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Abstract We develop a computational model of shape that
extends existing Riemannian models of curves to multidi-
mensional objects of general topological type. We construct
shape spaces equipped with geodesic metrics that measure
how costly it is to interpolate two shapes through elastic de-
formations. The model employs a representation of shape
based on the discrete exterior derivative of parametrizations
over a finite simplicial complex. We develop algorithms to
calculate geodesics and geodesic distances, as well as tools
to quantify local shape similarities and contrasts, thus ob-
taining a formulation that accounts for regional differences
and integrates them into a global measure of dissimilarity.
The Riemannian shape spaces provide a common frame-
work to treat numerous problems such as the statistical mod-
eling of shapes, the comparison of shapes associated with
different individuals or groups, and modeling and simulation
of shape dynamics. We give multiple examples of geodesic
interpolations and illustrations of the use of the models in
brain mapping, particularly, the analysis of anatomical vari-
ation based on neuroimaging data.
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1 Introduction

The development of computational models of shape is mo-
tivated by core problems in computer vision, pattern analy-
sis and computational anatomy, spanning a breadth of ap-
plications such as the statistical analysis of shapes, map-
ping the anatomy of the human brain, characterizing normal
anatomical variation and pathological changes, and morph-
ing shapes to estimate dynamics from observations. Rie-
mannian models based on the construction of shape spaces
are very appealing because they provide a framework to treat
many of these problems in a unified manner. These mod-
els are of particular interest in problems involving analysis,
estimation, and modeling of full geometries, as opposed to
specific features that reflect shape properties, but do not let
us to fully recover shape. For example, to model variation of
the shape of an organ within a population, it is desirable to
have models that allow us to analyze and infer full anatomies
from which one may extract local or global features for more
specific purposes.

In this paper, we construct a computational model of mul-
tidimensional shape equipped with geodesic metrics that al-
low quantification of shape similarity and difference. We de-
velop algorithms to calculate shape geodesics and geodesic
distances, as well as a tool to analyze regional shape sim-
ilarity and difference between a pair or group of shapes.
This type of tool allows us to address an important prob-
lem: where do the most significant morphological contrasts
occur? Our primary goals are to develop a framework for al-
gorithmic analysis of multidimensional shape and the basic
algorithms and tools needed in applications. We also demon-
strate the computational tractability of the model through
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Fig. 1 Interpolating the contour
surfaces of two octopuses with a
shape geodesic. The colors
indicate point correspondences
along the deformation

many examples and carry out experiments to illustrate some
of its potential uses. However, we emphasize the develop-
ment of the model and tools, leaving more extensive appli-
cations for future work.

Our approach leads to several variants: models that are
sensitive or invariant to scale, as well as to orientation or or-
thogonal transformations. All of these variants are of poten-
tial interest and the most adequate choice for a problem will
likely be guided by the context and application. For exam-
ple, to model variation of the anatomy of an organ within a
population with imaging techniques, one might want to em-
ploy a scale-invariant model in order to minimize or elim-
inate the influence of image acquisition parameters, or to
disregard global size. On the other hand, to analyze atrophy
of, say, the hippocampus using longitudinal magnetic reso-
nance data, one might prefer to scale the whole brain to a
template and use a scale-dependent model of the shape of
the hippocampus to make it more sensitive to localized tis-
sue loss. Figure 1 gives a preliminary illustration of a shape
geodesic interpolating the contour surfaces of two octopuses
constructed with one of the models of this paper.

The literature on shape is vast and comprises many differ-
ent approaches. They include morphometric analysis based
on specific shape descriptors, deformable templates, as well
as use of a variety of representations and metrics, not nec-
essarily derived from Riemannian structures. The choice is
largely determined by the application and some of the non-
Riemannian alternatives are well suited for problems such as
shape indexing, classification, or retrieval. However, as we
target problems that can be treated more effectively with the
Riemannian approach, such as the development of statisti-
cal models of shape, we focus our discussion on this class of
models. Pioneering work on shape due to Kendall and Book-
stein led to the development of the first formal shape model
using a representation by a finite indexed set of landmark
points and a metric based on Procrustes alignment (Kendall
1984, 1999). Kendall’s model has been employed in a va-
riety of applications and also triggered numerous develop-
ments in statistics on manifolds (Dryden and Mardia 1998;
Le and Kendall 1993; Bhattacharya and Patrangenaru 2003;
Fletcher et al. 2004). As it is natural to perceive the shape
of the contour of an object as a continuum, more recently,
shape spaces of curves and surfaces are receiving a great
deal of attention. A shape space of plane elastic curves was
first proposed by Younes (1998, 1999); a reformulation of
the model by Younes et al. (2007) yields a framework for ef-
ficient analysis and registration of both open and closed pla-

nar curves. A model that uses arc-length parametrizations of
plane curves was developed by Klassen et al. (2004); as the
curves are traversed with constant speed, the shape represen-
tation only uses directional information. This model can be
computed quite efficiently (Schmidt et al. 2006), however,
the lack of elasticity sometimes forces the model to rely
on somewhat unnatural curve correspondences. Mio et al.
(2007, 2009) constructed a shape space of elastic strings
equipped with a 1-parameter family of geodesic metrics;
planar curves were studied in Mio et al. (2007) and an ex-
tension to curves in Euclidean space of any dimension in
Mio et al. (2009), where an alternative, more robust com-
putational approach is employed. These metrics are indexed
by a parameter that controls how much resistance a curve
offers to stretching or compression relative to deformation
by bending. The elastic model of Younes (1998), Younes et
al. (2007) is isometric to a special case of the model of Mio
et al. (2007, 2009), however, the formulation of Younes et al.
(2007) for this special case has several computational advan-
tages. The shape space of Joshi et al. (2007) is also equiv-
alent to a special case of the general model of Mio et al.
(2007, 2009), but in this case the computational costs for
closed curves are comparable. In Mio et al. (2009), the arc-
length model of Klassen et al. (2004) is also interpreted as
a limit case of elastic curves, as the resistance to stretching
and compression becomes progressively larger. Other met-
rics in the space of curves have been investigated by Michor
and Mumford (2007), including their organization and hi-
erarchy. A model of shape of curves based on principles of
linear elasticity that accounts for deformations interior to the
curve has been developed by Fuchs et al. (2009); however,
in the current formulation, the computations appear to be
costly.

Progress on the study of shape of curves has been brisk,
however, the development of Riemannian models of multidi-
mensional shape is still rather incipient. Kilian et al. (2007)
have proposed a model for parametric surfaces in 3D space,
but the emphasis is on morphing and animating shapes in
computer graphics. Liu et al. (2008, 2009) developed con-
tinuous analogues of the classical landmark model for para-
metric surfaces replacing Procrustes alignment in Euclidean
space with alignment based on variants of the Sobolev met-
ric. Thus far, the main applications of the model have been to
analysis of magnetic resonance images of the human brain.
The linear elasticity model of Fuchs et al. (2009) also applies
to surfaces in 3D space; some examples of surface geodesics
are presented in Fuchs et al. (2009).
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The computational model developed in this paper em-
ploys a parametric representation of shape over an abstract
simplicial complex K . A simplicial complex is a combinato-
rial structure that allows us to extend to more general topolo-
gies the familiar discretizations of curves as polygons and
surfaces as triangle meshes. Thus, built-in to the parametric
representation is the assumption that the connectivity of the
meshes underlying the shapes to be compared are the same.
Another point to be explained is related to shape registration.
If α,β : K → R

p are parametric shapes in Euclidean space
of dimension p, then for each vertex z of K , we think of
the points α(z) and β(z) as being in correspondence. Shape
models based on parametric representations may be used in
at least two different ways: (i) to quantify shape dissimilar-
ity via the metric and also as a shape registration tool by
selecting parametrizations that minimize the shape distance;
(ii) to quantify shape dissimilarity using pre-computed para-
metrizations and correspondences. The latter is of interest in
many applications such as problems in neuroimaging where
registration techniques for specific anatomies that account
for geometrical and/or biological features already have been
developed and the data is fundamentally discrete, with no
clear underlying continuous structure, for example, as in
Morra et al. (2009), Liu et al. (2009). More details on this
are provided in the examples of Sect. 5.5. In its present form,
our computational model falls in the second category, with
shape registration and analysis treated as related, but com-
plementary problems. However, the discussion in Appen-
dix C supports the view that the methods developed in this
paper may also be interpreted as a step towards a new tech-
nique of shape registration.

We represent a parametric shape by its discrete exterior
derivative because first-order representations tend to provide
a good balance of robustness, computational tractability, and
geometrical accuracy. Representations and metrics beyond
order zero also can be more effective in capturing non-linear
deformations such as bends, folds, regional expansions and
contractions. The space of mappings K → R

p is equipped
with a family of Riemannian metrics indexed by a parameter
that controls how much resistance an edge offers to defor-
mation via stretching/compression relative to directional de-
formations. The choice of a parameter value may be based
on experimentation with specific data, but an alternative is
to consider “all” metrics. Philosophically, this viewpoint is
analogous to a scale-space approach, which oftentimes en-
codes and reveals structure in more effective ways. The com-
putational model we propose was motivated by a continuous
model of shape of multidimensional Riemannian manifolds.
As a detailed discussion of this model would take us too far
afield, we only sketch the basic ideas with broad strokes in
Appendix C.

The paper is organized as follows. In Sect. 2, we dis-
cuss the shape representation and examine invariance un-
der shape-preserving transformations. In Sect. 3, we define

the shape metrics. The algorithm to calculate geodesics via
energy minimization is developed in Sects. 4 and 5, with nu-
merous illustrations and applications to the computation of
mean shapes. Methods to detect and quantify regional mor-
phological differences are discussed in Sect. 6. We thank
Ying Wang for helping with the illustrations.

2 Shape Spaces

An abstract finite simplicial complex K is a classical ab-
straction of a more geometric notion of simplicial complex,
which includes familiar objects such as polygonal represen-
tations of curves, triangle meshes that represent surfaces,
and their higher dimensional analogues that are built out of
vertices, edges, triangles, and higher simplexes, according
to well established assembly rules. Formally, K is a finite
collection of finite nonempty sets with the property that if
A is in K , so is every nonempty subset of A. Intuitively, a
vertex corresponds to an element of K containing a single
point, an edge to an element of K containing 2 points, and a
triangle to an element with 3 points. In general, an element
A of K with k + 1 points is referred to as a k-simplex, and
any nonempty subset of A is called a face of A. The require-
ment that every nonempty subset of a simplex A also be in
K simply means that all faces of A should be in K . This
also implies that the intersection of any two simplexes of K

is either empty or a common face. The reader may consult
(Munkres 1984) for more details. The vertex set of K is the
union of all elements of K with a single point. We write the
vertex set as V = {z1, . . . , zr}. It follows that any k-simplex
is of the form {zi0, . . . , zik }, with zij ∈ V . We often orient an
edge {zi, zj } of K either as eij = (zi, zj ) or eji = (zj , zi).

A parametric shape (modeled on K) in p-dimensional
Euclidean space R

p is a mapping α : V → R
p defined

on the vertex set. Although α is only defined on V , if
{zi0, . . . , zik } is a k-simplex of K , we think of the convex
hull of {α(zi0), . . . , α(zik )} in R

p as a geometric realiza-
tion of the k-simplex under α. For example, if {zi, zj } is
a 1-simplex (edge) of K , the line segment in R

p connecting
α(zi) and α(zj ) is a geometric edge of α. Likewise, abstract
2-simplexes give rise to triangles in R

p .

2.1 Shape Representation

We employ a first-order representation of α : V → R
p so

that the Riemannian model of shape will be more sensitive
to non-linear deformations such as bends, folds, local ex-
pansions and contractions. This is done through the discrete
exterior derivative also known as the coboundary operator
in the simplicial homology literature (cf. Munkres 1984).
The usual derivative of a mapping measures its infinitesimal
variations. Since α is defined on the vertices of K , the nat-
ural discrete analogue is the variation measured as we move
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from a vertex to an adjacent one. In other words, variations
along the (oriented) edges of K . Thus, the discrete derivative
dα along an oriented edge e is defined as

dα(e) = α(e+) − α(e−), (1)

where e− and e+ are the initial and terminal vertices of e,
respectively. If we reverse the orientation of e, the variation
of α gets multiplied by −1. Hence, it suffices to record the
value of dα for one orientation of each edge. Therefore, we
fix an orientation for each edge of K and let

E = {e1, . . . , em} (2)

be the resulting set of oriented edges. The discrete derivative
may be viewed as a mapping dα : E → R

p . We only con-
sider mappings α such that dα(ei) �= 0, for every ei ∈ E, and
refer to them as immersions. This just means that no edge
gets crushed to a single point under α. For each i, 1 ≤ i ≤ m,
we write the modular and directional components of dα(ei)

as

ri = log‖dα(ei)‖ and vi = dα(ei)/‖dα(ei)‖, (3)

respectively, with the modular part expressed in logarithmic
scale. Thus, the variation of α along the (oriented) ith edge
of K is given by the vector dα(ei) = eri vi . Writing each vi

as a row vector vi = [vi1 . . . vip], we represent α by the pair
(r, v) ∈ R

m × R
m×p , where

r =
⎡
⎢⎣

r1
...

rm

⎤
⎥⎦ and

v =
⎡
⎢⎣

v1
...

vm

⎤
⎥⎦ =

⎡
⎢⎣

v11 . . . v1p

...
. . .

...

vm1 . . . vmp

⎤
⎥⎦ .

(4)

Since the Riemannian metrics on R
m × R

m×p to be used in
the development of our shape model differs from the stan-
dard Euclidean metric, we will use the notation L for this
space to emphasize this distinction. Thus far, the only con-
straints imposed on (r, v) are that the rows of v be unit vec-
tors, which we write as

Ji(r, v) = ‖vi‖2 = 1, (5)

1 ≤ i ≤ m. We denote by N the subspace of L formed by all
pairs (r, v) satisfying these m conditions.

2.2 Normalization of Scale

The (r, v)-representation of an immersion α is clearly in-
variant under translations. As discussed in the Introduction,
both scale-invariant and scale-sensitive models of shape are

of interest, the choice depending on the particular applica-
tion. A simple way of normalizing scale is to fix the total
edge length, say, to be unitary. In other words, to require
that (r, v) satisfy

F(r, v) =
m∑

i=1

eri = 1. (6)

Remark We adopt normalization based on total edge length
because it is simplest and it applies to arbitrary finite sim-
plicial complexes. However, if K represents a manifold of
dimension d , an alternative is to normalize scale by fixing
the total d-volume (length if d = 1, area if d = 2, etc.) of
the shape α. This normalization is more stable with respect
to refinement of K to a simplicial complex of “higher reso-
lution”, say, via barycentric subdivision.

2.3 Integrability

An important step in our construction is the characterization
of the pairs (r, v) that arise as the exterior derivatives of im-
mersions. The integrability conditions will reveal the further
constraints to be imposed on (r, v). If γ is an oriented path
in K formed by a sequence of oriented edges, let the inte-
ger ni denote the net number of times that the oriented edge
ei ∈ E is traversed by γ , where a negative sign indicates re-
versal of orientation. The variation of a mapping α along γ

may be expressed as

m∑
i=1

nidα(ei) =
m∑

i=1

nie
ri vi . (7)

The variation along any (oriented) cycle c in K clearly must
vanish. Conversely, given (r, v) and an oriented path γ , de-
fine the integral of (r, v) along γ to be

Iγ (r, v) =
m∑

i=1

nie
ri vi . (8)

If Ic(r, v) vanishes along every cycle c, then (r, v) represents
the exterior derivative of an immersion, unique up to trans-
lations. This can be seen as follows: fix a vertex zi of K and
a point xi ∈ R

p , and define α(zi) = xi . For any vertex zj ,
choose a path γ from zi to zj and let α(zj ) = xi + Iγ (r, v).
The vanishing condition over cycles ensures that α(zj ) is
independent of the path chosen.

We need a computationally tractable way of checking
whether Ic(r, v) = 0, for every cycle c. Clearly, there is a
high amount of redundancy built-in to these conditions be-
cause the integral over many cycles can be calculated as a
combination of integrals over more “primitive” ones. Our
next goal is to identify such primitives. We first consider the
cycles of length 3 formed by the oriented boundaries of the
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2-simplexes (triangles) of K , where the orientation of each
triangle is chosen arbitrarily. Standard cohomology theory
arguments, cf. Munkres (1984), show that if |K| is simply
connected (or more generally, if the first Betti number of
K is zero), then it is enough to check the vanishing of the
integral over these cycles. One should note, however, that
there is some redundancy even among the integrals along the
boundaries of triangles. For example, consider the simple
case where K is equivalent to a tetrahedron. If the integrals
along the boundaries of 3 faces are zero, then the integral
automatically vanishes on the boundary of the fourth face.
Minimal families of triangles can be determined explicitly,
but we omit further discussion of this because it is rather
intuitive for the complexes K that arise most often in com-
puter vision and neuroimaging. Several examples are given
below.

Besides a minimal set of boundaries of triangles, we
need to consider β1 additional cycles, γ1, . . . , γβ1 , where
β1 is the first Betti number of K (Munkres 1984). These
cycles should be chosen to wrap around all “essential
1-dimensional holes” of K . (More precisely, they should
represent a basis of the first simplicial homology group of K

with real coefficients.) The integrability of (r, v) is equiva-
lent to the vanishing of the integral along the boundaries of
a minimal set of triangles and a collection of β1 essential
cycles.

Examples

(i) If the topology underlying K is that of a line segment,
there are no triangles and β1 = 0. As expected, in this
case, there are no integrability conditions to be en-
forced because any (r, v) can be integrated to an arc.

(ii) If K has the topology a circle, then there are no tri-
angles and β1 = 1. Thus, we need a single cycle γ , the
simplest choice being a cycle that goes once around the
circle. In this case, the shape model of this paper coin-
cides with the model of elastic strings studied in Mio et
al. (2009).

(iii) If K has the topology of a closed orientable surface
of genus g and K has T triangles, then we must con-
sider the boundaries of (T − 1) triangles and 2g addi-
tional cycles because the first Betti number is β1 = 2g.
Figure 2(a) shows two essential cycles of a surface of
genus 1.

(iv) If K represents an orientable surface of genus g with
h > 0 holes punctured, then all triangles are needed and
β1 = 2g + h − 1. Figure 2(b) shows an essential cycle
on a surface of genus zero with two holes punctured.

(v) To construct the “robocat” of Fig. 2(c), we first punc-
tured two holes on a surface of genus zero and then
glued the two feet creating a non-manifold point. This
produces an additional essential cycle in the leg area.

Fig. 2 Examples of minimal sets of essential cycles for different
topologies

Let F = {T1, . . . , Tn} be a minimal set of triangles of K

needed to guarantee the vanishing of the integral along the
boundaries of all 2-simplexes. Fix an orientation for each T�,
1 ≤ � ≤ n, so that F becomes an oriented-face set. For each
T� ∈ F , let ε(�, i) be the number of times that the oriented
edge ei ∈ E appears on the oriented boundary of T�. Most
coefficients vanish, except for three, which correspond to
the edges e�1, e�2, e�3 that form the boundary of T�. Clearly,
ε(�, �i) = ±1, 1 ≤ i ≤ 3. We make the convention that
�1 < �2 < �3. With this notation, the integrability condition
associated with T� may be expressed as

I∂T�
(r, v) =

m∑
i=1

ε(�, i)eri vi = 0. (9)

For each 1 ≤ � ≤ n, we rewrite this vector equation as a set
of p scalar conditions

G�,j (r, v) =
m∑

i=1

ε(�, i)eri vij = 0, (10)

1 ≤ j ≤ p, obtaining pn independent integrability condi-
tions that (r, v) should satisfy. Likewise, fixing a family of
essential cycles γ1, . . . , γβ1 , let ζ(k, i) be the net number of
times that ei ∈ E is traversed by γk . We obtain an additional
set of pβ1 independent integrability conditions

Hk,j (r, v) =
m∑

i=1

ζ(k, i)eri vij = 0, (11)

1 ≤ k ≤ β1, 1 ≤ j ≤ p. In conclusion, (r, v) represents the
exterior derivative of an immersion α if and only if it satis-
fies the p(n + β1) integrability conditions described in (10)
and (11).

2.4 Pre-Shape and Shape Spaces

We refer to pairs (r, v) ∈ N satisfying conditions (6), (10)
and (11) as pre-shapes and denote by P the space of all
pre-shapes. A pre-shape gives a representation of immer-
sions that is invariant to scale and translations. For a scale-
sensitive variant, we simply drop condition (6) in the defini-
tion of pre-shapes. Thus, we have a nested sequence
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P ⊂ N ⊂ L (12)

of spaces, where P is the space of primary interest. The oth-
ers will be useful at various stages of our computation of
geodesics.

In some applications, we may want to consider mappings
that differ by a rotation, or a more general orthogonal trans-
formation, as representing the same shape. In such cases, we
consider the action of the group O(p) of p × p orthogonal
matrices on pairs (r, v). If U ∈ O(p) and α is an immersion,
the result of applying the rigid transformation U to α is the
composition U ◦ α : V → R

p . The induced action on (r, v)

is (r, v) 	→ (r, vUT ). The action on the modular component
is trivial because edge lengths do not change under U . Pre-
shapes clearly get transformed into pre-shapes and the orbit
of (r, v) is the set

[r, v] = {(r, vUT ) : U ∈ O(p)}. (13)

We define the shape space S as the orbit space of P under
the action of the orthogonal group. In other words, as the
quotient space S = P/O(p).

3 Riemannian Metrics

We introduce Riemannian structures on the space L of all
pairs (r, v) that will induce a family of pre-shape and shape
metrics. The basic idea underlying the model is that the
edges of a shape offer resistance to two different types of de-
formations, namely: (i) stretching and compression, which
correspond to changes in edge length; (ii) bending, which is
associated with directional changes. The energy needed to
perform such deformations will be determined by two para-
meters, which we call the tension and rigidity coefficients.
The geodesic distance is related to the minimum energy re-
quired to morph a shape into another through immersions.

Recall that a Riemannian structure on a manifold consists
of a collection of inner products, one for each tangent space,
that varies smoothly over the manifold. For each (r, v) ∈ L,
we define

〈(h,w), (h̃, w̃)〉(r,v) = a

m∑
i=1

hih̃ie
ri + b

m∑
i=1

(wi · w̃i)e
ri ,

(14)

where a, b > 0 are the tension and rigidity coefficients. If
we think of (h,w) as an infinitesimal deformation of (r, v),
the quantity

‖(h,w)‖2
(r,v) = 〈(h,w), (h,w)〉(r,v)

= a

m∑
i=1

h2
i e

ri + b

m∑
i=1

‖wi‖2eri (15)

may be interpreted as the energy cost of the deformation.
The first and second terms of (15) account for the stretch-
ing/compression and bending energies, respectively. Hence-
forth, the submanifolds P,N ⊂ L will have the Riemannian
structure induced by (36). If (r, v) and (r̄, v̄) are pre-shapes,
we let δ((r, v), (r̄, v̄)) be the geodesic distance between
them on the pre-shape submanifold P . If s and s̄ are the
shapes represented by the O(p)-orbits of (r, v) and (r̄, v̄),
the shape distance is defined as

d(s, s̄) = inf
U,V ∈O(p)

δ((r, vV T ), (r̄, v̄UT ))

= inf
U∈O(p)

δ((r, v), (r̄, v̄UT )). (16)

The last equality follows from the fact that O(p) acts by
isometries; that is, δ((r, v), (r̄, v̄)) = δ((r, vUT ), (r̄, v̄UT )),
for any U ∈ O(p). As already pointed out, the use of the
pre-shape or shape distance will depend on the particular
application.

Much of the remaining work is devoted to the calculation
of geodesics in P and the geodesic distance δ. The mini-
mization over O(p) appearing in (16) is a relatively simpler
calculation. We briefly indicate how this minimization prob-
lem can be treated. We may obtain an initial estimate of

Û = argmin
U∈O(k)

δ((r, v), (r̄, v̄UT )), (17)

say, by minimizing ‖(r, v)− (r̄, v̄UT )‖2
(r,v). This is the same

as minimizing
∑m

i=1 ‖vi − v̄iU
T ‖2eri , which is equivalent to

maximizing
∑m

i=1(e
ri/2vi) · (v̄iU

T ). This problem is analo-
gous to the one that arises in Procrustes alignment of shapes
(Kendall 1984) and admits a closed form solution. Once this
initial estimate is obtained, a gradient search over the or-
thogonal group O(p) can be used to locally refine the esti-
mation. As in Mio et al. (2009), the O(p)-gradient can be
calculated numerically via finite differences in the Lie alge-
bra of O(p), which is formed by the p × p antisymmetric
matrices.

4 Energy Minimization

We adopt an energy minimization approach to the estimation
of minimal length geodesics in pre-shape space. Although
this interpretation of geodesics is classical, the algorithmic
aspects of the calculation pose numerous problems, both in
terms of efficiency and robustness. We describe a compu-
tational strategy in the setting of more general Riemannian
manifolds, not only pre-shape manifolds. This is done not
just for the sake of generality, but because the method be-
comes more transparent. The proposed strategy is an exten-
sion of the energy minimization techniques used in the spe-
cial case of shape of curves in Mio et al. (2009).



Int J Comput Vis (2010) 89: 69–83 75

Let M be a Riemannian manifold with each tangent space
TpM , p ∈ M , equipped with the inner product 〈, 〉p . The as-

sociated norm is denoted ‖v‖p = 〈v, v〉1/2
p , for v ∈ TpM .

Given a path γ : I → M defined over the interval I = [0,1],
our goal is to develop an algorithm to deform γ to a geo-
desic maintaing the endpoints γ (0) = p and γ (1) = q fixed
throughout the deformation. The energy of γ is defined as

E(γ ) =
∫ 1

0
〈∂tγ (t), ∂tγ (t)〉γ (t) dt =

∫ 1

0
‖∂tγ (t)‖2

γ (t) dt.

(18)

We are interested in paths of minimal energy as they corre-
spond to minimal length geodesics (do Carmo 1994).

4.1 Path Variation

An infinitesimal deformation of a path γ : I → M can be de-
scribed by a vector field x(t) ∈ Tγ (t)M , t ∈ I , along γ . We
calculate the gradient of E with respect to the metric struc-
ture given by the following inner product of vector fields:

〈x, y〉γ = 〈x(0), y(0)〉γ (0) +
∫ 1

0
〈Dtx(t),Dty(t)〉γ (t) dt,

(19)

where Dt denotes covariant differentiation in M along γ (cf.
do Carmo 1994). Covariant differentiation is differentiation
of vector fields from a viewpoint intrinsic to the Riemannian
manifold M . As we are interested in geodesics with pre-
scribed endpoints, our goal is to minimize the energy on the
subspace of paths satisfying the boundary conditions γ (0) =
p and γ (1) = q . The use of (19) leads to a computationally
robust expression for the gradient of E and also let us easily
enforce the boundary conditions, as further explained be-
low. In pattern analysis, this type of metric in path space has
been used in the construction of elastica (Mio et al. 2004),
the evolution of Sobolev active contours (Sundaramoorthi et
al. 2007), and the study of shape of curves (Joshi et al. 2007;
Mio et al. 2009).

4.2 The Unconstrained Gradient

Given a path γ , we first calculate the unconstrained gradient
of E at γ , that is, without enforcing the boundary conditions.
Consider a variation γ (t;μ) of γ along a direction x(t),
where μ ∈ (−ε, ε) is the variation parameter. This means
that γ (t;0) = γ (t) and

x(t) = ∂

∂μ
γ (t;μ)

∣∣
μ=0. (20)

Differentiating (18) at μ = 0, the directional derivative of E

at γ in the direction x may be expressed as

dEγ (x) = 2
∫ 1

0
〈Dtx(t), (∂tγ (t)〉γ (t) dt. (21)

To rewrite this expression in terms of the inner product (19),
let F be a vector field along γ such that DtF(t) = 2∂tγ (t)

and F(0) = 0. In other words, a covariant integral of the field
f (t) = 2∂tγ (t) that vanishes at t = 0. Then, (21) becomes
dEγ (x) = 〈x,F 〉γ , which means that the gradient of E at γ

is

∇E(γ ) = F. (22)

Numerically, the fact that ∇E(γ ) is obtained via integra-
tion (not differentiation) of the tangent field ∂tγ is one of
the key advantages of using the proposed metric structure
on the space of paths. This leads to a more stable calcula-
tion and robust algorithm as integration may be viewed as a
smoothing operation.

4.3 The Boundary Conditions

To calculate the constrained gradient ∇∗E(γ ), we need to
understand which vector fields along γ represent variations
of the curve that are orthogonal to those that respect the
boundary conditions. Then, ∇∗E(γ ) can be calculated from
∇E(γ ) by subtracting the component orthogonal to the sub-
space of variations that are compatible with the boundary
conditions.

Clearly, vector fields that represent variations that keep
the endpoints of γ fixed are those that vanish at t = 0 and
t = 1. A simple (covariant) integration-by-parts argument,
which is presented in Appendix B for completeness, shows
that the vector fields that are orthogonal to those that vanish
at the endpoints are precisely the covariantly linear fields. In
other words, the smooth fields with trivial second covariant
derivative along γ .

By construction, the field F = ∇E(γ ) is zero at t = 0.
Thus, to obtain ∇∗E(γ ), we just need to subtract from F

the covariantly linear field that vanishes at t = 0 and coin-
cides with F at t = 1. To construct such a field, again, we use
covariant integration, this time applied to the reverse of γ .
First, construct a parallel field by integrating the everywhere
zero field with initial condition F(1) along the reverse of the
path γ . (Parallel fields are those with zero covariant deriv-
ative so the construction of parallel fields is a special case
of covariant integration.) Reversing the path again, after in-
tegration, we obtain a parallel field G along γ whose value
at t = 1 is F(1). The field t 	→ tG(t), t ∈ I , is covariantly
linear with the desired properties implying that

∇∗E(γ ) = ∇E(γ ) − tG. (23)
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4.4 Algorithm

The arguments of Sects. 4.2 and 4.3 show that, in practice,
it is possible to calculate ∇∗E(γ ) provided that we can per-
form covariant integration of vector fields, as this is needed
for: (i) the calculation of ∇E(γ ); (ii) the construction of the
parallel field used for the orthogonal projection of ∇E(γ )

onto ∇∗E(γ ). To implement gradient descent, we also need
an ε-update rule for paths in M along directions prescribed
by a vector field. These issues will be discussed in detail be-
low for the pre-shape space P . For a general Riemannian
manifold M for which these ingredients are available, we
obtain the following algorithm to deform a path γ : I → M

to a geodesic.
Let ε, δ > 0 be (small) real numbers:

(i) Integrate the field f (t) = 2∂tγ (t) covariantly along the
path γ with zero initial condition. The integral field F

gives the gradient ∇E(γ ).
(ii) Construct a parallel field G along γ that coincides with

F(1) ∈ Tγ (1)M at t = 1. By (23), ∇∗E(γ ) = ∇E(γ )−
tG.

(iii) ε-update the path γ in the direction of the vector field
−∇∗E(γ ) to obtain a path γnew.

(iv) Iterate the process until ‖γnew − γ ‖γ < δ, where ‖ · ‖γ

denotes the norm associated with the inner product de-
fined in (19).

5 Pre-Shape Geodesics

The calculation of covariant integrals in the pre-shape mani-
fold P can become costly as the complexity of the reference
simplicial complex K increases. This happens in many im-
portant instances, for example, high resolution meshes often
used in medical imaging and computer vision. To be more
specific, if a path γ in P is discretized by subdividing it
into T parts and the number of independent constraints that
characterize pre-shapes is c, then each covariant integration
along γ requires setting up and solving T linear systems
with coefficient matrices of size c × c. Even though the ma-
trices of these systems are symmetric and sparse, this could
limit the applicability of the algorithm of Sect. 4.4 in a sig-
nificant way. The number c of independent constraints that
characterize pre-shapes was discussed in Sect. 2.1 and is
typically large. For example, for surface meshes, c is of the
order of the number of vertices of K . To overcome this ob-
stacle, we propose a variant of the algorithm that replaces
gradient descent for the energy of paths in P with its coun-
terpart for paths in N followed by a projection of the path
onto P . Recall that, in the space N , we only require that
each row of v be a unit vector (see (5)). Since we will use
first-order integration of the differential equations that gov-
ern covariant integration, to justify this approach, we would

need the two operations to be interchangeable to first order.
However, the cost of computing a projection map with this
property is comparable to the cost of covariant integration
in P , so we employ a greedy strategy by relaxing the condi-
tion on the projection map. In the special case of curves in
the plane or 3D space, where both procedures can be imple-
mented efficiently, in previous work we experimented with
both approaches obtaining nearly identical results (Mio et al.
2009). Experimentation with low resolution surface meshes
also leads to much the same results. For high-resolution or
multi-dimensional shapes, however, the computational gains
are substantial. We begin the “greedy” calculation of pre-
shape geodesics with a description of the projection map.

5.1 Projection Map

We introduce a projection that maps a pair (r, v) ∈ N near
P onto P . For the present purposes, it suffices to consider
pairs (r, v) in the vicinity of P because we will start with
a path γ in P , perturb it infinitesimally in N , and project it
back onto P . In (6), (10) and (11), we introduced the con-
straint functions F , G�,j , and Hk,j , 1 ≤ j ≤ p, 1 ≤ � ≤ n,
1 ≤ k ≤ bK , that define pre-shapes. Clearly, the residual
functions ρ(r, v) = 1 − F(r, v), ρ�,j (r, v) = −G�,j (r, v),
and σk,j (r, v) = −Hk,j (r, v) have the property that their
simultaneous vanishing is equivalent to (r, v) being a pre-
shape. Given (r, v) near P , we use Newton’s method to find
a nearby zero of

J (r, v) = 1

2
ρ2(r, v) + 1

2

∑
�,j

ρ2
�,j (r, v) + 1

2

∑
k,j

σ 2
k,j (r, v)

(24)

and project (r, v) to the pre-shape represented by that zero.
A calculation shows that if we do not impose the con-

dition that each row of v must be a unit vector, then the
negative (unconstrained) gradient of J is

−∇J (r, v) = ρ(r, v)∇F(r, v) +
∑
�,j

ρ�,j (r, v)∇G�,j (r, v)

+
∑
k,j

σk,j (r, v)∇Hk,j (r, v). (25)

Explicit formulae for ∇F(r, v), ∇G�,j , and ∇Hk,j (r, v) are
given in Appendix A.

We write the modular and directional parts of the (nega-
tive) gradient as −∇J (r, v) = (h,w∗). To enforce the con-
straint ‖vi‖2 = 1, we need to make w∗

i tangential to the
unit sphere in R

p at vi . For this, we replace w∗ with w,
where the ith row of w is wi = w∗

i − (w∗
i · vi)vi . Letting
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ε(r, v) = J (r, v)/‖(h,w)‖2
(r,v), we update (r, v) as follows:

{
r = r + εh,

vi = cos(ε‖wi‖)vi + sin(ε‖wi‖) wi‖wi‖ , if wi �= 0,

(26)

and vi stays unchanged, otherwise. This spherical update
of vi ensures that vi remains a unit vector. We iterate the
process until J (r, v) becomes small.

5.2 Covariant Integration

A path γ in N will be denoted γ (t) = (r(t), v(t)). Simi-
larly, we separate the modular and directional components
of a vector field along γ and write it as (f (t), x(t)). In Ap-
pendix B, we show that covariant integrals of (f (t), x(t))

are vector fields (F (t),X(t)) along γ that satisfy the sys-
tem of differential equations
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tFi(t) = fi(t) − 1
2 [∂t ri(t)]Fi(t)

+ 1
2

b
a
[Xi(t) · ∂tvi(t)]

∂tXi(t) = xi(t) − 1
2 [Xi(t)∂t ri(t) + Fi(t)∂tvi(t)]

− [Xi(t) · ∂tvi(t)]vi(t),

(27)

for 1 ≤ i ≤ p. Given (f (t), x(t)) along γ and the initial con-
dition (F (0),X(0)) = (F0,X0), we use Euler’s method to
estimate the covariant integral field (F (t),X(t)). Note that
parallel transport, which is needed in the computation of
geodesics, corresponds to the special case of covariant in-
tegration with (f (t), x(t)) everywhere zero.

5.3 Pre-Shape Geodesic Algorithm

We now modify the algorithm of Sect. 4.4 to estimate a geo-
desic between given pre-shapes (r, v) and (r∗, v∗). To ini-
tialize the process, let α,α∗ be immersions of K into R

p

represented by (r, v) and (r∗, v∗), respectively. We linearly
interpolate α and α∗ to obtain a 1-parameter family of map-
pings αt : K → R

p . If necessary, we gently deform αt to
make dαt (e) �= 0 for every oriented edge e and 0 < t < 1.
After normalizing scale (if considering the scale-invariant
model), the path γ (t) = (r(t), v(t)) obtained from the log-
polar representation of dαt is a path in pre-shape space and
can be used to initialize the search.

Let ε, δ > 0 be (small) real numbers:

(i) Initialize the search with a path γ (t) = (r(t), v(t)) in
pre-shape space constructed, for example, as described
above.

(ii) Let (f (t), x(t)) = 2(∂t r(t), ∂t v(t)). Using (27), inte-
grate this field covariantly along the path γ with zero
initial condition. The integral field (F (t),X(t)) gives
the gradient ∇E(γ ) of the energy as a functional on
paths in N .

(iii) Using (27), construct a parallel field (G(t), Y (t)) along
γ that agrees with (F (1),X(1)) at t = 1. By (23), the
constrained gradient of E is ∇∗E(γ ) = (F (t),X(t))−
(tG(t), tY (t)).

(iv) Write the modular and the directional components of
∇E(γ ) as (h(t),w(t)), 0 ≤ t ≤ 1. Update γ (t) =
(r(t), v(t)) as a path in N according to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r̃(t) = r(t) − εh(t);
ṽi (t) = vi(t), if wi(t) = 0;

ṽi (t) = cos(ε‖wi(t)‖)vi(t) − sin(ε‖wi(t)‖) wi(t)‖wi(t)‖ ,

otherwise.

Note that the update of vi(t) takes place along great
circles of the unit sphere in R

k ensuring that each ṽi (t)

is a unit vector.
(v) Project each (r̃(t), ṽ(t)) onto the pre-shape space P to

obtain a path (rnew(t), vnew(t)) in P .
(vi) Iterate the process until ‖(rnew(t), vnew(t)) −

(r(t), v(t))‖γ < δ, where ‖ · ‖γ denotes the norm asso-
ciated with (19).

5.4 Discretization

We are employing a discrete representation of pre-shapes
derived from the exterior derivative of a mapping α : V →
R

p . Thus, the only parameter that remains to be discretized
is the “time” parameter of a path γ (t) = (r(t), v(t)). This
is done in a standard way by sampling the unit interval
I = [0,1] uniformly at points 0 = t0 < t1 < · · · < tk = 1.
To simplify notation, we write the various points γ (tj ) on
the discrete path as γ (j) = (r(j), v(j)). The partial deriva-
tives ∂tγ (j) = (∂t r(j), ∂t v(j)) needed in the calculation of
geodesics are computed via finite differences and defined for
0 ≤ j ≤ k − 1.

The covariant integral of a discrete vector field (f (j),

x(j)) along γ , 0 ≤ j ≤ k − 1, with prescribed initial condi-
tion (F0,X0) is calculated by integrating (27) with Euler’s
method. The integral field (F (j),X(j)) is defined for 0 ≤
j ≤ k. All other steps in the algorithms only involve fixed
values of t so they are identical in the discrete version.

5.5 Examples of Geodesics

Figure 3 shows two examples of shape geodesics calculated
with coefficients a = b = 0.5. In both cases, we started with
a single spherical shape, punctured two holes, and for the
“robocat” we also attached the two feet at a point to make
the topology more complex. Then, we “manually” deformed
the shape to obtain a second shape with the same underlying
mesh structure. These are shown as the first and last frames
of each row. In each case, the reference complex K is the
abstract simplicial complex underlying the shapes, so that
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they admit a natural parametrization over K . The topology
of the modified robocat has two (classes of) essential cycles
and the shark only one, as shown in Fig. 2.

Figure 4 shows a shape geodesic between cortical sur-
faces and a geodesic interpolating hippocampal surfaces.
The surface meshes were extracted from magnetic reso-
nance images and correspondences calculated with the di-
rect mapping techniques of Shi et al. (2007a, 2007b). In
each case, one of the surfaces was re-meshed by transferring
the mesh structure of the other surface via the correspon-
dence so that they both have the same underlying simplicial
structure. The mesh representing the cortices have 122,880
edges and the hippocampal meshes have 30,720 edges. The
geodesics were calculated with parameter values a = 0.3,
b = 0.7 for the cortices and a = 0.15, b = 0.85 for the hip-
pocampal surfaces.

5.6 Mean Shape

To further illustrate the methods of this paper, we apply the
shape model to the construction of anatomical atlases of the
cortex and hippocampus as sample mean shapes. We begin
with a brief review of the definition of sample Fréchet mean
shape and a gradient descent strategy to compute the mean
of samples on Riemannian manifolds. Let s1, . . . , sn be para-
metric shapes represented by the pairs (ri , vi), 1 ≤ i ≤ n.
For a shape s represented by (r, v), the total spread of the
data with respect to s is

V (s) =
n∑

i=1

d2((r, v), (ri , vi)). (28)

A shape that minimizes V is called a sample Fréchet mean
shape. Karcher showed that if (hi,wi) represents the ini-
tial velocity of the geodesic that starts at (r, v) and reaches
(ri , vi) in unit time, then the gradient of V at (r, v) is∑

(ri , vi) (Karcher 1977). Thus, our algorithm to compute
geodesics allows us to estimate mean shapes via gradient de-
scent. This approach has been used to calculate mean shape
in numerous different contexts, for example, Dryden and
Mardia (1998), Srivastava et al. (2005), Liu et al. (2009).
We also should mention that the method of Fletcher et al.
(2008) for estimating median shapes readily adapts to this
context, as well.

Figure 5 shows the mean shape of 7 cortical surfaces of
the left hemisphere extracted from magnetic resonance im-
ages. One of the shapes was chosen as a reference and the
remaining six were registered with it by the method of Shi
et al. (2007a). As in the computation of geodesics discussed
above, the six surfaces were re-meshed via the correspon-
dence, so that all shapes have the same underlying spherical
mesh structure with 122,880 edges. The mean was calcu-
lated with a = b = 0.5. Figure 6 shows a hippocampal atlas
computed in a similar manner as the mean shape of 50 sam-
ples, using meshes with 30,720 edges. For registration of
the hippocampal surfaces, we used the algorithm of Shi et
al. (2007b).

6 Energy Profile and Energy Density

A (parametric) geodesic γ (t) = (r(t), v(t)), 0 ≤ t ≤ 1, has
parallel velocity field. In particular, it is traversed with con-
stant speed ω, where ω is the length of γ . Thus, the energy

Fig. 3 Two shape geodesics
calculated with a = b = 0.5
with a model sensitive to scale

Fig. 4 Scale-invariant geodesic
interpolations of cortical
surfaces with a = 0.3 and
b = 0.7 and hippocampal
surfaces with a = 0.15 and
b = 0.85
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of γ is

E(γ ) =
∫ 1

0
‖∂tγ (t)‖2

γ (t) dt = ω2. (29)

On the other hand, we may write the energy as

E(γ ) =
m∑

i=1

∫ 1

0
(a|∂t ri(t)|2eri (t) + b‖∂tvi(t)‖2eri (t)) dt,

(30)

which expresses E(γ ) as a sum of the contributions of the
individual edges. Thus, the energy profile function (EPF) de-
fined as

ψ(ei) =
∫ 1

0
(a|∂t ri(t)|2eri (t) + b‖∂tvi(t)‖2eri (t)) dt (31)

quantifies the contribution of each edge to the total geodesic
deformation energy. Similarly, we define the energy density
function (EDF) by

ρ(ei) = 1

ω2

∫ 1

0
(a|∂t ri(t)|2eri (t) + b‖∂tvi(t)‖2eri (t)) dt,

(32)

which measures the fraction of the total deformation energy
associated with the ith edge. Although geodesic distance is a
global quantifier of shape difference, the EPF and EDF pro-
vide a means to measure local shape differences and iden-
tify the regions where shape similarity and divergence are
most pronounced. Despite the fact that, for a single shape
geodesic, the EPF and EDF just differ by a multiplicative
constant, there is a qualitative difference between them. To
explain this point, suppose the EPF of a geodesic indicates

that the main deformations of a shape are localized to a re-
gion R. If this trend is present in the early stages of the de-
formation, although the difference between the EPFs of the
full geodesic and the geodesic that describe the initial defor-
mation can be significant, the EDFs will bear much higher
similarity and better capture the early trends of a deforma-
tion that takes place primarily over the region R. This char-
acteristic of the EDF might become useful, for example,
in applications such as uncovering morphological signatures
that can help in early detection of tissue loss characteristic
of neurodegenerative diseases. The EPF, in turn, is likely
to be more useful in applications where it is important to
quantify regional morphological changes in more absolute
terms, for example, to compare observations of a population
of shapes. One may further decompose the local energy into
its tension and rigidity components to separately quantify
the local shape differences due to stretching and bending.
One may also modify ψ and ρ to a function defined on the
vertex set by letting the value on a vertex be the average
value of ρ on the edges incident with that vertex.

As a first illustration, Fig. 7 displays the initial shapes of
the geodesics in Fig. 3 overlaid with intensity maps of the
respective energy profile functions. The plots are consistent
with the main localized differences observed in the data used
in the calculation of the geodesics of Fig. 3. The main visible
differences in the robocats are the position of the arms and
length of the legs and these are the areas where the EPF has
highest intensity. A more localized difference in the nose

Fig. 7 Plots of the energy density functions for the geodesics in Fig. 3

Fig. 5 The mean of 7 cortical
surfaces of the left hemisphere
calculated with a = b = 0.5.
The mean shape is highlighted
on the last panel

Fig. 6 The last panel highlights
the mean of 50 right
hippocampal surfaces calculated
with a = b = 0.5. The other
panels display 9 samples from
the group of 50 shapes
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Fig. 8 Plots of the 3 dominant
principal components of the
energy profile functions

area that is not so apparent to the naked eye is also captured
but the EPF. Similarly, the EPF for the shark is strongest near
the head and tail because in one the shapes these regions are
bent downward and bent upward on the other.

Now, we use energy profile functions to quantify regional
shape variation observed in the 50 hippocampal surfaces of
Sect. 5.6. For each of the 50 samples, we calculated the EPF
associated with the geodesic from the group atlas (mean
shape) to the sample. These energy profile functions may be
viewed as functions defined on the surface of the atlas. This
functional data can be analyzed with standard techniques
such as principal component analysis. Figure 8 shows the
first three principal modes of variation plotted over the atlas,
which allow us to visualize the regions where shape varia-
tion about the mean is most pronounced as measured by the
model.

7 Summary and Discussion

We developed a computational model of multidimensional
shape, within the framework of Riemannian geometry, us-
ing a parametric representation of shape over a finite simpli-
cial complex. We constructed a shape space equipped with
a 1-parameter family of geodesic metrics derived from Rie-
mannian structures that decouple the energy cost of an in-
finitesimal deformation of an edge of a mesh by changes in
magnitude and direction. The parameter in the model con-
trols how much change in direction is penalized relative to
change in magnitude. The choice of parameter value can
be based on experimentation with specific data, but we also
suggested the possibility of working with a summary of “all”
parameter values, as this may help to elucidate and reveal
finer aspects of shape difference. We proposed the use of the
energy profile and energy density functions of a geodesic as
tools to identify regions where shape difference and similar-
ity are most salient. We also developed algorithms to calcu-
late geodesic paths, geodesic distances, and the associated
energy profile and density functions.

We illustrated the applicability of the methods with the
calculation of geodesics between contour surfaces of mul-
tiple objects, as well as between pairs of cortical and hip-
pocampal surfaces represented by high resolution meshes
segmented from magnetic resonance images of the human
brain. Geodesic distances, geodesic interpolations, and mod-
els of shape variation developed in shape space enable us
to quantify and visualize anatomical resemblance and diver-
gence between individuals and across populations. We ap-
plied the methods developed to the construction of a cortical

atlas, as well as an atlas of the right hippocampus as sample
Fréchet mean shapes.

The characterization and quantification of global and re-
gional morphological differences are important problems
in many contexts, for example, in the study of anatomical
changes in brain structures due to neurodegenerative dis-
eases. In forthcoming work, the methodology developed will
be applied to large comparative studies of morphological
changes in the brain associated with normal aging and pro-
gression of neurodegenerative disease, as well as other prob-
lems in neuroimaging.

The model of this paper employs a parametric representa-
tion of shape over a finite simplicial complex. However, the
method also applies to other combinatorial structures such
as parametrizations over cubical meshes. Such discrete rep-
resentations may be more natural, for example, in the study
of shape of solids in 3D space such as the entire volume of
the hippocampus. A sketch of a continuous model that moti-
vated the constructions of this paper is presented in Appen-
dix C. A continuous limit is of interest for many reasons.
For example, it integrates discrete models developed over
different meshes as approximations to a common model and
it might help to interpret our shape metrics as a step towards
a new approach to registration of multidimensional shape.
As the detailed investigation of these aspects of the problem
falls beyond the intended scope of this paper, these problems
are left for future work.
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Appendix A: Pre-Shape Constraints

Differentiating (6), (10) and (11), one can show that the gra-
dients with respect to the inner product (19) of the functions
F , G�,j , and Hk,j that define pre-shapes are as follows:

(i) The modular component of ∇F(r, v) is the constant
vector [1/a . . .1/a]T and the directional component is
the zero matrix.

(ii) The modular part of ∇G�,j (r, v) is 1
a
[ε(�,1)v1,j . . .

ε(�,m)vm,j ]T and the j th column of the directional
component is 1

b
[ε(�,1) . . . ε(�,m)]T . The other

columns of the directional component are zero. These
two vectors may have nonzero entries only in rows �1,
�2 and �3.
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(iii) The modular part of ∇Hk,j (r, v) is 1
a
[ζ(k,1)v1,j . . .

ζ(k,m)vm,j ]T and the j th column of the directional
component is 1

b
[ζ(k,1) . . . ζ(k,m)]T . The other

columns of the directional component are zero.

Appendix B: Covariant Integration

For (z, y) = (z, y1, . . . , yp) ∈ R × R
p , we use the sub-

script 0 to identify the z-coordinate and the subscript j ,
1 ≤ j ≤ p, for the coordinate yj . Given a, b > 0, define a
Riemannian metric on R × R

p whose metric tensor at (z, y)

is g00(z, y) = aez, gjj (z, y) = bez, and 0, otherwise. Then,
the Riemannian structure on L, defined in Sect. 3, is isomet-
ric to the Cartesian product of these (p + 1)-dimensional
models over 1 ≤ i ≤ m. Thus, to derive the differential equa-
tion that governs covariant integration along a path in N , it
suffices to derive the corresponding differential equation for
covariant integration in R×S

p−1 with respect to the induced
metric. The Christoffel symbols of the Levi-Civita connec-
tion on R × R

p are �0
00 = �

j

0j = �
j

j0 = 1/2, �0
jj = −b/2a,

1 ≤ j ≤ p, and zero otherwise. Therefore (cf. do Carmo
1994), the covariant derivative of a vector field (F t ,Xt )

along a path (zt , yt ) in R × R
k is given by

{
DtF(t) = ∂tF (t) + 1

2 (∂t z(t))F (t) − 1
2

b
a
[X(t) · ∂ty(t)]

DtX(t) = ∂tX(t) + 1
2 (X(t)∂t z(t) + F(t)∂ty(t)).

(33)

If (z(t), y(t)) is a path in R × S
p−1, then fields that are tan-

gential to R × S
p−1 are those that satisfy the additional or-

thogonality condition F(t) · y(t) = 0. Thus, if (f (t), x(t))

and (F (t),X(t)) are both tangential to R × S
p−1, the fact

that the covariant derivative of (F (t),X(t)) in the submani-
fold R×S

p−1 is (f (t), x(t)) may be rephrased as DtF(t) =
f (t) and DtX(t) = x(t) + τ(t)y(t), where τ(t) is a scalar
field to be determined. Substituting in (33), we obtain

{
∂tF (t) = f (t) − 1

2∂t z(t)F (t) + 1
2

b
a
[X(t) · ∂ty(t)]

∂tX(t) = x(t) − 1
2 (X(t)∂t z(t) + F(t)∂ty(t)) + τ(t)y(t).

(34)

Differentiating X(t) · y(t) = 0, we get ∂tX(t) · y(t) =
−X(t) · ∂ty(t). From (34), it follows that τ(t) = −X(t) ·
∂ty(t), where we used the facts that X(t) · y(t) = 0 and
∂ty(t) · y(t) = 0. Substituting this value of τ(t) in (34), we
obtain (27).

Appendix C: Sketch of a Continuous Model

Let M be a closed, n-dimensional Riemannian manifold;
that is, a compact n-manifold without boundary such that

each tangent space TxM , x ∈ M , is equipped with an inner
product 〈 , 〉x that varies smoothly over M . If φ : M → R

p is
a smooth map, the differential dφ may be viewed as an R

p-
valued differential 1-form on M . This 1-form is the assem-
bly of the pointwise differentials dφx : TxM → R

p , x ∈ M .
Each dφx is a linear mapping TxM → R

p . If h ∈ TxM ,
dφx(h) measures the rate of variation of φ at x in the di-
rection h. We assume that n < p and φ is an immersion;
that is, each dφx is non-singular. Using a polar decompo-
sition, we express dφx uniquely as a composite mapping
dφx = Ux ◦ Sx , where Sx : TxM → TxM is a positive, self-
adjoint operator and Ux : TxM → R

p is a linear isometric
embedding. In other words, U∗

x ◦ Ux = Ix , where U∗ is the
adjoint of U and Ix is the identity map of TxM . Letting
Ax = logSx be the operator logarithm, we identify dφx with
the pair (Ax,Ux). Under this representation,

dφx = Ux ◦ eAx , (35)

where Ax is a self-adjoint (not necessarily positive) operator.
Let Sym(M) be the total space of the vector bundle over M

whose fibre over x ∈ M is the space of self-adjoint operators
TxM → TxM and Iso(M,p) be the total space of the bundle
whose fibre over x ∈ M is the space Iso(TxM,R

p) of lin-
ear isometric embeddings TxM → R

p . Then, the differen-
tial dφ may be identified with the pair (A,U), where A and
U are the sections of the bundles Sym(M) and Iso(M,p)

given by A(x) = Ax and U(x) = Ux , respectively.
Next, we introduce a Riemannian structure on the space

of pairs (A,U). Let H,H̃ and W,W̃ represent infinitesimal
deformations of A and U . Define

〈
(H,W), (H̃ , W̃ )

〉
(A,U)

= a

∫
M

〈
Hxe

Ax , H̃x

〉
dV (x)

+ b

∫
M

〈
Wxe

Ax , W̃x

〉
dV (x), (36)

where a, b > 0, dV is the volume form of M and the in-
ner products on the integrands are operator inner products.
For simplicity, we consider the scale-dependent model, in
which case, the only constraints on (A,U) are the integra-
bility conditions. Motivated by (35), let ω be the R

p-valued
1-form on M whose value at x ∈ M is ω(x) = Ux ◦ eAx .
The first integrability condition is dω = 0, where d denotes
exterior differentiation. The vanishing of dω translates to
ω being a closed 1-form. If the first Betti number of M is
zero, this is the only constraint needed on (A,U). Other-
wise, let c1, . . . , cβ1 denote 1-cycles that represent a basis of
H1(M;R), the first singular homology group of M with real
coefficients. The additional independent conditions are the
vanishing of the integral of ω along each of these 1-cycles
to ensure that the form ω be exact.

Note that if {v1(x), . . . , vn(x)} is an orthonormal basis
of TxM , the operator inner product appearing on the first
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integrand in (36) may be expressed as

〈
Hxe

Ax , H̃x

〉 =
n∑

i=1

〈
Hxe

Ax (vi(x)), H̃x(vi(x))
〉
x
. (37)

In particular, if we choose an orthonormal basis of eigenvec-
tors of Ax with eigenvalues λi(x), we get

〈
Hxe

Ax , H̃x

〉 =
n∑

i=1

eλi(x)
〈
Hx(vi(x)), H̃x(vi(x))

〉
x
. (38)

Similarly for the other integrand. Letting hi(x) = Ux ◦
Hx(vi(x)) and wi(x) = Wx(vi(x)), we may rewrite (36) as
〈
(H,W), (H̃ , W̃ )

〉
(A,U)

= a

n∑
i=1

∫
M

eλi(x)hi(x) · h̃i (x) dV (x)

+ b

n∑
i=1

∫
M

eλi(x)wi(x) · w̃i(x) dV (x), (39)

where we used the fact that Ux is an isometric embedding
so that
〈
Hx(vi(x)), H̃x(vi(x))

〉
x

= Ux(Hx(vi(x))) · Ux(H̃x(vi(x)))

= hi(x) · h̃i (x). (40)

Thus, the energy of (H,W) is

‖(H,W)‖2
(A,U) = a

n∑
i=1

∫
M

eλi(x)‖hi(x)‖2 dV (x)

+ b

n∑
i=1

∫
M

eλi(x)‖wi(x)‖2 dV (x). (41)

If Hx and Ax commute, one can show that ‖hi(x)‖ is the
magnitude of the perturbation of ‖A(vi(x))‖ due to H . This
is the interpretation of the inner product that motivated (15)
and the Riemannian structure used on the computational
model of Sect. 3. Although commutativity does not hold in
general, this interpretation is reasonable because the edges
of a discrete mesh can be perturbed somewhat indepen-
dently; that is, the perturbations only need to be compatible
with the integrability conditions. Note that we employed a
naïve discretization of the integral over a mesh represent-
ing M . One can refine the discrete integral by allowing dif-
ferent weights at the vertices, a modification whose imple-
mentation is straightforward.
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