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Abstract. In the past thirty years, research on textures has been pursued along two different lines. The first line of
research, pioneered by Julesz (1962,IRE Transactions of Information Theory, IT-8:84–92), seeks essential ingre-
dients in terms offeatures and statisticsin human texture perception. This leads us to a mathematical definition of
textures in terms ofJulesz ensembles(Zhu et al.,IEEE Trans. on PAMI, Vol. 22, No. 6, 2000). A Julesz ensemble is a
set of images that share the same value of some basic feature statistics. Images in the Julesz ensemble are defined on
a large image lattice (a mathematical idealization beingZ2) so that exact constraint on feature statistics makes sense.
The second line of research studies Markov random field (MRF) models that characterize texture patterns on finite
(or small) image lattice in a statistical way. This leads us to a general class of MRF models called FRAME (Filter,
Random field, And Maximum Entropy) (Zhu et al.,Neural Computation, 9:1627–1660). In this article, we bridge the
two lines of research by the fundamental principle ofequivalence of ensemblesin statistical mechanics (Gibbs, 1902,
Elementary Principles of Statistical Mechanics. Yale University Press). We show that 1). As the size of the image
lattice goes to infinity, a FRAME model concentrates its probability mass uniformly on a corresponding Julesz
ensemble. Therefore, the Julesz ensemble characterizes the global statistical property of the FRAME model; 2). For
a large image randomly sampled from a Julesz ensemble, any local patch of the image given its environment follows
the conditional distribution specified by a corresponding FRAME model. Therefore, the FRAME model describes
the local statistical property of the Julesz ensemble, and is an inevitable texture model on finite (or small) lattice if
texture perception is decided by feature statistics. The key to derive these results is the large deviation estimate of
the volume of (or the number of images in) the Julesz ensemble, which we call the entropy function. Studying the
equivalence of ensembles provides deep insights into questions such as the origin of MRF models, typical images of
statistical models, and error rates in various texture related vision tasks (Yuille and Coughlan,IEEE Trans. on PAMI,
Vol. 22, No. 2, 2000). The second thrust of this paper is to study texture distance based on the texture models of both
small and large lattice systems. We attempt to explain the asymmetry phenomenon observed in texture “pop-out” ex-
periments by the asymmetry of Kullback-Leibler divergence. Our results generalize the traditional signal detection
theory (Green and Swets, 1988,Signal Detection Theory and Psychophysics, Peninsula Publishing) for distance mea-
sures from iid cases to random fields. Our theories are verified by two groups of computer simulation experiments.

Keywords: entropy functions, ensemble equivalence, FRAME models, Julesz ensembles, Kullback-Leibler
divergence, large deviation, Markov random fields

1. Motivation and Introduction

Recently there is a resurgent interest in texture1 re-
search inspired by the artful work of Heeger and

Bergen (1995). A unified texture theory is emerging
after nearly four decades of intensive research in com-
puter vision and psychophysics following the philo-
sophical theme erected by Julesz (1962). For the past
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few years, the authors, together with Mumford, have
studied texture phenomena from a mathematical per-
spective (Zhu, et al., 1997, 1999). Our general goal is
to pursue a mathematically sound theory, which can
provide self-consistent answers to the following three
fundamental questions.

Question I: What is a mathematical definition of
texture?

This question has been considered extremely difficult
because of the overwhelming diversity of texture pat-
terns and their underlying rendering mechanisms in
nature. It turns out that the answer to this question be-
comes possible once we possess the right perspective
and the right tools. Before we approach this question,
let’s take a look at color theory.

First, optics defines color as an electro-magnetic
wave. A visible color is uniquely identified by its wave
lengthλ ∈ [400, 700]nm. Second, trichromacy theory
states that any visible color is a linear combination of
three basic colors: red, green, and blue. One may ask:
if we are lucky enough to have a texture theory that
is as clean as color theory, then what is the quantity
that defines textures uniquely? And what are the basic
elements that can generate textures in combination?

Texture is different from color in that it is a spatial
phenomenon. A texture definition cannot be based on
a single pixel, and one has to deal with spatial statis-
tics averaged over the image. Thus a major theme of
texture research is to seek the essential ingredients in
terms offeatures and statistics. The objective is to find
feature statistics that are the bases for human texture
perception. Typical choices of feature statistics include
Julesz’s 2-gon statistics (Julesz, 1962), co-occurrence
matrices (Gagalowicz and Ma, 1986), statistics of
texton attributes (Vistnes, 1989), Fourier transforms
(Liu and Picard, 1996), rectified functions (Malik and
Perona, 1990), histograms of Gabor filter responses
(Heeger and Bergen, 1995; Zhu et al., 1997; Bonet
and Viola, 1997), and correlations of filter responses
(Portilla and Simoncelli, 1999). To verify the suffi-
ciency of these texture statistics, this research theme
also searches for mathematical tools and algorithms
that can synthesize texture images that have prescribed
statistics. One of our early paper (Zhu et al., 2000)
provides a detailed account for the achievements along
this research line.

To obtain a quantity that can uniquely identify tex-
tures, one needs to define textures on an infinite lat-
tice Z2 as a mathematical idealization, where effects
of boundary conditions2 and statistical fluctuations

vanish. Therefore the entire image space is partitioned
into equivalent classes, within each class all images
have identical statistics. We call each equivalent class a
Julesz ensemble. Like wave lengthλ for color, a value of
feature statistics defines a texture type onZ2. To study
the statistical properties of Julesz ensembles, we attach
to each Julesz ensemble a uniform counting measure,
or a uniform probability distribution.

When we move fromZ2 to finite lattice, the texture
statistics of different Julesz ensembles (or equivalence
classes) start to overlap due to statistical fluctuations.
As the lattice gets smaller, e.g., in an extreme case the
lattice consists of only one pixel, it becomes harder to
classify a texture, and boundary condition assumes a
more important role. Therefore, on finite lattice, tex-
ture is best represented by aconditional probability
distributionrather than an equivalence class. Very of-
ten one calls the conditional probability distribution a
texturemodel. Now we naturally come to the second
question below.

Question II: What is a legitimate texture model on a
finite lattice that is consistent with the texture definition
onZ2?

The second major theme of texture research is to pur-
sue statistical models to characterize textures on fi-
nite lattice, driven by computer vision tasks such as
texture segmentation and classification. Among the
studied texture models, Markov random field models,
or equivalently the Gibbs distributions, are the most
popular and elegant ones. Influential work includes
Besag (1974) and Cross and Jain (1983). Recently, a
paper by Zhu et al. (1997) has shown that the MRF
models can be unified under a minimax entropy learn-
ing principle (Zhu et al., 1997). Given the statistics
used in the texture definition, a FRAME (Filter, Ran-
dom field, And Maximum Entropy) model can be de-
rived as a Gibbs distribution or an exponential fam-
ily model whose parameters are adjusted in such a
way that the expectation of the texture statistics un-
der the Gibbs distribution equal to a prescribed value.
The advantage of the FRAME model is that the condi-
tional distribution of any local patch of the image given
its environment can be easily specified because of the
Markov property. A detailed account for the FRAME
model and the minimax entropy principle in select-
ing statistics is referred to an early paper (Zhu et al.,
1997).

The theories and methods developed in the two re-
search themes are very different from each other, and
thus a crucial question remains unanswered: Are the
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FRAME models consistent with the texture definition
in terms of Julesz ensembles?

In this article, we unify the two research themes by
showing the equivalence between the Julesz ensem-
bles and the FRAME models, using the fundamental
principle of equivalence of ensembles in statistical me-
chanics. The equivalence reveals two interesting facts
in texture research.r For a large image randomly sampled from a Julesz

ensemble, any local patch of the image given its en-
vironment follows the conditional distribution spec-
ified by a corresponding FRAME model. Therefore
the FRAME model describes the local statistical
property of the Julesz ensemble, and is an inevitable
texture model on finite (or small) lattice if texture
perception is decided by feature statistics.r As the image lattice goes toZ2, a FRAME model
concentrates all its probability mass uniformly over
a Julesz ensemble in the absence of phase transition.

The key to the equivalence of ensembles is the large
deviation estimate of the volume of the Julesz ensem-
ble (or the number of images in the Julesz ensemble),
and we call this estimate the entropy function. The en-
semble equivalence provides insights into several basic
questions in texture study, such as the origin of the MRF
models, typical images of a statistical model, and tex-
ture distance measures.

Question III: What is a legitimate texture distance
measure?

In computer vision, the distance between two texture
images are often defined based on the difference of their
feature statistics (see Azencott et al., 1997; Rubner
et al., 1998 and references therein). These measures
are practically very effective and useful, but lose their
elegance by ignoring important factors such as the de-
pendence between elements in the feature statistics,
boundary conditions, and the effects of lattice sizes.

The second thrust of this paper is to study a legitimate
texture distance based on the texture models of both
small and large lattice systems. We generalize the tra-
ditional distance measures, such as Kullback-Leibler
divergence, to random fields. In particular we attempt
to explain the asymmetry property observed in texture
“pop-out” experiments by the calculation of Kullback-
Leibler divergence.

In this paper, our theories on ensemble equivalence
and texture distance are verified by two groups of ex-
periments. The first experiment simulates two Monte

Carlo Markov chains, one sampling the Julesz ensem-
ble, and the other sampling the corresponding FRAME
model. Both chains synthesize typical texture images
that have similar visual appearances. The second ex-
periment computes the distance of texture pairs, and
demonstrates the asymmetry in texture distance.

The paper is organized as follows. Section (2) ex-
plains some background concepts, such as type, ensem-
ble, entropy function, and equivalence between Julesz
ensembles and FRAME models using a simple iid ex-
ample. Section (3) briefly reviews the Julesz ensem-
bles and FRAME models. Then section (4) proves the
equivalence between Julesz ensembles and FRAME
models. Some experiments are shown in section (5)
to demonstrate the equivalence. Section (6) reviews
some important mathematical results and briefly dis-
cusses phase transition. Then we study texture distance
in Section (7) with experiments in Section (7.2). Fi-
nally we discuss some related issues in Section (8).

Throughout this article, we concentrate on under-
standing basic ideas and important insights while tak-
ing a relaxed attitude towards mathematical rigor.

2. Background I: The Basic Concepts

In this section, we introduce the basic concepts, such
as type, ensemble, entropy function, typical images,
and equivalence of ensembles, using a simple image
model where the pixel intensities are independently and
identically distributed (iid).

2.1. Type, Ensemble, and Entropy Function

Let I be an image defined on a finite lattice3 ⊂ Z2,
and the intensity at pixelv ∈ 3 is denoted byI(v) ∈
G = {1, 2, . . . , g}. ThusÄ3 = G|3| is the space of
images on3, with |3| being the number of pixels
in 3.

1. The FRAME model for iid images. We consider
a simple image model where pixel intensi-
ties are independently and identically distributed
according to a probability distributionp =
(p1, . . . , pg),

∑
i pi = 1. The distribution ofI can

be written as a FRAME model

p(I ;β) =
∏
v∈3

pI(v) =
g∏

i=1

pHi (I)
i

= exp{〈log p, H(I)〉} = exp{−〈β, H(I)〉},
(1)
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whereH(I) = (H1(I), . . . , Hg(I)) is the unnormal-
ized intensity histogram ofI , i.e., Hi is the num-
ber of pixels whose intensities equal toi . β =
−(log p1, . . . , log pg) is the parameter ofp(I ;β)
—a special case of the FRAME model.

2. Type. Let h(I) = (h1(I), . . . , hg(I)) = (H1(I)/
|3|, . . . , Hg(I)/|3|) = H(I)/|3| be the normal-
ized intensity histogram. We callh(I) the typeof
imageI , and it is the sufficient statistics for model
p(I ;β). That is, images of the same type receive
the same probabilities fromp(I ;β).

3. Equivalent class. Let Ä3(h) be the set of images
defined on3 with h(I) = h,3 i.e.,Ä3(h) = {I :
h(I) = h}. Then the image space is partitioned into
equivalence classes

Ä3 = ∪hÄ3(h).

As shown in Fig. 1, each equivalence classÄ3(h)
is mapped into one typeh on asimplex—a plane
defined byh1 + · · · + hg = 1 andhi ≥ 0, ∀i in a
g-dimensional space.

4. The Julesz ensemble for iid images. The hard
constraint in defining the equivalence classÄ3(h)
makes sense only in the limit as3 → Z2, where
statistical fluctuations vanish. Therefore, we may
attempt to define the Julesz ensemble as the limit of
Ä3(h) as3→ Z2, or even more directly, as the set
of imagesI defined onZ2 with h(I) = h.

Unfortunately, the above “definitions” are not
mathematically well-defined. Instead, we need to
define the Julesz ensemble in a slightly indirect way.
First, we associate each equivalence classÄ3(h) a
probability distributionq(I ; h), which is uniform
overÄ3(h) and vanishes outside. Then, the Julesz
ensemble of typeh is defined to be the limit of
q(I ; h) as3→ Z2.

For finite3, the equivalence classÄ3(h)may be
empty because|3|h may not be a vector of integers.
Thus, to be more rigorous, we should replaceh by
a small setH aroundh, and letH goes toh as

Figure 1. The partition of image space into equivalence classes,
where each class corresponds to a typeh on a probability simplex.

3→ Z2. For simplicity, however, we shall neglect
this minor complication and simply treat|3|h as a
vector of integers.

The uniform distributionq(I ; h) only serves as a
counting measure of the equivalence classÄ3(h),
i.e., all the images inÄ3(h) are counted equally.
Therefore, any probability statement under the uni-
form distributionq(I ; h) is equivalent to a statisti-
cal or frequency statement of images inÄ3(h). For
example, the probability that imageI has a certain
property underq(I ; h) can be interpreted as the fre-
quency or the proportion of images inÄ3(h) that
have this property. The limit ofq(I ; h) thus essen-
tially defines a counting measure of the set of in-
finitely large images (defined onZ2) with histogram
h. With a little abuse of language, we sometimes
also call the equivalence classÄ3(h) defined on
a large lattice3 a Julesz ensemble, and it is al-
ways helpful to imagine a Julesz ensemble as such
an equivalence class if the reader finds the limit of
probability measures too abstract.

5. Entropy function. We are interested in computing
the volume of the Julesz ensembleÄ3(h), i.e., the
number of images inÄ3(h). We denote this volume
by |Ä3(h)|. Clearly

|Ä3(h)| = |3|!∏g
i=1(hi |3|)!

.

Using the Stirling formula, it can be easily shown
that

lim
3→Z2

1

|3| log |Ä3(h)|

= lim
3→Z2

1

|3| log
|3|!∏g

i=1(hi |3|)!

= −
g∑

i=1

hi loghi = entropy(h).

Thus for large enough lattice, the volume ofÄ3(h)
is said to be in the order of entropy(h), i.e.,

|Ä3(h)| ∼ e|3|entropy(h).

For notational simplicity, we denote the entropy
function bys(h) = entropy(h).

6. Probability rate function. Now we are ready to com-
pute the total probability mass thatp(I ;β) assigns
to an equivalence classÄ3(h). We denote this prob-
ability by p(Ä3(h);β). Because images inÄ3(h)
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all receive equal probabilities, it can be shown that

lim
3→Z2

1

|3| log p(Ä3(h);β)

= lim
3→Z2

1

|3| log

{
|Ä3(h)|

g∏
i=1

p|3|hi
i

}

= −
g∑

i=1

hi log
hi

pi
= −KL(h‖p),

where KL(h‖p) denotes the Kullback-Leibler dis-
tance fromh to p. KL(h‖p) ≥ 0 for all h and p,
with equality holds whenh = p.

Thus, on a large enough lattice, the total proba-
bility mass of an equivalence classÄ3(h) is said to
be in the order of−KL(h‖p), i.e.,

p(Ä3(h);β) ∼ e−|3|KL(h‖p). (2)

The −KL(h‖p) is the probability rate function
of h under modelp, and is denoted bysβ(h) =
−KL(h‖p).

Having introduced the basic concepts, we now ex-
plain the basic ideas of ensemble equivalence in the
next two subsections by going both directions from
one to the other.

2.2. From a FRAME Model to a Julesz Ensemble
on Infinite Lattice

A simple fact will be repeatedly used in this paper.
To see this fact, let’s consider the following example.
Suppose we have two terms, one ise5n, and the other
is e3n. Consider their sume5n + e3n. As n→∞, the
sume5n + e3n is dominated bye5n, and the order of
this sum is still 5, i.e., limn→∞ 1

n log(e5n + e3n) = 5.
This means that for the sum of many terms, the term
with the largest exponential order dominates the sum,
and the order of the sum is the largest order among the
individual terms.

Now let’s study the limit of the FRAME model
p(I ;β) as3→ Z2. According to (2), the probability
that p(I ;β) assigns to the equivalence classÄ3(h) is
of the exponential ordersβ(h) = −KL(h‖p), which,
as a function of typeh, achieves the maximum 0
at h∗ = p. Thus, the equivalence classÄ3(h∗) even-
tually absorbs all the probability mass ofp(I ;β)
as 3 → Z2. For otherh 6= p, the probability that
Ä3(h) receives goes to 0 at an exponential ratesβ(h) =

−KL(h‖p) < 0. Becausep(I ;β) assigns equal proba-
bilities to images in the same equivalence class,p(I ;β)
will eventually concentrate its probability mass uni-
formly onÄ3(h∗), and therefore become a Julesz en-
semble of typeh∗ = p.

For statisticsh(I), theh∗ can be called thetypical
valueof h(I) under the modelp(I ;β) because images
with h∗ absorb all the probability mass ofp(I ;β) on
large lattice. In other words, if we sample fromp(I ;β)
on large lattice, we will almost always get an image
of type h∗. Therefore, as far as statisticsh(I) is con-
cerned, images inÄ3(h∗) can be calledtypical images
of p(I ;β).

It is important to distinguish between typical images
and most likely images. To see this point, let’s consider
the following example. Suppose amongp1, . . . , pg,
pm < 1 is the largest probability. Consider one ex-
treme typeh, with hm = 1, andhi = 0, ∀i 6= m. Then
the image in thisÄ3(h) is the most likely image under
model p(I ;β), i.e., it receives the highest probability.
However,Ä3(h) has only one constant image, and the
probability that p(I ;β) assigns to thisÄ3(h) is es-
sentially zero for large lattice. In other words, when
sampling from the modelp(I ;β) on large lattice, we
will almost never get the most likely images, instead,
we will almost always get the typical images (or most
common images). Therefore, it is the typical images
that a statistical model is intended to characterize.

2.3. From a Julesz Ensemble to a FRAME Model
on Finite Lattice

In this section, we tight up the notation a little bit. We
useI3 to denote the image defined on lattice3, and we
useI30 to denote the image patch defined on30 ⊂ 3.
For a fixed typeh of feature statistics, consider the
uniform distributionq(I ; h) onÄ3(h). Underq(I ; h),
the distribution ofI30, denoted byq(I30; h), is well
defined.4 Notice that the rest of the imageI3/30 influ-
encesI30 through a global constrainth(I3) = h. We
shall show that if we fix30 and let3 → Z2, then
q(I30; h) goes to the FRAME model (see Eq. (1)) with
p = h.

The number of images inÄ3(h) is

|Ä3(h)| = |3|!∏g
i=1(hi |3|)!

.

We fix I30 and calculate the number of images in
Ä3(h) whose image value (i.e., intensities) on30 is
I30. Clearly, for every such image, its image value on
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the rest of the lattice3/30, i.e.,I3/30, must satisfy

H
(
I3/30

) = h|3| − H
(
I30

)
,

whereH(I30) = |30|h(I30) is the unnormalized his-
togram of I30, and H(I3/30) is the unnormalized
histogram ofI3/30. Therefore

I3/30 ∈ Ä3/30

(
h|3| − H

(
I30

)
|3/30|

)
.

So the number of such images is|Ä3/30((h|3| −
H(I30))/|3/30|)|. Thus,

q(I30; h)

=
|Ä3/30( h|3|−H(I30)

|3/30| )|
|Ä3(h)|

=
(|3| − |30|)

/∏g
i=1 (hi |3| − Hi (I30))!

|3|
/∏g

i=1(hi |3|)!

=
∏g

i=1(hi |3|)(hi |3| − 1) · · · (hi |3| − Hi (I30)+ 1)
|3|(|3| − 1) · · · (|3| − |30| + 1)

=
∏g

i=1 hi (hi − 1/|3|) · · · (hi − (Hi (I30)− 1)/|3|)
(1− 1/|3|) · · · (1− (|30| − 1)/|3|)

→
g∏

i=1

h
Hi (I30 )

i as|3| → ∞.

Therefore, the distribution ofI30 is the FRAME model
(see Eq. (1)) withp = h under the Julesz ensemble of
typeh.

The above calculation can be interpreted in a non-
probabilistic way, i.e.,q(I30; h) is the frequency or
the proportion of images inÄ3(h) (on large3) whose
patches on30 are I30. In other words, if we look at
all the images in the Julesz ensemble through30, then
we will find a collection of image patches on30, and
the distribution of this collection is described by the
FRAME model. Under the hard constraint onh(I3),
h(I30) can still take any possible values.

3. Background II: Julesz Ensembles
and FRAME Models for Textures

For this paper to be self-contained, we briefly describe
the Julesz ensembles and FRAME models for textures.

3.1. Julesz Ensembles—A Mathematical Definition
of Textures

To study real world textures, one needs to character-
ize the dependency between pixels by extracting spa-
tial features and calculating some statistics averaged
over the image. One main theme of texture research
is to seek the essential ingredients in terms of features
and statisticsh(I ), which are the bases for human tex-
ture perception. From now on, we use the bold font
h to denote statistics of image features. Recently, the
search forh has converged to marginal histograms of
Gabor filter responses. We believe that some bins of
joint statistics may also be important as long as we can
keep the model complexity under check. We refer the
reader to Zhu et al. (2000) for discussion of various
choices of statistics.

Given K Gabor filters{F (1), . . . , F (K )} as feature
detectors, we convolve the filters with the imageI to
obtain subband filtered images{I (1), . . . , I (K )}, where
I (k) = F (k) * I . Let h(k) be the normalized intensity
histogram ofI (k), then the feature statisticsh collects
the normalized histograms of theseK subband images,

h(I) = (h(1)(I), . . . , h(K )(I)).
We useH(I) = (H (1)(I), . . . , H (K )(I)) to denote the
unnormalized histograms. We assume that boundary
conditions are properly handled (e.g., periodic bound-
ary condition). It should be noted that the conclusions
of this paper hold as long ash(I) can be expressed as
spatial averages of local image features. The marginal
histograms of Gabor filter responses are only special
cases.

Given statisticsh(I), one can partition the image
spaceÄ3 into equivalence classesÄ3(h)={I : h(I) =
h}, as we did for the iid case. For finite3, the exact
constrainth(I) = h may not be satisfied, so we relax
this constraint, and replaceÄ3(h) by

Ä3(H) = {I : h(I) ∈ H}
withH being a small set aroundh. Then we can define
the uniform counting measure or the uniform probabil-
ity distribution onÄ3(H) as

q(I ;H) =
{

1/|Ä3(H)|, if I ∈ Ä3(H),
0, otherwise,

(3)

where|Ä3(H)| is the volume of or the number of im-
ages inÄ3(H). Now we can define the Julesz ensemble
as follows.
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Definition. Given a set of feature statisticsh(I) =
(h(1)(I), . . . , h(K )(I)), a Julesz ensemble of typeh is a
limit of q(I ;H) as3 → Z2 andH → h with some
boundary condition.5

As in the iid example, the Julesz ensemble is defined
mathematically as the limit of a uniform counting mea-
sure. It is always helpful to imagine the Julesz ensem-
ble of typeh as the image setÄ3(h) on a large3. Also,
in the later calculation, we shall often ignore the minor
complication that the constrainth(I) = h may not be
exactly satisfied, and shall simply takeH to beh.

With Julesz ensembles, we are ready to give a math-
ematical definition for textures.

Definition. A texture pattern is a Julesz ensemble de-
fined by a typeh of the feature statisticsh(I).

Just as the wavelengthλ identifies a color, the type
h defines a texture. One of our early paper (Zhu et al.,
2000) provides a detailed account for the definition
of Julesz ensembles and Markov chain Monte Carlo
algorithms for exploring the Julesz ensembles.

3.2. The FRAME Models

While a texture is uniquely identifiable by typeh onZ2,
on finite lattice the texture statistics of different Julesz
ensembles overlap due to statistical fluctuations, and
boundary condition plays an important role. There-
fore, on finite lattice, texture is best represented by
a conditional probability distribution. Very often one
calls the conditional probability distribution a texture
model.

Among the studied texture models, Markov random
field models, or equivalently the Gibbs distributions,
are the most popular and elegant ones. Recently, (Zhu
et al., 1997) proposed a class of MRF models called
FRAME (Filter, Random field, And Maximum En-
tropy). The basic idea is as follows.

Given statisticsh(I)used in the texture definition, we
want a modelp(I) so that it has the expected statistics
h, i.e.,

Ep[h(I)] = h.

This is a “soft” constraint in comparison with the Julesz
ensemble because it only requires that the statistics are
matched on average.

Then a maximum entropy distribution, called
FRAME, is selected among all distributions that satisfy
the constraint. The distribution assumes the following
exponential form

p(I ;β) = 1

Z3(β)
exp{−〈β,H(I)〉}, (4)

whereβ is the parameter of the model andZ3(β) is
the normalizing constant. The parameterβ is solved
from the constraint Ep(I ;β)[h(I)] = h. p(I ;β) unifies
existing MRF texture models, which are different only
in their definitions of feature statisticsh(I). A detailed
account of the FRAME models and the minimax en-
tropy principle in selecting statisticsh(I) is referred to
an early paper (Zhu et al., 1997).

Unlike the Julesz ensembles, the FRAME models
assign probabilities to all the images defined on3. Al-
though the FRAME models are less straightforward
than the Julesz ensembles, they are much more ana-
lytically tractable due to the Markov property. That is,
for any30 ⊂ 3, the conditional distribution ofI30

given the rest of the imageI3/30 only depends on the
intensities of the neighboring pixelsI ∂30, where∂30

collects all the pixels around30 that can be covered
by the same filters as the pixels in30. The conditional
probability is

p
(
I30

∣∣ I3/30;β
) = p

(
I30

∣∣ I ∂30;β
)

= 1

Z30(β)
exp

{−〈β,H(I30

∣∣ I ∂30

)〉}
,

where H(I30 | I ∂30) collects the unnormalized his-
tograms by filtering inside30 ∪ ∂30. Note that this
conditional distribution is still of the FRAME form
with parameterβ, indicating that the FRAME model
gives a consistent specification of all the conditional
distributions of image patches.

4. Equivalence Between Julesz Ensembles
and FRAME Models

In this section, we unify the two research themes by
showing the equivalence between the Julesz ensem-
bles and the FRAME models, using the fundamen-
tal principle of equivalence of ensembles in statistical
mechanics.
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4.1. Physics Background

In statistical mechanics, there are two major models
for physical systems with a large number of degrees
of freedom. One is called the “micro-canonical” en-
semble, which is the ensemble of all the possible states
of a physical system with a fixed energy. The micro-
canonical ensemble is used to model a physical sys-
tem in thermal isolation, i.e., it does not exchange heat
with the environment and therefore has a constant en-
ergy. When such a system reaches equilibrium, its state
is supposed to follow a uniform distribution over the
micro-canonical ensemble. The other important model
is the Gibbs distribution, or the “canonical ensemble”.
It is used to model a physical system in thermal equilib-
rium with an environment of a fixed temperature. As to
the equivalence between micro-canonical and canoni-
cal ensembles, Gibbs (1902) argued that: 1) If a large
physical system is micro-canonically distributed, i.e.,
following a uniform distribution over the states with
a constant energy, then any small part of it follows a
Gibbs distribution. 2) A Gibbs distribution for a large
physical system is essentially micro-canonically dis-
tributed. Gibbs (1902) also proposed other arguments
to justify the Gibbs distribution. If we replace the en-
ergy of the physical system by the feature statistics
of the texture image, then we can identify the micro-
canonical ensembles with the Julesz ensembles, and
the Gibbs distributions or the canonical ensembles with
the FRAME models. So the equivalence between the
Julesz ensembles and the FRAME models follow di-
rectly from the principle of equivalence of ensembles
in statistical mechanics.

Since Gibbs’ time, many proofs have been given to
the equivalence of ensembles. Recently, Lewis et al.
(1995) gave a rigorous proof of the equivalence for lat-
tice systems under very general conditions. However,
modern rigorous treatments with large deviation tech-
nicalities tend to be too complicated and unapproach-
able for computer scientists. In this article, therefore,
we concentrate on understanding basic ideas and im-
portant insights in the context of texture modeling while
taking a relaxed attitude towards mathematical rigor.
Readers interested in rigorous formalisms are referred
to Lewis et al. (1995) and the references therein.

4.2. From a Julesz Ensemble to a FRAME Model

In this subsection, we derive the local Markov prop-
erty of the Julesz ensemble, which is globally defined
by typeh. This derivation is adapted from traditional

Figure 2. The lattices system:30 is a local patch, and∂30 is the
MRF boundary of30. Both are inside a fixed lattice31, and the
image lattice3 goes toZ2.

argument in statistical physics. It is not as rigorous as
modern treatments, but is much more revealing.

Suppose the feature statistics ish(I) whereI is de-
fined on3. For a fixed value of feature statisticsh,
consider the image setÄ3(h) = {I : h(I) = h} and
the associate uniform distributionq(I ; h). First, we fix
31 ⊂ 3, and then fix30 ⊂ 31, as shown in Fig. 2.
We are interested in the conditional distribution of the
local patchI30 given its local environmentI31/30 under
the modelq(I ; h) as3 → Z2. We assume that30 is
sufficiently smaller than31 so that the neighborhood
of 30, ∂30, is contained in31.

Let H0=H(I30 | I ∂30) be the unnormalized statis-
tics computed forI30 where filtering takes place within
30∪ ∂30. Let H01 be the statistics computed by filter-
ing inside the fixed environment31/30. Let 3−1 =
3/31 be the big patch outside of31. Then the statis-
tics computed for3−1 is h|3| − H0 − H01. Let h− =
(h|3| −H01)/|3−1|, then the normalized statistics for
3−1 is h− − H0/|3−1|.

For a fixed I30, the number of images inÄ3(h)
with such a patchI30 and its local environmentI31/30

is |Ä3−1(h− − H0/|3−1|)|. Therefore the conditional
probability, as a function ofI30, is

q
(
I30

∣∣ I31/30, h
) ∝ ∣∣∣∣Ä3−1

(
h− − H0

|3−1|
)∣∣∣∣.

Unlike the iid case, the about volume cannot be com-
puted analytically. However, the volume|Ä3(h)| still
shares the same asymptotic behavior as in the iid case,
namely,

lim
3→Z2

1

|3| log |Ä3(h)| → s(h),

wheres(h) is a concave entropy function ofh.
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Like the iid case, in the above derivation, we ignore
the minor technical complication thatÄ3(h) may be
empty because the exact constraint may not be satisfied
on finite lattice. A more careful treatment is to replace
h by a small setH aroundh, and letH→ h as3→
Z2. Let Ä3(H)={I : h(I) ∈ H}, then we have the
following

Proposition 1. The limit

lim
3→Z2

1

|3| logÄ3(H) = s(H)

exists. Let s(h) = limH→h s(H), then s(h) is concave,
and s(H) = suph∈H s(h).

See Lanford (1973) for a detailed analysis of the above
result. Thes(h) is a measure of the volume of the Julesz
ensemble of typeh. It defines the randomness of the
texture appearance of typeh. The exponential order of
|Ä3(H)| is the same as the order of the most random
equivalence class. For example, ifÄ3(H) = Ä3, then
the order is decided by the equivalent class of images
whose intensities are uniformly distributed.

With such an estimate, we are ready to compute
the conditional probability. Note that the conditional
distribution,q(I30 | I31/30, h), as a function ofI30, is
decided only byH0, which is the sufficient statistics.
Therefore, we only need to traceH0 while leaving other
terms as constants. For large3, a Taylor expansion at
h− gives

logq
(
I30

∣∣ I31/30, h
)

= constant+ log

∣∣∣∣Ä3−1

(
h− − H0

|3−1|
)∣∣∣∣

= constant+ |3−1|s
(

h− − H0

|3−1|
)

= constant− 〈s′(h−),H0〉 + o

(
1

|3|
)
.

Assuming the entropy functions(h) has continuous
derivative ath, and letβ = s′(h), then, as3 → Z2,
h− → h, ands′(h−)→ β. Therefore,

logq
(
I30

∣∣ I31/30, h
)→ constant− 〈s′(h),H0〉
= constant− 〈β,H0〉,

so

q
(
I30

∣∣ I31/30, h
)

→ 1

Z30(β)
exp

{−〈β,H(I30

∣∣ I ∂30

)〉}
,

which is exactly the Markov property specified by the
FRAME model. This derivation shows that local com-
putation using the FRAME model is justified under
the Julesz ensemble. It also reveals an important rela-
tionship, i.e., the parameterβ can be identified as the
derivative of the entropy functions(h), β = s′(h).

4.3. From the FRAME Model to the Julesz Ensemble

In this subsection, we study the statistical properties of
the FRAME model as3→ Z2.

Consider the FRAME model

p(I ;β) = 1

Z3(β)
exp{−|3|〈β, h(I)〉},

which assigns equal probabilities to images inÄ3(h).
The probability thatp(I ;β) assigns toÄ3(h) is

p(Ä3(h);β) = 1

Z3(β)
exp{−|3|〈β, h〉}|Ä3(h)|.

The asymptotic behavior of this probability is

sβ(h) = lim
3→Z2

1

|3| log p(Ä3(h);β)

= −〈β, h〉 + s(h)− lim
3→Z2

1

|3| log Z3(β).

For the last term, we have

Proposition 2. The limit

ρ(β) = lim
3→Z2

1

|3| log Z3(β)

exists and is independent of the boundary condition.
ρ(β) is convex.

Theρ(β) is calledpressurein physics. See Griffiths
and Ruelle (1971) for a rigorous analysis of the pressure
function.

Therefore, we have

Proposition 3. ForÄ3(h), the probability rate func-
tion sβ(h) of the FRAME model p(I ;β) is

sβ(h) = lim
3→Z2

1

|3| log p(Ä3(h);β)
= s(h)−〈β, h〉 − ρ(β).
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Then the probability mass thatp(I ;β) puts onÄ3(h)
has an exponential order

p(I ∈ Ä3(h);β) ∼ e|3|sβ (h). (5)

sβ(h) ≤ 0 for anyh andβ, otherwise the probability
will go unbounded.

Therefore, p(I ;β) eventually concentrates on
Ä3(h∗) with

h∗ = arg max
h

sβ(h)= arg max
h
{s(h) −〈β, h〉−ρ(β)}.

Moreover, the maximum ofsβ(h), i.e.,sβ(h∗), should
be 0. Otherwise, ifsβ(h∗) < 0, then the total probabil-
ity onÄ3 goes to zero, becauseh belongs to a compact
set. So we have the following

Theorem 1. If there is a uniqueh∗ where sβ(h)
achieves its maximum0, then p(I ;β) eventually con-
centrates onh∗ as3 → Z2. Therefore the FRAME
model p(I ;β) goes to a Julesz ensemble of typeh∗.
Moreover, if s(h) is differentiable ath∗, then s′(h∗) =
β.

The uniqueness ofh∗ holds under the condition that
there is no phase transition atβ.

The above analysis establishes a one to one corre-
spondence betweenβ and h∗ on large lattice in the
absence of phase transition.

sβ(h) can be identified with−KL(h‖p) in the iid
case, following the proposition below.

Proposition 4. Suppose two FRAME models pA =
p(I ;βA) and pB = p(I ;βB) concentrate onhA and
hB respectively. Then,

kl(pB‖pA) = lim
3→Z2

1

|3|KL(pB‖pA) = −sβA (hB),

where kl(pB‖pA) denotes the Kullback-Leibler diver-
gence rate(per pixel).

Proof: By definition, we have

lim
3→Z2

1

|3| log KL(pB‖pA)

= lim
3→Z2

1

|3| log EpB

[
log

p(I ;βB)

p(I ;βA)

]
= lim

3→Z2

1

|3| log
Z(βA)

Z(βB)
+ 〈βA, hB〉 − 〈βB, hB〉

= 〈βA, hB〉 − 〈βB, hB〉 + ρ(βA)− ρ(βB)

=−s(hB)+ 〈βA, hB〉 + ρ(βA) = −sβA (hB).

The last step follows from the fact thatsβB(hB) =
s(hB)− 〈βB, hB〉 − ρ(βB) = 0. 2

The above conclusion provides an intuitive explana-
tion for Eq. (5). The probability mass ofp(I ;β) on
classÄ3(h) decreases exponentially in an order that is
equal to the KL-divergence rate between the two mod-
els specified byh andβ.

4.4. Typical Versus Non-Typical Images
in a Julesz Ensemble

In this section, we discuss typical and non-typical im-
ages in a Julesz ensemble.

Consider a Julesz ensembleÄ3(h)of typeh. Images
in Ä3(h) all share the same statistics of typeh, how-
ever, they may differ in terms of other statistical prop-
erties. Suppose we introduce an arbitrary new statis-
tics h(0)(I) which measures additional image features
(e.g., marginal histogram of a new Gabor filter). Then,
images inÄ3(h) may differ in theirh(0)(I). This sug-
gests that we can partitionÄ3(h) into finer equivalence
classes (or sub-classes) according toh(0)(I), i.e.,

Ä3(h) = ∪h(0)Ä3
(
h, h(0)

)
,

where

Ä3
(
h, h(0)

) = {I : h(I) = h, h(0)(I) = h(0)
}
.

Now let’s study the volumes of these finer Julesz
ensembles. Let

s
(
h, h(0)

) = lim
3→Z2

1

|3| log
∣∣Ä3(h, h(0))∣∣

be the entropy function of the subclassÄ3(h, h(0)). For
a fixedh, if there is a uniqueh(0)∗ such thats(h, h(0))
achieves its maximum as a function ofh(0), then the vol-
ume|Ä3(h)| is dominated by the volume|Ä3(h, h(0)∗ )|,
and

s(h) = s
(
h, h(0)∗

)
,

because the order of the sum equals to the largest order
among individual terms.

Proposition 5. For a fixedh, if there is a unique h(0)∗
that maximizes s(h, h(0)) as a function of h(0), then the
Julesz ensemble of typeh concentrates on h(0)∗ , i.e.,
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Figure 3. For each row, the left image is observed as the training image, the middle image is a typical sample from the Julesz ensemble, and
the right image is a typical sample from the corresponding FRAME model.

almost all the images in the Julesz ensemble of typeh
have statistics h(0)(I) = h(0)∗ . We call h(0)∗ typical value
of h(0)(I) for the Julesz ensemble of typeh.

Therefore, the Julesz ensemble of typeh is essentially
the Julesz ensemble of type(h, h(0)∗ ). All images in the
other sub-classes are non-typical and have zero proba-
bility mass as3→ Z2. The uniqueness ofh(0)∗ holds
in the absence of phase transition.

Becauseh(0)(I) is arbitrary, we can let it collect
as many statistical properties as possible. The above
proposition then tells us that almost all the images in the
same Julesz ensemble share the same typical statisti-
cal propertiesh(0)∗ and therefore the same typical visual
appearance. As a result,if we can sample just one typ-
ical image fromÄ3(h) on large lattice, then we should
be able to tell the visual appearances of almost all the
images inÄ3(h). Obtaining a typical image can be ac-
complished by sampling fromq(I ; h), i.e., the uniform
distribution overÄ3(h), or sampling from the corre-
sponding FRAME modelp(I ;β). See the next section
for some experiments. The non-typical subclasses in-
clude images such as human faces and office scenes,
which may not be considered as texture in perception.

5. Equivalence of Ensembles: Experiments
and its Significance

In this section, we demonstrate some experimental
results on sampling the Julesz ensembles and their

corresponding FRAME models, and discuss practical
implications of ensemble equivalence in modeling vi-
sual patterns beyond textures.

We conduct our experiments on a set of 20 texture
images, five of which are shown in Figs. 3 and 4. For
ease of computation, these images are quantized into 8
gray levels only. We do not implement the filter pur-
suit process used in our early work (Zhu et al., 1997).
Instead we fix a set of 34 filters for all 20 images: one
for intensity, four gradient filters for the horizontal and
vertical directions, five Laplacian of Gaussian filters at
various scales, and 24 Gabor filters at 4 scale and six
different orientations. The statisticsh(I) collects the
histograms of the 34 filters.

For each of the 20 images, we simulate three
Monte Carlo Markov Chains (MCMC) for stochastic
sampling.

MCMC I : it starts from a white noise image, and sam-
ples from the uniform distributionq(I ; hobs) using
a simple annealing process, wherehobs= h(Iobs) is
the type of the observed image. This process sim-
ulates typical images from the Julesz ensemble of
typehobs. A detailed account is given in (Zhu et al.,
2000).

MCMC II : it simulates an inhomogeneous Markov
chain to learn the parametersβ in the FRAME model
p(I ;β) from the observed statisticshobs, as is dis-
cussed in our early work (Zhu et al., 1997).

MCMC III : it starts from a white noise image, and sim-
ulates a homogeneous Markov chain sampling from
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Figure 4. For each row, the left image is observed as the training image, the middle image is a typical sample from the Julesz ensemble, and
the right image is a typical sample from the corresponding FRAME model.

the modelp(I ;β) learned using MCMC II. This pro-
cess synthesizes typical images from the FRAME
model, which, as we have shown, is equivalent to
the Julesz ensemble on large image lattice.

MCMC I and MCMC III provide two different ways
to explore the typical images of the Julesz ensemble of
typehobs. It is worth mentioning that the convergence
of MCMC III is practically much slower and harder
than that of MCMC I.

The results of MCMC I and III are shown in the
middle and right columns of Figs. 3 and 4 respectively.
The visual similarity of their appearances demonstrates
that both the Julesz ensemble and the FRAME model
focus on the same set of typical images that share iden-
tical statistical properties subject to minor statistical
fluctuations on finite lattice.

The ensemble equivalence has a broad implication
for modeling general visual patterns beyond textures,
for example, shapes, flow patterns, speech signals and
natural languages.

Figure 5 summarizes a unified paradigm for model-
ing general visual patterns using feature statistics from

a dictionary shown on the right side. Given a natural
pattern generated by some unknown stochastic process,
we have as observation a set of samples, such as a set
of images. The natural process is shown by the dot-
ted ellipse. The goal is to characterize these samples in
computer applications. There are two methodologies as
shown by the two paths in Fig. 5. The solid line (path 1)
represents the research theme that pursues a Gibbs
model based on a minimax entropy learning scheme
(Zhu et al., 1997). The dashed line (path 2) represents
the research theme that seeks the definition of the pat-
tern on large lattice systems, i.e. the Julesz ensemble.
Both the Gibbs model and the Julesz ensemble are ver-
ified through stochastic sampling using Markov chain
Monte Carlo as a general engine. The two lines are
connected by the equivalence of ensembles.

Practically, the ensemble equivalence enables us to
utilize the advantages of both methodologies. Path 2
is more effective for model verification and model se-
lection, since it does not have to learn the expensive
Gibbs model explicitly. Path 1 is useful for local com-
putation in vision tasks, such as image segmentation
and discrimination.
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Figure 5. A global picture for theories of stochastic modeling.

Conceptually, the unification helps us link mathe-
matical concepts such asprobability modelsanden-
tropy in finite lattice systems to intuitive concepts such
asensemblesandvolumeson large lattice systems.

In a broader sense, Fig. 5 represents a self-consistent
paradigm based on the philosophy dated back to
Julesz (1962): perception is a process that computes
essential features and statistics. In recent papers, this
paradigm has been applied to modeling other visual
patterns, such as 2D object shapes (Zhu, 1999) and
generic images and clutter (Zhu and Mumford, 1997).

6. Geometric Interpretation
and Phase Transition

In this section, we review the geometric interpretation
of the relationship betweens(h) andρ(β), and discuss
phase transition briefly.

So far, we have introduced three important concepts
in the limit3→ Z2.

1. Given statisticsh and its Julesz ensembleÄ3(h),
we have the entropy functions(h) that is the
exponential order of the volume ofÄ3(h),

s(h) = lim
3→Z2

1

|3| log |Ä3(h)|.

2. Given parametersβ and its FRAME modelp(I ;β),
we have the pressure functionρ(β) that is the ex-
ponential order of the partition functionZ3(β),

ρ(β) = lim
3→Z2

1

|3| log Z3(β).

3. The probability rate functionsβ(h) links β andh.
sβ(h) is the exponential order of the probability
mass thatp(I ;β) assigns toÄ3(h),

sβ(h) = lim
3→Z2

1

|3| log p(I ∈ Ä3(h);β)
= s(h)− 〈β, h〉 − ρ(β).

Whensβ(h) achieves its maximum zero, we have the
relationship betweenh andβ.

Definition. If sβ(h)= 0, i.e., s(h)−〈β, h〉− ρ(β)
= 0, thenβ andh are said to correspond to each other.

From the definition, one can derive the interesting
geometric relationship betweenβ andh as displayed
in Fig. 6.

Proposition 6. If β0 andh0 correspond to each other,
and ifρ(β) is differentiable atβ0, then

s′(h0) = β0, and ρ ′(β0) = h0.
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Figure 6. Convex conjugate betweenρ(β) ands(h). (a) The tangentρ′(β0) = h0 and all planes are belowρ(β0); (b) The tangents′(h0) = β0
and all planes are aboves(h0).

That is,β0 is the tangent ofs(h) ath = h0 andh0 is
the tangent ofρ(β) atβ = β0. Furthermore, because
ρ(β) is convex, all the planesρ = s(h) − 〈β, h〉 are
below the point(β0, ρ(β0)), i.e.,

ρ(β0) ≥ s(h)− 〈β0, h〉 ∀h, ∀β0.

In a similar way, becauses(h) is concave, all the planes
s= ρ(β)+〈β, h0〉 are above(h0, s(h0))

s(h0) ≤ ρ(β)+〈h0,β〉 ∀β, ∀h0,

This is formally expressed by the following proposi-
tion, illustrated in Fig. 6. It holds even whenρ(β0) is
not differentiable.

Proposition 7. s(h) andρ(β) are convex conjugates,
i.e.,

ρ(β) = max
h
{s(h)−〈β, h〉} , (6)

s(h) = min
β
{p(β)+〈β, h〉} . (7)

Figure 7. (a) If ρ(β) is not differentiable atβ=β0, a phase transition occurs, and there exists a convex set of expected statisticsh, as shown
by the interval [h1, h2]; (b) The entropy functions(h) has a constant tangentβ0 over a set ofh.

If one of(6) and(7) is true, then the other must be true.

The equalities in (6) and (7) holds whenβ andh
correspond to each other. See Lanford (1973) for a
detailed analysis.

The differentiability of ρ(β) at β0 determines
whether there is a phase transition atβ0. Recall that

∂

∂β

1

|3| log Z3(β) = −Eβ [h(I)].

Althoughρ(β) as the limit of logZ3(β)/|3| always
exists, it may not be differentiable atβ0, indicating
that a phase transition occurs atβ0. So Eβ0[h(I)] may
go to multiple limits under different boundary condi-
tions. Meanwhile, the probability rate functionsβ0(h)
ors(h)−〈β0, h〉may achieve its maximum at multiple
h. Becauses(h) is a concave function, this can happen
only whens(h) is not strictly concave, i.e.,s(h) has a
linear piece. Figure 7 illustrates the concept. In a), a
cusp appears at pointβ0, so the convex functionρ(β)
can be above multiple planes atβ0. In b), there is a



Equivalence of Julesz Ensembles and FRAME Models 261

flat linear piece ins(h) so that manyh share the same
tangentβ0.

If there is a phase transition atβ0, then when we
sample from the FRAME modelp(I ;β0) on a large
lattice, we may get images of different statistical prop-
ertiesh(I) and therefore different visual appearances
if we use different boundary conditions. This indicates
that the effect of boundary conditions does not vanish
on large lattice.

If for an h0, the correspondingβ0 leads to a phase
transition, then when we sample fromq(I ; h), i.e.,
the uniform distribution overÄ3(h) on a large lat-
tice, we may get images consisting of several large
pieces of different statistical properties (and visual ap-
pearances), and each piece can arise from the FRAME
model p(I ;β0) under suitable boundary conditions.
See Martin-Lof (1979) for a more discussion.

In our experiments, we have not captured a definitive
phase transition phenomenon described above. We will
leave this issue for future investigation.

7. Measure of Texture Distance and Asymmetry

In this section, we study model-based texture dis-
tance that extends the traditional signal detection the-
ory (Green and Swets, 1988) from iid signals to random
fields.

7.1. Distance Measure on Random Fields

In search of texture statisticsh(I) to which pre-attentive
vision is sensitive, psychophysicists use texture dis-
crimination experiments to see how effortlessly a fore-
ground texture patch B can “pop out” from a back-
ground texture A and vice versa.

One widely observed phenomenon in the pop-out
experiments is asymmetry. For example, it is easier
for a moving dot to pop out from a background of
static dots than for a static dot to pop out from a back-
ground of moving dots. A curve pops out easily from
a background of straight lines, whereas it is harder
to detect a straight line from a background of curves.
The perceptual distances between two texture images
are also found to be asymmetrical (see Richard and
Koenderink, 1995 and references therein).

This asymmetry can be explained by the asymmetry
of the Kullback-Leibler distance between the statistical
models of the two signals. In the case where elements
in each signal, such as moving dots, are independently

Gaussian distributed, this KL-divergence is reduced to
the Mahalanobis distance (Rosenholtz, 1999) or signal
to noise ratio (SNR) in traditional signal detection the-
ory (Green and Swets, 1988). To our knowledge, there
has been no rigorous work for computing distance for
signals that are not independently distributed, such as
textures on random fields.

The basic scenario is as follows. A background of
texture A defined on a large lattice3 is generated from
a FRAME modelp(I ;βA). Within the background, a
small patchI30 of texture B with30 ⊂ 3 is generated
from a modelp(I ;βB). There are two ways to gen-
erate B in A. One is to generate the foreground patch
I30 from the conditional distributionp(I30 | I3/30;βB)

with I3/30 ∼ p(I3/30;βA) being the boundary con-
dition. The other method crops a patchI30 from
I3∼ p(I ;βB), and pastes it to the background of tex-
ture A by occlusion, soI30 is generated from the
marginal distribution ofp(I ;βB) with the boundary
condition integrated out according top(I ;βB). The
second case often generates sharp edges, which con-
stitute a strong artificial cue for discrimination, thus
we only discuss the first case where the background is
used as the boundary condition.

We formulate the problem in a Bayesian inference
framework. The easiness of pop-out is measured by the
ratio of the posterior probabilities of pop-out versus no
pop-out.

r (I3)

= Pr(pop-out| I3)
Pr(no pop-out| I3)

= Pr(pop-out)

Pr(no pop-out)

Pr(I3 | pop-out)

Pr(I3 | no pop-out)

= Pr(pop-out)

Pr(no pop-out)

p
(
I3/30;βA

)
p
(
I30

∣∣ I3/30;βB

)
p(I3;βA)

,

= Pr(pop-out)

Pr(no pop-out)

p
(
I30

∣∣ I ∂30;βB

)
p
(
I30

∣∣ I ∂30;βA

) ,
I3/30 ∼ p

(
I3/30;βA

)
,

where Pr(pop-out) and Pr(no pop-out) are prior proba-
bilities of pop-out and no pop-out respectively. There-
fore, the log of posterior ratio

logr (I3)

= log
p
(
I30

∣∣ I ∂30;βB

)
p
(
I30

∣∣ I ∂30;βA

) + log
Pr(pop-out)

Pr(no pop-out)
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is decided by the first term with fixed prior proba-
bilities. In the following, we assume Pr(pop-out) =
Pr(no pop-out), so the second term in the above
vanishes. Averaging overI30 ∼ p(I30 | I3/30;βB) and
I3/30 ∼ p(I3/30;βA), the easiness of pop-out is

MAB =Ep(I3/30;βA )

{
Ep(I30 |I ∂30;βB )

[log r (I3)]
}

(8)

=Ep(I3/30;βA )

{
KL
(
p
(
I30

∣∣ I ∂30;βB

)
‖p(I30

∣∣ I ∂30;βA

))}
. (9)

The largerMAB is, the easier for patchB to pop out
from backgroundA.

GivenβA andβB, MAB only depends on the shape
of the foreground patch30. We now briefly study the
behavior ofMAB when30 is sufficiently large such that
the effect of the boundary condition diminishes. Let
hA andhB be the statistics corresponding toβA andβB
respectively. We have

MAB ≈ Ep(I30;βB )

[
log

p
(
I30;βB

)
p
(
I30;βA

)]
≈ log Z30(βA)+ |30|〈βA, hB〉
− log Z30(βB)− |30|〈βB, hB〉
∼ |30| {ρ(βA)+〈βA, hB〉− ρ(βB)+〈βB, hB〉}
= −|30|sβA (hB) = |30|kl(pB‖pA)

= − log p
(
I ∈ Ä30(hB);βA

)
.

p(I ∈ Ä30(hB);βA) measures how likely a texture
patch of typeA has typical statisticshB of textureB. If
this probability is large, then the backgroundA is very
distracting, and it is hard forB to pop out.

From the above derivation, for large patch30,
MAB increases in proportion to|30| with a rate
−sβA (hB) ≥ 0, which is the Kullback-Leibler diver-
gence rate. Because kl(pB‖pA) 6= kl(pA‖pB) in gen-
eral, MAB 6= MBA, which leads to the asymmetry
in pop-out easiness. Also, for large lattice, the task
of texture discrimination becomes trivial, that is,the
foreground texture must pop out effortlessly unless
kl(pB‖pA) = 0. This is why psychologists can use
pop-out experiments to test what kind ofh(I) are es-
sential in the pre-attentive visual processing stage.

7.2. Experiments on Texture Distance

The KL-divergence rate between two FRAME models
are not analytically computable, so we seek numerical
approximation.

First, we synthesize a large imageIA ∼ p(I ;βA).
Then we dig a number ofN holes inIA, each hole has
m× m pixels. We denote by3m the lattice form×
m pixels, and we label the boundary images for each
hole asI (i )A , i = 1, . . . , N. They are typical samples
from p(I3/3m;βA). Then within each hole, we sample
L patches fromp(I3m | I (i )A ;βB), and we denote these
L patches byI (i, j )B for j = 1, . . . , L. Then we can
approximate theMAB for the foreground of shape3m

by Monte Carlo integration,

M (m)
AB = Ep(I3/3m;βA )

{
Ep(I3m;I∂3m,βB )

[log r (I3)]
}

≈ 1

N

N∑
i=1

1

L

L∑
j=1

log
p
(
I (i, j )B

∣∣ I (i )A ;βB

)
p
(
I (i, j )B

∣∣ I (i )A ;βA

) ,
= 1

N L

N∑
i=1

L∑
j=1

[
log

Z
(
I (i )A ,βA

)
Z
(
I (i )A ,βB

)]
× 〈βA − βB,H

(
I (i, j )B

∣∣ I (i )A

)〉
.

In practice, we setL = 100 andN = 200. The key dif-
ficulty is to compute the ratioZ(I (i )A ,βA)/Z(I (i )A ,βB).

We estimate the ratio by importance sampling (Meng
and Wong, 1996). We choose an intermediate modelβ0
betweenβA andβB, for example,β0 = (βA +βB)/2,
and generateI (1)3m

, . . . , I (n)3m
from p(I3m | I (i )A ;β0), and

then compute the ratio as

Z(βA)

Z(βB)

=
∑

I3m
exp{−〈βA, H(I3m)〉}∑

I3m
exp{−〈βB, H(I3m)〉}

=
∑

I3m
exp{−〈βA − β0, H(I3m)〉}p(I3m | I ∂3m;β0)∑

I3m
exp{−〈βB − β0, H(I3m)〉}p(I3m | I ∂3m;β0)

≈
∑n

i=1 exp{−〈βA − β0, H(I (i )3m
)〉}∑n

i=1 exp{−〈βB − β0, H(I (i )3m
)〉} .

For small hole sizem, e.g., m< 40, the model
p(I3m;β0) has enough overlap withp(I3m;βA) and
p(I3m;βB). Thus we can obtain reasonable approxi-
mations.

Given the distance computed for small lattices of
m×m pixels, we computeMAB as

MAB ≈ |30|
m2

M (m)
AB .

Figure 8 shows a pair of imagesIA andIB. We syn-
thesize three images forA insideB with30 = 32×32,
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Figure 8. Pop-out experiments with different foreground patch sizes. The size of the whole images is 256× 256. (a) Texture A;
(b) Texture B; (c)–(e) A in B with|30| =32× 32, 64 × 64, and 96× 96 pixels respectively; (f)–(g) B in A with|30| =32×
32, 64× 64, and 96× 96 pixels respectively.

64× 64, and 96× 96 pixels respectively. In compari-
son we also synthesize three images for textureB in A.
The estimated divergenceM (m)

AB and M (m)
BA are plotted

in Fig. 9. The KL-divergence rates per pixel are also
plotted in the same figure.

We observed that the KL-divergence rate per pixel
become almost a constant as the patch size increases.
This indicates that the computed distance is a valid es-
timation. M (m)

BA > M (m)
AB , indicating that A in B should

be easier to discriminate than B in A.
It would be interesting to compare the numbers with

human perception.

8. Discussion—Remaining Issues

This paper and two of our previous papers (Zhu
et al., 1997, 2000) study texture phenomena from a

mathematical perspective. The proposed paradigm (see
Fig. 5) is quite powerful judged from the recent suc-
cesses of texture synthesis experiments by ourselves
and others (Heeger and Bergen, 1995; Bonet and Viola,
1997; Portilla and Simoncelli, 1999). In the following,
we pose two major questions and challenges which may
lead to further development of texture research.

Question 1. What if texture perception is not bottom-up
computation?

The texture theory (both definition and model) is self-
consistent and mathematically sound. This theory is
built on the philosophy expressed implicitly in the fun-
damental question asked by Julesz (1995):

what features and statistics are characteristic of a
texture pattern, so that texture pairs that share the
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Figure 9. Estimated KL-divergenceM (m)
AB for the image pair shown

in Fig. 8 plotted against the hole sizem2. (a) The dashed curves
is M (m)

BA : texture A in texture B, and the solid curves isM (m)
AB : B

in A; (b) The average KL-divergence per pixel1
m2 M (m)

BA (dashed)
and 1

m2 M (m)
AB (solid).

same features and statistics cannot be told apart by
pre-attentive human visual perception?

Two important assumptions are implied in Julesz’s
question. One is that textures are “subjective” notion
defined by a particular visual system, such as pre-
attentive vision. The other assumption is that this notion
is determined bycomputing a set of feature statistics.
Thus by definition, statistics are extracted determinis-
tically in a bottom-up process. In other words, these
statistics are considered as attributes of the observed
texture images. This notion is also adopted in recent
work on extracting textons (Leung and Malik, 1999).
However, if these assumptions are not exactly right,
then we may have to investigate texture models of other
forms (Zhu and Guo, 2000).

Question 2. What are the other factors in texture
perception?

Textures should also be studied for attentive vision in
a broad context of visual perception, and many other
factors may influence our perception of textures. As
in color perception, one needs to study texture catego-
rization and mental dimensions in human texture per-
ception. We notice that some interesting non-metric
scaling techniques such as multi-dimensional scaling

(Rubner et al., 1998) and trajectory mapping (Richard
and Koenderink, 1995) have been used in some ex-
ploratory studies.

We leave these questions for future investigation.
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Notes

1. Throughout the paper, our discussion is focused on homogeneous
texture patterns on a 2D plane, and we do not discuss texture
deformation on 3D surface.

2. We shall discuss phase transition in a later section.
3. We hope that the notationh(I) = h will not confuse the reader.

Theh on the left is a function ofI for extracting statistics, while
theh on the right is a specific value of the statistics.

4. In the iid case,q(I30; h) is both the marginal distribution and
the conditional distribution ofq(I ; h), while in random fields, we
only consider the conditional distribution.

5. We assume3 → Z2 in the sense of van Hove, i.e., the ratio
between the boundary and the size of3 goes to 0.
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