of S1 and a
set S2 of 100 negative samples obtained from terrain sur-
rounding the ruts (i.e., Strain = S1

⋃
S2). A separate testing

set Stest containing 100 rut samples from the acceptable region
and 100 negative samples was used to test the rut detection
approach, yielding a detection rate of 87% and a false alarm
rate of 9%.

To better illustrate the rut detection process, Figure 10
shows the posterior probability P (Rut|e2

min) estimation for
each point of a laser scan obtained from a set of ruts in front
of the vehicle. The two probability peaks in Figure 10(b)
coincide with the locations of the ruts.

3.2. High-Level Rut Detection for the
Deliberative System

The high-level rut detection module builds upon the prob-
abilistic method employed by the low-level rut detection
described in Section 3.1. However, the high-level rut detec-
tion adds the following features to provide the system with
the ability to engage the reactive control system in case a
suitable rut is found: (1) gridding of the local map that con-
tains the ruts, (2) determination of the rut with the mini-
mum cost, (3) evaluation of the suitability of the optimal
rut for traversal, and (4) initialization of the reactive system
for rut following. These features are detailed below.

Figure 10. (a) Laser data containing two ruts; (b) the corre-
sponding probability estimates of P (Rut|e2

min).

3.2.1. Map Gridding for Rut Detection

A rut grid G with a size of 602 × 602 cm and a resolu-
tion r of 2 cm is constructed around the robot. As shown
in Figure 11, the rut grid is aligned with the inertial coordi-
nate system N and has its own reference frame G attached
at the top left corner. G(n) represents the value of the grid
cell n with coordinates (i, j ).

In the current setup, it is possible to restrict the rut
grid to the front portion of the robot’s workspace, which
would reduce the computational load of the high-level
rut detection algorithm. However, here we choose to in-
clude the back area of the workspace because, as mentioned
in Section 6, future research involves the incorporation of

Figure 11. Rut grid and coordinate systems.
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Algorithm 1 Rut grid update
Input: A grid G with resolution r and width gw , the robot po-
sition pv = (xv, yv) with respect to the inertial frame N , the set
S = {(xj , yj , Pj ) : j = 1, . . . , n} of laser points (xj , yj ) with corre-
sponding posterior probabilities Pj , a probability threshold γ1, and
a minimum grid cost value c.
Output: Updated Rut Grid G

for j = 1 to n do
if Pj ≥ γ1 then

i ← int( yv+ gw
2 −yj

r ) , where int(x) approximates x to the near-
est integer.

j ← int( −xv+ gw
2 +xj

r )
n ← (i, j )
G(n) ← c

end if
end for
return G

replanning strategies that can benefit from rut information
contained in this part of the workspace (e.g., the location of
a section of the optimal rut).

The rut grid is used to define a traversability cost map
and is constructed as follows. First, each laser scan is passed
through the low-level rut detection module, which returns
a set S = {(xj , yj , Pj ) : j = 1, . . . , n}, where n is the number
of laser points in a scan, xj and yj correspond to the xN

and yN coordinates of a laser point in inertial coordinates,
and Pj = P (Rut|e2

min) is the corresponding posterior prob-
ability computed using Eq. (1). Finally, the terrain points
(xj , yj ) are mapped onto the rut grid and their correspond-
ing probabilities Pj are used to update the cost of the corre-
sponding grid cell using Algorithm 1.

Once the grid has been updated, a filter is employed to
eliminate some outliers and join narrow breaks in the ruts.
The filter consists of a set of morphological operations ap-
plied to the grid G employing (2m + 1) × (2m + 1) squared
structuring elements S(m) with ones in all of their compo-
nents (Gonzalez & Woods, 2002; Wilson, 1996). First a clos-
ing operation (•) using a 5 × 5 structuring element S(2) is
employed to join narrow breaks that may exist in the ruts.
Then an opening operation (◦) using a 3 × 3 structuring el-
ement S(1) is conducted on the resultant grid to eliminate
small outliers. The filtering process can be summarized as
follows:

G = (G • S(2)) ◦ S(1). (2)

3.2.2. Determination of the Minimum Cost Rut

Once a rut grid is available to the robot, the path of min-
imum cost P∗ from the start position (i.e., the current lo-
cation of the robot) to a goal position (i.e., a waypoint or
a final destination) is found using the path planning al-
gorithm A∗ (Choset, Lynch, Hutchinson, Kantor, Burgard,
et al., 2005; Hart, Nilsson, & Raphael, 1968).

A∗ is an algorithm for efficiently finding cost-minimal
paths from a start to a goal node in a graph (Koenig &
Likhachev, 2006) (e.g., the graph induced by the rut grid).
To perform an efficient search on the graph, A∗ utilizes
heuristics that hypothesize the cost from a graph node to
the goal node. In addition, the path returned by A∗ is opti-
mal when the heuristic is optimistic (i.e., it always returns
a value that is less than or equal to the cost of the shortest
path from the current node to the goal node (Choset et al.,
2005). The efficiency, optimality, and ability to work on a
grid make A∗ a good candidate for the task of finding the
optimal rut from the current robot position to the desired
goal.

In the current implementation, A∗ employs 16-point
connectivity between grid cells and uses the Euclidean dis-
tance as a heuristic to estimate the cost from a given grid
cell n to the goal. In addition, the cost between the current
grid cell n1 and a neighboring cell n2 is given by

c(n1, n2) = d(n1, n2) + d(n1, n2) ∗ [G(n1) + α], (3)

where d(n1, n2) is the Euclidean distance between the cells
n1 and n2, G(n1) is the local cost of the rut grid G at cell n1,
and α is a term used to penalize leaving a rut. The path re-
turned by A∗ is optimal with respect to Eq. (3) and consists
of a sequence of grid cells from start to goal. Therefore, the
optimal path sequence generated by A∗ can be expressed as

P∗ = {n0, n1, ...nn}, (4)

where n0 is the cell corresponding to the start position and
nn is the cell corresponding to the goal.

The effects of the penalty term α on the solutions
returned by the planner are illustrated in Figures 12–14.
Figure 12 shows that by using the penalty term α it is pos-
sible to eliminate or minimize situations in which the plan-
ner returns solutions that visit isolated outliers. Figure 13
shows that the use of α causes the planner to prefer ruts
with no gaps over broken ruts. Furthermore, Figure 14
shows that α causes the planner to neglect very short ruts.

As shown in Figure 13, the optimal rut sequence R∗ ⊆
P∗. In particular, referring to Eq. (4), R∗ is defined such that
it maintains all the cells ni ∈ P∗ that satisfy G(ni) = c. R∗ is
then approximated by R∗

in the least-squares sense using
a piecewise cubic spline approximation parameterized in
terms of arc length.

3.2.3. Evaluation of the Suitability of the Optimal Rut

Once the optimal rut has been found and modeled, the al-
gorithm proceeds to evaluate whether the reactive rut fol-
lowing system should be engaged by evaluating the suit-
ability of the optimal rut for inclusion in the vehicle path
plan. The optimal rut is considered suitable if the following
three criteria are satisfied:

Journal of Field Robotics DOI 10.1002/rob
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Figure 12. (a) Path includes outlier (α = 0); (b) path avoids
outlier (α = 20).

Figure 13. (a) Planner selects left rut regardless of gap (α =
0); (b) planner selects right rut to avoid gap of left rut (α = 20).

Figure 14. (a) Path includes short rut (α = 0); and (b) planner
avoids the short rut (α = 20).

Criterion 1. The optimal rut has a significant length in com-
parison to the total path length from start to
goal.

Criterion 2. There exists a rut that is parallel to the optimal
rut, and the distance between the two ruts is
such that the vehicle is able to move with all
wheels in the two ruts.

Criterion 3. The end of the optimal rut points in the general
direction of the goal.

Below, we develop quantifications of these three criteria.
At this point, it is assumed that R∗

, the approxima-
tion to the optimal rut expressed in inertial coordinates, has
been found. However, it is necessary to determine whether
R∗

corresponds to a right or a left rut, a problem that the
proposed algorithm solves by hypothesizing ideal locations
(based on the vehicle width) of possible parallel ruts lo-
cated to the right and left of R∗

. These ideal ruts are then
mapped onto the rut grid and a search for “support cells”
(i.e., grid cells with low cost that are in the proximity of the
center of the ideal ruts) is conducted along each of the ruts
by using a (2m + 1) × (2m + 1) squared structuring element
S(m)(k, �), centered at (k, �) and formally defined as

S(m)(k, �) �= {(i, j ) : i ∈ {k − m, k − m + 1, . . . , k + m),

j ∈ {� − m, � − m + 1, . . . , � + m)}. (5)

Journal of Field Robotics DOI 10.1002/rob
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Figure 15. Search for support cells along a potential rut using
a 5 × 5 structuring element.

By considering the points (k, �) that are in the center of the
ruts, S(m)(k, �) is used to identify support cells. A cell n =
(k, �) is formally defined to be a support cell if there exists
(i, j ) ∈ S(m)(k, �) such that G(n) = c.

Figure 15 illustrates two structuring elements centered
at two cells located at the center of a potential rut. No-
tice that the lower cell location is marked as a support cell
because there are grid cells with low cost (solid black) that
are contained in the 5 × 5 structuring element, whereas the
upper cell is not a support cell. Furthermore, Figure 16
presents the support cells found for the optimal and ideal
right and left ruts. Notice that only the left rut contains
enough support cells to be considered parallel to the op-
timal rut. Therefore, at this point it is possible to label the
optimal rut as a right rut.

Now, let n∗ be the number of support cells of the opti-
mal rut, np the number of support cells of the rut parallel
to the optimal rut, l∗ the path length of R∗ expressed in
number of grid cells, and γ2 and γ3 threshold values. Then
criterion 1 and criterion 2 listed at the beginning of this sec-
tion can be quantified as follows:

Criterion 1. 100
n∗

l∗
≥ γ2, (6)

Criterion 2. 100
np

n∗ ≥ γ3. (7)

Figure 16. Support cells for optimal and ideal right and left
ruts.

Figure 17. Goal region delimiting the area of possible goals
that trigger the reactive rut following system.

Finally, criterion 3 states that the optimal rut should drive
the vehicle in the general direction of the goal. To evaluate
criterion 3, it is necessary to evaluate whether R∗ points in
the general direction of the goal. As shown in Figure 17, the
rut orientation is here estimated by finding the rut’s “end
segment” (R∗

f ), which is a linear approximation of the por-
tion of the optimal rut that is closest to the goal and covers a
path length equivalent to one look-ahead distance. (As ex-
plained in Section 4.2.2, in the current implementation, the
laser plane intersects the ground plane at a look-ahead dis-
tance of 42.82 cm.) The rut end segment is translated to the
center of the ruts, and it is then used to construct a rectan-
gular region named the goal region (see Figure 17), which
delimits an area of possible goals that will trigger the reac-
tive rut following system (i.e., if the goal is inside the goal
region, criterion 3 is satisfied). The dimensions of the goal
region are chosen proportional to the vehicle dimensions as
βvw × λvl , where vw and vl are, respectively, the vehicle’s
track width and the vehicle’s length.

As described above, in the current implementation, the
deliberative system looks for ruts that have a separation
similar to the vehicle’s track width. In addition, the current
approach aims to place the right-side wheels on the right
rut and the left-side wheels on the left rut. However, in
many situations in which prior knowledge of the upcom-
ing terrain is available (e.g., a left- or a right-hand turn),
off-road drivers purposely place only one set of wheels in
the ruts such that they can still benefit from the extra lat-
eral support provided by the ruts and at same time min-
imize the amount of turning on the rutted area when the
vehicle needs to leave the ruts. This situation is clarified in
Figure 18, where a vehicle with prior knowledge of a left-
hand turn coming ahead in the road purposely chooses to
place the right-side wheels on the left rut. It is important
to note that by using a single rut instead of a set of ruts,
it is possible to eliminate the constraint of using only ruts
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Figure 18. A robot using ruts created by a vehicle with a dif-
ferent track width.

created by vehicles of similar track widths. In addition, this
minimizes some of the downsides of rut following (e.g., dif-
ficulty in altering a path to avoid obstacles or change lanes).

3.2.4. Initialization of Reactive System for Following
Suitable Ruts

If the solution returned by the path planner meets the three
criteria of Section 3.2.3, the algorithm proceeds to initial-
ize and engage the reactive system to follow the detected
ruts. As explained in Section 4, the reactive system re-
quires initial values for three state variables: the relative
angle between the vehicle and the rut (θvr,0), the rut curva-
ture κ0, and the relative offset between the vehicle and the
rut (yf,0).

To find the initial state q0 = [θvr,0, κ0, yf,0], an ap-
proach similar to the one used to find the rut’s end seg-
ment R∗

f is employed. However, in this case, as shown in
Figure 19, the initial rut segment (R∗

0) is used and not the
rut end segment. Once (R∗

0) has been obtained, q0 is com-

Figure 19. Reactive system initialization.

puted using

⎡
⎢⎣

θvr,0

κ0

yf,0

⎤
⎥⎦ =

⎡
⎢⎣

θv,0 − atan(ay/ax )

0

d(pv,R∗
0)

⎤
⎥⎦ , (8)

where θv,0 is the heading of the vehicle at the current po-
sition pv = (xv, yv), A = (ax, ay ) is a vector in the direction
of R∗

0, and d(pv,R∗
0) is the Euclidean distance between the

robot’s current position pv and R∗
0. Figure 19 illustrates the

initial position and orientation of the vehicle axis (xB, yB )
with respect to the rut axis (xR, yR).

4. RUT FOLLOWING FOR THE REACTIVE SYSTEM

This section presents the rut following approach, which is
composed of a rut tracking module that keeps state esti-
mates of the relative position and orientation of the vehicle
with respect to the rut and a steering control law that gen-
erates control commands for the robot to place the wheels
in the ruts.

4.1. Rut Tracking Module

In this paper we propose an improvement on the previ-
ous approach to rut tracking presented in Ordonez et al.
(2009a) by incorporating an EKF that recursively estimates
the parameters of the ruts (curvature) and also generates
smooth estimates of the vehicle state with respect to the
rut (orientation and lateral offset), which is advantageous
compared to the approach of Ordonez et al. (2009a) because
these states can be used directly for the steering control as
shown in Section 4.2. It is important to note that one of the
strengths of the reactive system is that it employs only these
relative (vehicle–rut) state estimates from the EKF and not
the vehicle’s global state (with the exception of the vehicle’s
initial state), which can be difficult to accurately estimate.

4.1.1. Local Modeling of the Relative Position and
Orientation of the Rut and Vehicle

Motivated by the work of Cremean and Murray (2006),
which models the road centerline using heading and cur-
vature, we model the rut locally as a curve of curvature κ

using frame R, a frame that moves with the vehicle; this
is illustrated in Figure 20. To fully describe the rut rela-
tive to the vehicle, it is therefore necessary to develop ex-
pressions for the rut curvature (κ) and the relative posi-
tion (yf ) and orientation (θvr ) of the vehicle with respect to
the rut.

As shown in Figure 20, the xR axis is always tangent to
the rut and the yR axis passes at each instant through the
kinematic center of the vehicle B. In frame R, the position
of a point pr in the rut as a function of arc length (s) is given
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Figure 20. Rut frame coordinates used for rut local modeling.

by

xr (s) =
∫ s

0
cos[θ (τ )] dτ, (9)

yr (s) =
∫ s

0
sin[θ (τ )] dτ, (10)

θ (s) = κs, (11)

where θ is the orientation relative to the xR axis of the tan-
gent vector to the curve at point pr. Let us also define θr as
the orientation of the xR axis with respect to the xN axis, θv

as the orientation of the robot’s xB axis with respect to the
xN axis, and θvr as the angle between the xB and xR axes. As
the vehicle moves with linear velocity vv and angular ve-
locity ωv = dθv/dt , the evolution of θr can be derived from
Eq. (11) and is given by

θ̇r = θ̇ = κṡ = κvv cos(θvr ). (12)

In a similar way, the evolutions of θvr and yf are computed
using

θ̇vr = ωv − vv sin(θvr )κ, (13)

ẏf = vv sin(θvr ). (14)

Assuming that the evolution of the curvature is driven
by white and Gaussian noise, after discretizing Eqs. (13)
and (14), using the backward Euler rule and sampling time
δt , the process model can be expressed as⎡

⎢⎣
θvr,k

κk

yf,k

⎤
⎥⎦ =

⎡
⎢⎣θvr,k−1 − κk−1vv cos(θvr,k−1)δt

κk−1
yf,k−1 + vv sin(θvr,k−1)δt

⎤
⎥⎦

+

⎡
⎢⎣

1

0

0

⎤
⎥⎦ δθv,k−1 + wk−1, (15)

where δθv,k−1 is the model input (the commanded change
in vehicle heading) and w represents the process noise,

which is assumed white with normal probability distribu-
tion with zero mean, and covariance Q [p(w) ∼ N (0, Q)].

The measurement model corresponds to the lateral dis-
tance yb from the vehicle xB axis to the rut center, which is
located at the intersection of the laser plane 1 and the rut
(see Figure 20). The actual process employed to obtain the
sensor measurements yb is detailed in Section 4.1.3. Using
geometry and small-angle approximations, it is possible to
express yb as

yb,k = − sin(θvr,k)xm + 1
2 κx2

m cos(θvr ) − yf,k cos(θvr ) + vk,

(16)

where v is white noise with normal probability distribution
[p(ν) ∼ N (0, R)]. As shown in Figure 20, xm is a function of
the state qk = [θvr,k, κk, yf,k]T and the look-ahead distance
� of the laser and satisfies

1
2 x2

mκk sin(θvr,k) + cos(θvr,k)xm − [� + yf,k sin(θvr,k)] = 0,

(17)

which is obtained as a result of a coordinate transformation
from the rut frame R to the vehicle frame B.

4.1.2. Estimation of the Relative Position of the Rut and
Vehicle Using an EKF

To incorporate the spatiotemporal coherence between rut
measurements, here we propose to use a tracking module
based on an EKF that recursively estimates the parameters
of the ruts (i.e., tracks the ruts) and then uses these esti-
mates to improve the detection of the ruts for subsequent
laser scans. In addition, the Kalman filter generates smooth-
state estimates of the relative position and orientation (ego
state) of the vehicle with respect to the ruts, which are the
inputs to the steering control system used to follow the ruts
(see Figure 5).

In compact form, we can rewrite Eqs. (15) and (16) as

qk = f (qk−1, δθv,k−1) + wk−1, (18)

yb,k = h(qk) + vk, (19)

where qk is the state of the process to be estimated and f (·)
and h(·) are nonlinear functions of the states and the model
input and are given by

f (qk−1, δθv,k−1) = [f1(qk−1, δθv,k−1), f2(qk−1, δθv,k−1),

f3(qk−1, δθv,k−1)]T , (20)

where

f1(qk−1, δθv,k−1) = θvr,k−1 − κk−1vv cos(θvr,k−1)δt + δθv,k−1,

(21)

f2(qk−1, δθv,k−1) = κk−1, (22)

f3(qk−1, δθv,k−1) = yf,k−1 + vv sin(θvr,k−1)δt , (23)
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h(qk) = − sin(θvr,k)xm + 1
2 κkx

2
m cos(θvr,k)

− yf,k cos(θvr,k). (24)

In the following discussion, we adopt the notation of
Welch and Bishop (2004), where q̂−

k is our a priori state es-
timate at step k given knowledge of the process prior to
step k, P−

k is the a priori estimate error covariance, and Pk is
the a posteriori estimate error covariance. The time update
equations of the EKF are then given by

q̂−
k = f (q̂k−1, δθv,k−1), (25)

P−
k = AkPk−1AT

k + Q. (26)

Equations (25) and (26) project the state and covariance esti-
mates from the previous time step k − 1 to the current time
step k, f (·) is given by Eq. (20), Q is the process noise co-
variance, and Ak is the process Jacobian at step k, which is
computed using

Ak,[i,j ] = ∂f,[i]

∂q,[j ]
(q̂k−1, δθv,k−1). (27)

Once a measurement yb,k is obtained, the state and the co-
variance estimates are corrected using

Kk = P−
k HT

k

(
HkP−

k HT
k + R

)−1
, (28)

q̂k = q̂−
k + Kk[yb,k − h(q̂−

k )], (29)

Pk = (I − KkHk)P−
k , (30)

where h(·) is given by Eq. (24), R is the measurement covari-
ance, Kk is the Kalman gain, and Hk is the measurement
Jacobian, which is computed as

Hk,[i,j ] = ∂h,[i]

∂q,[j ]
(q̂−

k ). (31)

4.1.3. Sensor Measurement and Reduced Search Region
for Rut Detection

To improve the efficiency and robustness of the rut detec-
tion and tracking algorithm, only a small region of the laser
scan is analyzed for ruts. The search region is selected based
on the distribution of the measurement prediction, which
we assume follows a Gaussian distribution after the lin-
earization process (Negenborn, 2003) and is given by

p(yb,k) = N
[
h(q̂k

−), HkP−
k HT

k + R
]
. (32)

A confidence interval can then be defined around the pre-
dicted rut location h(q̂k

−). However, in this work, we use
a search region of equal size (30 cm) as the rut templates
described in Section 3.1 and centered at h(q̂k

−).
As shown in Figure 21, the search region contains 31

points with coordinates (yb,i , Pi ), for i = 1, 2, . . . , 31, where
yb,i correspond to the distance between the xB axis of the
vehicle and the rut center (see Figure 20) and Pi is the esti-
mate of P (Rut|yb,i ), which represents the probability that

Figure 21. Sensor measurement.

the point at a distance yb,i from the xB axis is the cen-
ter of the rut. The probability estimates Pi are computed
using the low-level rut detection algorithm explained in
Section 3.1. Finally, the reported sensor measurement cor-
responds to the mean value of the distribution formed by
the points within the search region and is obtained using

yb =
31∑
i=1

yb,iPi . (33)

This sensor measurement is then used to compute the fil-
ter innovation (29). If P (Rut|yb,i ) ≤ γ4 for i ∈ {1, 2, . . . , 31},
where γ4 is a predefined threshold, then no measurement is
used and the filter uses the prediction without the update
step.

4.2. Rut Following (Steering Control)

This section details the development and the procedure fol-
lowed to tune the steering control law that guides the vehi-
cle toward the desired rut.

4.2.1. Development of a Control Law for Steering Control

The proposed steering control is an adaptation of the
controller proposed in Thrun, Montemerlo, Dahlkamp,
Stavens, Aron, et al. (2006). The controller of Thrun et al.
(2006) was developed for an Ackerman steered vehicle.
Here, we approximate the vehicle kinematics using a dif-
ferential drive model and include a second speed-varying
gain k2, which provides flexibility in the tuning of the con-
troller as required for rut following.

As explained in Section 4.1.2, the EKF continuously
generates estimates of the lateral offset yf and the rela-
tive angle between the vehicle and the rut θvr . Here, the
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proposed steering controller is in charge of taking yf and
θvr as inputs and then generates control commands for the
robot to follow the ruts. For the robot to follow the ruts, θvr

should be driven to zero and the lateral offset yf should be
driven to a desired offset yd = (vw + tw)/2, where vw is the
width of the robot and tw is the width of the tire. To achieve
this, a desired angle for the vehicle θv,d is computed using
the nonlinear steering control law:

θv,d = θr + arctan
[

k1(yd − yf )
vv

]
, (34)

where θr is the angle of the rut with respect to the global
frame N , vv is the robot velocity, and k1 is a gain that
controls the rate of convergence toward the desired offset.
Based on Thrun et al. (2006), it is possible to show that if
the robot follows the desired angle θv,d , it will converge to
the desired offset. To show this, first note that the rate of
change of the lateral offset ẏf = dyf /dt is given by

ẏf = vv sin(θvr ). (35)

Substituting Eq. (34) into Eq. (35) yields

dyf

dt
= vv sin

{
arctan

[
k1(yd − yf )

vv

]}
, (36)

which is equivalent to

dyf

dt
= k1(yd − yf )√

1 +
[

k1(yd − yf )
vv

]2
. (37)

For small cross-track errors, Eq. (37) can be approximated
by

dyf

dt
≈ k1(yd − yf ). (38)

Hence,

yf (t) ≈ η exp−k1t +yd, (39)

where η is a constant. From relation (39), one can see that
the offset converges exponentially to the desired value at a
rate controlled by the gain constant k1.

In the proposed control approach, the desired angle
θv,d is then tracked using the proportional control law:

ωv = k2(θv,d − θv) = k2

{
θvr − arctan

[
k1(yd − yf )

vv

]}
,

(40)
where ωv is the desired angular velocity for the robot and
k2 is a speed dependent gain, selected as explained in
Section 4.2.2. Notice that Eq. (40) takes as inputs the state
estimates generated by the EKF. To avoid abrupt changes
in the heading of the vehicle, saturation limits are imposed
on Eq. (40), which leads to the final steering control scheme

ωc =

⎧⎪⎨
⎪⎩

ωv, −ωv,max ≤ ωv ≤ ωv,max

ωv,max, ωv > ωv,max

−ωv,max, ωv < −ωv,max

, (41)

where ωv,max is the maximum angular rate that would
be commanded to the vehicle and ωc represents the com-
manded angular velocity.

As shown in Section 5, the proposed proportional con-
trol law yielded good experimental tracking results. How-
ever, for more aggressive driving maneuvers, especially in
soft terrains, good tracking may require the use of deriva-
tive and integral terms in the control law.

4.2.2. Tuning of the Control Law

Tuning of the controller begins by determining the expected
speeds of operation for the Pioneer 3-AT. For rut follow-
ing, according to Blevins (2007), the recommended speeds
of operation for a Landrover LR3 vehicle are in the range
of 1–10 mph, which corresponds to speeds in the range of
0.2–1.54 body lengths/s and maps to speeds in the range of
0.10–0.77 m/s for the Pioneer 3-AT.

In the current configuration, the laser plane intersects
the ground plane at a look-ahead distance of 42.82 cm.
In addition, as explained in Section 4.1.1, small-angle ap-
proximations are assumed while deriving the measurement
model used for the Kalman filter. Therefore, for the ruts
that the system is designed to follow, it is assumed that the
maximum orientation change in a look-ahead distance � is
�θr ≈ 15 deg. Thus, the robot should be able to achieve a
turn radius of rc = �/�θr = 163.52 cm at any given speed
in the range 0.10–0.77 cm/s. This critical turn radius and
the maximum speed vv,max = 77 cm/s are used to set the
saturation limits (ωv,max = 0.47 rad/s) in control law (41).

In our implementation, the controller gain k1 was set
to 0.2 s−1 and k2 was designed as a function of speed as fol-
lows. As discussed before, the maximum expected change
in the orientation of the rut in one look-ahead distance is
�θr = 15 deg. Therefore, k2 should satisfy

ωv = k2�θr = vv,max

rc
, (42)

where vv,max = 77 cm/s. Therefore, at maximum speed

k2 = vv,max

(
180

rc15π

)
= 77

(
180

163.5215π

)
= 1.79 s−1. (43)

Experimentally a gain k2 = 0.5 s−1 was found to produce
good results for a vehicle speed of 0.1 m/s. From this result
and Eq. (43), the gain k2 was chosen as

k2 = 0.0193(vv − 10) + 0.5, (44)

where vv is in centimeters per second.
In the likely event that there is an initial lateral offset

and a nonzero relative orientation between the vehicle and
the rut, it is desirable to have an algorithm that will result
in the robot approaching the ruts at small approach angles.
By doing this, it is possible to avoid overshooting the ruts
and to minimize the amount of turning in the rutted area. A
general scenario is illustrated in Figure 22, where the robot
has an initial offset yf,0 and an initial orientation relative to
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Figure 22. Robot converging to a set of ruts from initial
nonzero lateral offset and relative orientation, robot–rut.

Figure 23. Phase portraits for different velocities: vv = (a) 0.1 m/s, (b) 0.2 m/s, (c) 0.3 m/s, (d) 0.4 m/s, (e) 0.5 m/s, and
(f) 0.77 m/s.

the rut θvr,0. Figure 22 also shows the approach angle to the
ruts θa and the desired offset yd .

In the following discussion, the approach angles gen-
erated by the proposed steering controller are analyzed for
different initial conditions and the speed range of opera-
tion. Figure 23 shows a set of phase portraits (θvr vs. yf /yd )
for robot velocities vv ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.77 m/s} and
initial robot conditions that correspond to normalized (by
yd ) lateral offsets yf,0 ∈ {−4, −3, −2, 4, 5, 6} and relative
orientations θvr,0 ∈ {−40,−20, 0, 20, 40 deg}. As shown in
Figure 23, the robot converges to the desired state (θvr =
0, yf /yd = 1) for all initial conditions and for all veloci-
ties. In addition, as seen from the phase portraits, the pro-
posed controller with the selected values of gains k1 and k2
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leads to small approach angles (<32 deg) and there is no
overshoot of the ruts. It is important to note that the results
presented in Figure 23 constitute only forward simulations
of the vehicle’s path using the proposed steering controller
assuming perfect sensor measurements and initial condi-
tions in the expected range of operation for the actual vehi-
cle. However, if the initial conditions are chosen outside the
range of operation (e.g., a very large lateral offset), the ac-
tual vehicle may diverge from the desired state because the
ruts would not be visible for a prolonged amount of time,
which could cause the Kalman filter to diverge.

5. EXPERIMENTAL PLATFORM
AND EXPERIMENTAL RESULTS

In the following experimental evaluation of the proposed
approach, we start by evaluating the rut tracking module of
the reactive algorithm and the steering controller under dif-
ferent conditions including S-shape ruts, broken ruts, shal-
low ruts, and ruts that are not directly in front of the vehicle.
Finally, we perform an experiment that requires the use of
both the reactive and deliberative systems.

All experiments were conducted on a Pioneer 3-AT
robotic platform equipped with laser range finder URG-
04LX (Okubo, Ye, & Borenstein, 2009), which has an an-
gular resolution of 0.36 deg, a scanning angle of 240 deg,
and a detection range of 0.02–4 m. The laser readings are
taken at 5 Hz, and the laser is mounted on a custom-built
tilt platform, which allows the robot to collect the midrange
data required by the deliberative system. To obtain ground
truth data during the experiments, an external positioning
system was designed based on a SICK laser (Ye & Boren-
stein, 2002) that tracks the position of a cylindrical shape
mounted on top of the robot with an accuracy of ±1.13 cm.
Figure 24 shows a picture of the Pioneer 3-AT, the tilt plat-
form, and the external positioning system.

The experimental evaluation was performed on soft
dirt. It is important to note that the ruts created in this
terrain type are structured similarly to the ruts typically
encountered in off-road trails, as illustrated in Figure 1.
The evaluation of the algorithm on less-structured ruts
and different terrains will be considered in the future. To
create the ruts used in this experimental evaluation, the
following procedure was used. In each case the terrain
was wetted and the robot was teleoperated for two or
more runs following the same path. This procedure was
enough to create the shallow ruts used in the scenarios de-
scribed in Sections 5.1.4 and 5.2.1. For the rest of the ex-
perimental scenarios, which contain deeper ruts similar to
those typically created on terrains with high moisture con-
tent such as mud or snow, the final ruts were created us-
ing a single wheel attached to a shaft, which was rolled
and pressed manually against the terrain for two or more
passes.

5.1. Evaluation of Reactive System

In experiments 1–4, the initial state (curvature of the rut κ0,
initial lateral offset yf,0, and relative orientation of the ve-
hicle with respect to the rut θvr,0) is assumed to be known.
These experiments are used to evaluate the rut tracking
performance of the proposed approach. It is important to
note that the experiments involved ruts of low curvature,
which enabled verification that the wheels were in the ruts
(i.e., the orientation of the robot was adequate) by using
the video footage from the experiments and also visually
observing the tread marks left by the robot as a result of its
traversal.

The performance of the proposed algorithm is mea-
sured using the rms value of the normalized cross-track er-
ror ext , which in these experiments is computed using the
data obtained by the ground truth system. The cross-track
error is normalized by the tire width tw and is computed as

ext (xi ) = 1
ntw

√√√√ n∑
i=0

[yv,d (xi ) − yv(xi )]2, (45)

where yv,d (xi ) is the desired y value of the kinematic cen-
ter of the vehicle at xi and yv(xi ) is the actual y value of
the kinematic center of the vehicle at xi as obtained by the
ground truth system. The cross-track error is computed at
equally spaced increments of x (every 1 cm).

5.1.1. S-Shape Rut with Outliers

This scenario is used to show the robustness of the pro-
posed approach against outliers. In particular, the scenario
contains three ruts that are considered outliers. The rut
length is 400 cm, the rut depth is 6 cm, and the minimum
turn radius is 71 cm. Figure 25 shows a set of snapshots
obtained from the actual robot run, and Figure 26 shows
the desired and actual paths for the robot kinematic center
along with the outliers and a summary of the cross-track
errors.

5.1.2. Scenario with Broken Ruts

This scenario shows the ability of the system to handle sce-
narios with broken ruts. Figure 27 shows a set of snapshots
from the actual run. In this scenario, the rut length is
365 cm, the rut depth is 5–8 cm, and the left and right
ruts disappear for a length of 64 cm, which is equivalent to
1.28 times the body length of the vehicle. Figure 28 shows
the desired and actual paths for the robot kinematic center
obtained from the external positioning system and summa-
rizes the cross-track errors.

5.1.3. Scenarios with Initial Position, Heading Offsets,
and Different Speeds

These scenarios serve two purposes. First, they are used to
show that the robot is capable of following a set of ruts
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Figure 24. Experimental platform: Pionner 3-AT, tilt platform,
and external positioning system.

despite initial lateral and heading offsets with respect to
the ruts. In addition, these experiments are used to verify
the correct tuning of the steering controller.

In the first experiment, the robot starts with a normal-
ized lateral offset yf,0 = 4. The lateral offset was normal-
ized by the desired offset yd , which is measured from the
right rut. The vehicle speed was set to 0.2 m/s, and the
orientation between the vehicle and the rut was set to 0 deg.
Figure 29 shows a set of snapshots from the actual run on
the robot, and Figure 30 shows a comparison of the simu-
lated and experimental phase portraits. Notice that as ex-
pected, there are some differences between the two due to
unmodeled effects in the simulation such as tire–ground
interactions. However, in both cases the robot converges
to the desired state with no overshoot and at similar an-
gles of approach. The simulated angle of approach θs was

Figure 26. Scenario with rut outliers: desired and actual paths
followed by the kinematic center of the robot (cross-track
errors: min = 0.003, avg = 0.23, max = 0.41).

−15.55 deg, and the experimental angle of approach θx was
−17.32 deg. The simulated time of convergence (ts ) to yd

with a tolerance band of 2% was 11.8 s, and the experimen-
tal time of convergence tx was 14 s.

In the second experiment, the robot starts with a nor-
malized lateral offset yf,0 = 4.6 and an initial relative orien-
tation θvr,0 = 40 deg. The vehicle speed was set to 0.3 m/s.
Figure 31 shows a set of snapshots from the actual run
of the robot, and Figure 32 shows a comparison of the
simulated and experimental phase portraits. In this sce-
nario, θs = −10.25 deg and θx = −11.23 deg. The conver-
gence times are ts = 14.8 s and tx = 16 s. Please see a video
demonstration in the online version of this article.

Figure 25. Snapshots of the robot following the S-shaped rut in the presence of outliers.
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Figure 27. Snapshots of the robot following a broken rut.

Figure 28. Scenario with broken ruts: desired and actual paths
followed by the kinematic center of the robot (cross-track
errors: min = 0.002, avg = 0.094, max = 0.495).

5.1.4. Scenario with Shallow Ruts

This scenario is used to show that the proposed system is
able to track shallow ruts; the scenario corresponds to an
S-shaped rut with a length of 240 cm, minimum turn ra-
dius of 61 cm, and depth of 3 cm. Figure 33 shows both the
desired and actual paths of the robot kinematic center and
summarizes the cross-track errors.

5.2. Evaluation of Deliberative System

Contrary to experiments 1–4, which assumed known val-
ues for the initial conditions of the EKF, in these scenarios
the high-level rut detection system described in Section 3.2
is used to automatically generate initial conditions for the
filter. The first scenario shows the ability of the deliber-
ative system to estimate the robot’s initial position and

Figure 29. Snapshots of the robot approaching the ruts from a lateral offset of 4yd and an orientation of 0 deg.
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Figure 30. Phase portrait from a lateral offset of 4yd and an
orientation of 0 deg.

orientation relative to the rut. In the second scenario, the
complete rut detection and following approach is tested us-
ing a scenario with multiple ruts.

5.2.1. Estimation of Initial Conditions

This scenario corresponds to the same S-shaped shal-
low ruts used to evaluate the tracking performance in
Section 5.1.4. However, the robot has an initial orientation
relative to the rut θvr,0 = 25 deg and an initial lateral offset
yf,0 = −8.5 cm. In this experiment, as shown in Figure 34,
the deliberative system was able to identify the optimal rut
and determined that it pointed in the general direction of
the goal. In addition, it estimated the initial conditions as
θvr,0 = 24.58 deg and yf,0 = −7.3 cm.

5.2.2. Determination of the Optimal, Suitable Rut

In this scenario, as shown in the snapshots from the actual
experiment (Figure 35) and in the rut grid of Figure 36, the
robot is faced with multiple sets of ruts. However, the de-

Figure 32. Phase portrait from a lateral offset of 4.6yd and an
orientation of 40 deg.

Figure 33. Scenario with shallow ruts: desired and actual
paths followed by the kinematic center of the robot (cross-track
errors: min = 0.001, avg = 0.066, max = 0.262).

liberative system is able to compute the optimal rut and de-
termine that it points in the general direction of the goal.
Figure 36 presents the optimal rut as found by the plan-
ner and the estimate of the initial lateral offset yf,0. Finally,

Figure 31. Snapshots of the robot approaching the ruts from a lateral offset of 4.6yd and an orientation of 40 deg.
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Figure 34. Rut grid used by deliberative system to estimate
θvr,0 and yf,0.

Figure 37 shows the vehicle path and summarizes the cross-
track errors. Please see a video demonstration in the online
version of this article.

6. CONCLUSIONS AND FUTURE WORK

The main contributions of the paper are the inclusion of
a new rut detection method based on a path planner and
the experimental validation of the proposed rut detec-
tion and following approach on diverse scenarios. The pa-
per presents and evaluates algorithms that employ a laser
range finder to detect, model, and use the ruts in the terrain
to guide the vehicle to a desired goal. In addition, the pa-
per presents a set of motivational experiments on different
robotic platforms (a large- and a small-scale robot) and ter-
rains, which show that the power consumption of the robot
can be minimized and the traction increased by following
existing ruts.

Figure 36. Rut grid with multiple ruts.

Figure 37. Scenario with multiple ruts: desired and actual
paths followed by the kinematic center of the robot (cross-track
errors: min = 0.008, avg = 0.162, max = 0.337).

Figure 35. Snapshots of the robot following a chosen set of ruts among different candidates.
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The proposed A∗-based path planning algorithm is
used to select the optimal rut to follow among several
possible candidates and to initialize a reactive system that
employs an EKF to recursively estimate the parameters of
a local model of the rut being followed. Experimental re-
sults were conducted on a Pioneer 3-AT robot and showed
that the proposed system was able to handle scenarios with
S-shaped ruts, broken ruts, shallow ruts, ruts that are not
directly in front of the vehicle, and multiple ruts.

Future work will involve the incorporation of replan-
ning strategies [e.g., D∗ (Stentz, 1994)], which would enable
the vehicle to switch from one rut to another in the middle
of a mission and could also help in situations in which the
EKF might diverge. This will require the ability to obtain ac-
curate vehicle state estimates (global position and orienta-
tion). It is also important to develop more-advanced motion
planners to simultaneously consider mission-critical com-
ponents such as the reduced energy cost of driving in a rut,
vehicle safety, obstacle avoidance, and fuel optimality.

In addition, as explained in Section 3.2.3, we would
like to expand the current system to handle scenarios in
which the vehicle can make use of single ruts instead of
sets of ruts. It is also important to investigate a vision-
based approach to rut detection because it would provide
long-range information to complement the current local in-
formation obtained with the laser range finder and would
open the possibility of detecting ruts based on textural dif-
ferences.

Finally, it would be beneficial to evaluate the perfor-
mance of the proposed algorithm in vehicles with steered
wheels because a self-aligning torque, due to the ruts, is
generated on the wheels and therefore the steering control
algorithm should be designed to take advantage of these
natural dynamics.

7. NOMENCLATURE
A process Jacobian
a vector in the direction of initial rut segment,

(ax, ay )
B body fixed frame
B ′ rut detection frame
bc body clearance, cm
c(n1, n2) cost between grid cells n1 and n2
c minimum grid cost value
d(n1, n2) Euclidean distance between grid

cells n1 and n2, cm
d(pv,R∗

0) Euclidean distance between the robot’s current
position pv and the rut’s initial segment
R∗

0, cm
e2
i sum of the squared error, cm2

e2
min minimum squared error, cm2

ev velocity error, m/s
ext normalized cross-track error

fr rolling resistance, N
G rut grid reference frame
G rut grid
G(n) value of grid cell n
G filtered rut grid
gw grid width, cm
H measurement Jacobian
K Kalman gain
k1 steering control gain, s−1

k2 steering control gain, s−1

l∗ path length of optimal rut, grid cells
� laser look-ahead distance, cm
N inertial frame
n grid cell with coordinates (i, j )
np number of support cells of rut parallel to the

optimal rut
n∗ number of support cells of optimal rut
P error covariance
Pk a posteriori estimate error covariance
P−

k a priori estimate error covariance
P∗ path of minimum cost
P (·) probability
p(·) probability density function
pc power consumption, W
pr a point with coordinates (xr , yr ) in the rut

being followed expressed in the rut frame R

pv the robot’s position (xv, yv) in the inertial
frame N

Q process noise covariance
q process state vector
q̂−

k a priori state estimate
q0 initial state vector
R measurement noise covariance
R rut frame
R∗ optimal rut
R∗

piecewise approximation of the optimal rut
R∗

f end segment of the optimal rut
R∗

0 initial segment of the optimal rut
r grid resolution, cm
rc critical turn radius, cm
rw distance between left and right ruts, cm
S sensor frame
S(m)(k, �) structuring element of size (2m + 1)×

(2m + 1) centered at (k, �)
S rut detection output set
Sr search region for ruts
Stest rut detection testing set
Strain rut detection training set
S1 set of positive rut samples
S2 set of negative rut samples
s arc length, cm
Ti average rut template of quadrant i

ts simulated time of convergence, s
tw tire width, cm
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tx experimental time of convergence, s
v measurement noise
vc robot commanded speed, cm/s
vl vehicle length, cm
vv robot speed, cm/s
vv,max maximum robot speed, cm/s
vw vehicle track width, cm
w process noise
wj pattern class
xm intermediate variable [Eq. (17)], cm
yb lateral distance from vehicle axis xB to the

rut center, cm
yd desired lateral offset, cm
yf lateral offset between the vehicle and the

rut, cm
yf,0 initial lateral offset between the vehicle

and the rut, cm
yv,d desired y value of the vehicle’s kinematic

center in frame N , cm
α penalty term (3)
β constant
γ1 probability threshold (Algorithm 1)
γ2 threshold value [Eq. (6)], %
γ3 threshold value [Eq. (7)], %
γ4 probability threshold value
δt sampling time, s
δθv commanded change in vehicle

heading, rad
η constant [Eq. (39)]
θ orientation of the tangent vector to the

rut at point pr, rad
θa approach angle, rad
θr orientation of the rut frame with respect

to the inertial frame, rad
θs simulated angle of approach angle, rad
θv heading angle of the vehicle with respect

to the xN axis, rad
θv,d desired heading angle of the vehicle, rad
θv,0 initial heading angle of the vehicle with

respect to the xN axis, rad
θvr angle between the vehicle and

the rut, rad
θvr,0 initial angle between the vehicle and

the rut, rad
θx experimental angle of approach angle, rad
κ curvature of the rut, cm−1

κ0 initial curvature of the rut, cm−1

λ constant
μρ coefficient of rolling resistance
1 laser plane
σ standard deviation
ωc commanded angular velocity, rad/s
ωv desired angular velocity of the robot, rad/s
ωv,max maximum angular velocity, rad/s

APPENDIX: INDEX TO MULTIMEDIA EXTENSIONS

The videos are available as Supporting Information in the
online version of this article.

Extension Media type Description

1 Video Scenario with initial position
and heading offset

2 Video Scenario with multiple ruts
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