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Abstract. Inthe past thirty years, research on textures has been pursued along two different lines. The first line of
research, pioneered by Julesz (196 Transactions of Information Thegryf-8:84—-92), seeks essential ingre-

dients in terms ofeatures and statistide human texture perception. This leads us to a mathematical definition of
textures in terms afulesz ensembl€ghu et al. IEEE Trans. on PAMINol. 22, No. 6, 2000). A Julesz ensembleis a

set of images that share the same value of some basic feature statistics. Images in the Julesz ensemble are defined on
alarge image lattice (a mathematical idealization b&f)gso that exact constraint on feature statistics makes sense.
The second line of research studies Markov random field (MRF) models that characterize texture patterns on finite
(or small) image lattice in a statistical way. This leads us to a general class of MRF models called FRAME (Filter,
Random field, And Maximum Entropy) (Zhu et dlleural Computatioy9:1627—1660). In this article, we bridge the

two lines of research by the fundamental principlegfiivalence of ensembliesstatistical mechanics (Gibbs, 1902,
Elementary Principles of Statistical Mechanidéle University Press). We show that 1). As the size of the image
lattice goes to infinity, a FRAME model concentrates its probability mass uniformly on a corresponding Julesz
ensemble. Therefore, the Julesz ensemble characterizes the global statistical property of the FRAME model; 2). For
alarge image randomly sampled from a Julesz ensemble, any local patch of the image given its environment follows
the conditional distribution specified by a corresponding FRAME model. Therefore, the FRAME model describes
the local statistical property of the Julesz ensemble, and is an inevitable texture model on finite (or small) lattice if
texture perception is decided by feature statistics. The key to derive these results is the large deviation estimate of
the volume of (or the number of images in) the Julesz ensemble, which we call the entropy function. Studying the
equivalence of ensembles provides deep insights into questions such as the origin of MRF models, typical images of
statistical models, and error rates in various texture related vision tasks (Yuille and ColiggETrans. on PAMI

\ol. 22, No. 2, 2000). The second thrust of this paper is to study texture distance based on the texture models of both
small and large lattice systems. We attempt to explain the asymmetry phenomenon observed in texture “pop-out” ex-
periments by the asymmetry of Kullback-Leibler divergence. Our results generalize the traditional signal detection
theory (Green and Swets, 1983gnal Detection Theory and Psychophysiasninsula Publishing) for distance mea-

sures from iid cases to random fields. Our theories are verified by two groups of computer simulation experiments.

Keywords: entropy functions, ensemble equivalence, FRAME models, Julesz ensembles, Kullback-Leibler
divergence, large deviation, Markov random fields

1. Motivation and Introduction Bergen (1995). A unified texture theory is emerging
after nearly four decades of intensive research in com-
Recently there is a resurgent interest in texture- puter vision and psychophysics following the philo-

search inspired by the artful work of Heeger and sophical theme erected by Julesz (1962). For the past
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few years, the authors, together with Mumford, have vanish. Therefore the entire image space is partitioned
studied texture phenomena from a mathematical per-into equivalent classes, within each class all images
spective (Zhu, et al., 1997, 1999). Our general goal is have identical statistics. We call each equivalent class a
to pursue a mathematically sound theory, which can Julesz ensemhlkike wave length. for color, a value of
provide self-consistent answers to the following three feature statistics defines a texture typeZén To study
fundamental questions. the statistical properties of Julesz ensembles, we attach

to each Julesz ensemble a uniform counting measure,
Question 1 What is a mathematical definition of or a uniform probability distribution.
texture? When we move fronZ? to finite lattice, the texture
statistics of different Julesz ensembles (or equivalence
classes) start to overlap due to statistical fluctuations.
) i . . . As the lattice gets smaller, e.g., in an extreme case the
terns and their underlying rendering mechanisms in | . . . .

lattice consists of only one pixel, it becomes harder to

nature. It turns out that the answer to this question be- ; o
, . - classify a texture, and boundary condition assumes a
comes possible once we possess the right perspective

. . : more important role. Therefore, on finite lattice, tex-
and the right tools. Before we approach this question, . o -
) ture is best represented bycanditional probability
let’s take a look at color theory.

) . ) . distributionrather than an equivalence class. Very of-
First, optics defines color as an electro-magnetic

. : X . o . ten one calls the conditional probability distribution a
wave. A visible color is uniquely identified by its wave
lengthy. € [400, 700jim. Second, trichromacy theory textur_emodel Now we naturally come to the second
o ) . o guestion below.

states that any visible color is a linear combination of
three basic colors: red, green, and blue. One may ask:
if we are lucky enough to have a texture theory that
is as clean as color theory, then what is the quantity
that defines textures uniquely? And what are the basic
elements that can generate textures in combination? The second major theme of texture research is to pur-

Texture is different from color in that it is a spatial sue statistical models to characterize textures on fi-
phenomenon. A texture definition cannot be based on nite lattice, driven by computer vision tasks such as
a single pixel, and one has to deal with spatial statis- texture segmentation and classification. Among the
tics averaged over the image. Thus a major theme of studied texture models, Markov random field models,
texture research is to seek the essential ingredients inor equivalently the Gibbs distributions, are the most
terms offeatures and statisticsThe objectiveistofind ~ popular and elegant ones. Influential work includes
feature statistics that are the bases for human textureBesag (1974) and Cross and Jain (1983). Recently, a
perception. Typical choices of feature statisticsinclude paper by Zhu et al. (1997) has shown that the MRF
Julesz’s 2-gon statistics (Julesz, 1962), co-occurrencemodels can be unified under a minimax entropy learn-
matrices (Gagalowicz and Ma, 1986), statistics of ing principle (Zhu et al., 1997). Given the statistics
texton attributes (Vistnes, 1989), Fourier transforms used in the texture definition, a FRAME (Filter, Ran-
(Liu and Picard, 1996), rectified functions (Malik and dom field, And Maximum Entropy) model can be de-
Perona, 1990), histograms of Gabor filter responsesrived as a Gibbs distribution or an exponential fam-
(Heeger and Bergen, 1995; Zhu et al., 1997; Bonet ily model whose parameters are adjusted in such a
and Viola, 1997), and correlations of filter responses way that the expectation of the texture statistics un-
(Portilla and Simoncelli, 1999). To verify the suffi- der the Gibbs distribution equal to a prescribed value.
ciency of these texture statistics, this research themeThe advantage of the FRAME model is that the condi-
also searches for mathematical tools and algorithms tional distribution of any local patch of the image given
that can synthesize texture images that have prescribedts environment can be easily specified because of the
statistics. One of our early paper (Zhu et al., 2000) Markov property. A detailed account for the FRAME
provides a detailed account for the achievements alongmodel and the minimax entropy principle in select-
this research line. ing statistics is referred to an early paper (Zhu et al.,

To obtain a quantity that can uniquely identify tex- 1997).
tures, one needs to define textures on an infinite lat- The theories and methods developed in the two re-
tice Z? as a mathematical idealization, where effects search themes are very different from each other, and
of boundary conditiorfsand statistical fluctuations thus a crucial question remains unanswered: Are the

This question has been considered extremely difficult
because of the overwhelming diversity of texture pat-

Question Il What is a legitimate texture model on a
finite lattice that is consistent with the texture definition
onz?%?
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FRAME models consistent with the texture definition Carlo Markov chains, one sampling the Julesz ensem-
in terms of Julesz ensembles? ble, and the other sampling the corresponding FRAME
In this article, we unify the two research themes by model. Both chains synthesize typical texture images
showing the equivalence between the Julesz ensem-that have similar visual appearances. The second ex-
bles and the FRAME models, using the fundamental periment computes the distance of texture pairs, and
principle of equivalence of ensembles in statistical me- demonstrates the asymmetry in texture distance.
chanics. The equivalence reveals two interesting facts The paper is organized as follows. Section (2) ex-
in texture research. plains some background concepts, such astype, ensem-
ble, entropy function, and equivalence between Julesz
* For a large image randomly sampled from a Julesz ensembles and FRAME models using a simple iid ex-
ensemble, any local patch of the image given its en- ample. Section (3) briefly reviews the Julesz ensem-
vironment follows the conditional distribution spec- bles and FRAME models. Then section (4) proves the
ified by a corresponding FRAME model. Therefore equivalence between Julesz ensembles and FRAME
the FRAME model describes the local statistical models. Some experiments are shown in section (5)
property of the Julesz ensemble, and is an inevitable to demonstrate the equivalence. Section (6) reviews
texture model on finite (or small) lattice if texture ~Some important mathematical results and briefly dis-
perception is decided by feature statistics. cusses phase transition. Then we study texture distance
¢ As the image lattice goes ©?, a FRAME model in Section (7) with experiments in Section (7.2). Fi-
concentrates all its probability mass uniformly over nally we discuss some related issues in Section (8).
a Julesz ensemble in the absence of phase transition. Throughout this article, we concentrate on under-
standing basic ideas and important insights while tak-
The key to the equivalence of ensembles is the large iNg a relaxed attitude towards mathematical rigor.
deviation estimate of the volume of the Julesz ensem-
ble (or the number of images in the Julesz ensemble), 2. Background I: The Basic Concepts
and we call this estimate the entropy function. The en-
semble equivalence provides insights into several basicIn this section, we introduce the basic concepts, such
questionsin texture study, such asthe origin ofthe MRF as type, ensemble, entropy function, typical images,
models, typical images of a statistical model, and tex- and equivalence of ensembles, using a simple image
ture distance measures. model where the pixel intensities are independently and
identically distributed (iid).
Question IIt What is a legitimate texture distance

measure 2.1. Type, Ensemble, and Entropy Function

In computer vision, the distance between two texture
images are often defined based on the difference of theirLet | be an image defined on a finite lattise C Z?,
feature statistics (see Azencott et al., 1997; Rubner and the intensity at pixal € A is denoted by (v) €
et al., 1998 and references therein). These measured = {1,2,...,09}. ThusQ, = Gl is the space of
are practically very effective and useful, but lose their images onA, with [A| being the number of pixels
elegance by ignoring important factors such as the de-in A.
pendence between elements in the feature statistics,
boundary conditions, and the effects of lattice sizes. 1. The FRAME model for iid image&Ve consider
The second thrust ofthis paperistostudy alegitimate  a simple image model where pixel intensi-
texture distance based on the texture models of both  ties are independently and identically distributed
small and large lattice systems. We generalize the tra-  according to a probability distributionp =
ditional distance measures, such as Kullback-Leibler — (p; ..., Py, > i P = 1. The distribution of can
divergence, to random fields. In particular we attempt be written as a FRAME model
to explain the asymmetry property observed in texture
“pop-out” experiments by the calculation of Kullback- 9
Leibler divergence. pd; B) = H P = H p®
In this paper, our theories on ensemble equivalence veA =1
and texture distance are verified by two groups of ex- expi(log p, H(I))} = exp{—(B, H())},
periments. The first experiment simulates two Monte (1)
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whereH (I) = (Hi(l), ..., Hg(l)) is the unnormal-
ized intensity histogram of, i.e., H; is the num-
ber of pixels whose intensities equal ito 8 =
—(log py, ..., log pg) is the parameter op(l; B)
—a special case of the FRAME model.

. Type Leth(l) = (hi(l),...,hg(1)) = (Hi()/
[Al, ..., Hg(D/IAD) = H()/|A| be the normal-
ized intensity histogram. We cdfi(l) the type of
imagel, and it is the sufficient statistics for model
p(; B). That is, images of the same type receive
the same probabilities from(l; B8).

. Equivalent class Let 2, (h) be the set of images
defined onA with h(l) = h2 ie., Qa(h) = {l :
h(l) = h}. Then the image space is partitioned into
equivalence classes

Qr = UnQa(h).

As shownin Fig. 1, each equivalence cl&sgh)
is mapped into one typk on asimplex—a plane
defined byh; + --- + hg = L andh; > 0,Vi ina
g-dimensional space.

. The Julesz ensemble for iid imagesThe hard
constraint in defining the equivalence cl&gg(h)
makes sense only in the limit as — Z2, where
statistical fluctuations vanish. Therefore, we may
attempt to define the Julesz ensemble as the limit of
Qa(h) asA — Z2, or even more directly, as the set
of images defined oriz? with h(l) = h.

Unfortunately, the above “definitions” are not
mathematically well-defined. Instead, we need to
define the Julesz ensemble in a slightly indirect way.
First, we associate each equivalence cfaggh) a
probability distributionq(l; h), which is uniform
over 2, (h) and vanishes outside. Then, the Julesz
ensemble of typé is defined to be the limit of
qd; h) asA — Z2.

For finite A, the equivalence clas, (h) may be
empty becausi\ |h may not be a vector of integers.
Thus, to be more rigorous, we should repladey
a small seti{ aroundh, and let goes toh as

WD [/

probability simplex:
hy+ -+ hg=1

partition of image space

Figure L The partition of image space into equivalence classes,
where each class corresponds to a tiyma a probability simplex.

A — Z2. For simplicity, however, we shall neglect
this minor complication and simply tregk |h as a
vector of integers.

The uniform distributiorg(l; h) only serves as a
counting measure of the equivalence clgsgh),
i.e., all the images 2, (h) are counted equally.
Therefore, any probability statement under the uni-
form distributionq(l; h) is equivalent to a statisti-
cal or frequency statement of image<iR (h). For
example, the probability that imadéehas a certain
property undeq(l; h) can be interpreted as the fre-
guency or the proportion of images &, (h) that
have this property. The limit af(l; h) thus essen-
tially defines a counting measure of the set of in-
finitely large images (defined at?) with histogram
h. With a little abuse of language, we sometimes
also call the equivalence class, (h) defined on
a large latticeA a Julesz ensemble, and it is al-
ways helpful to imagine a Julesz ensemble as such
an equivalence class if the reader finds the limit of
probability measures too abstract.

5. Entropy function We are interested in computing

the volume of the Julesz ensemi§lg (h), i.e., the
number ofimages i, (h). We denote this volume
by |24 (h)]. Clearly

|A]!
[T (hilAD!

Using the Stirling formula, it can be easily shown
that

|22 (h)| =

lim — Io 12 (M)
Az Ay 091

T asz2 |A| [T, (hi[A])!
g

hi logh; = entropyh).

i=1

Thus for large enough lattice, the volumetaf (h)
is said to be in the order of entrofh), i.e.,

|QA (h) | ~ e\A|entrop)(h) .

For notational simplicity, we denote the entropy
function bys(h) = entropyh).

. Probability rate function Now we are ready to com-

pute the total probability mass thptl; 8) assigns
to an equivalence class, (h). We denote this prob-
ability by p(24 (h); ). Because images 2, (h)
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all receive equal probabilities, it can be shown that —KL (h||p) < 0. Becaus(l; 8) assigns equal proba-
bilities to images in the same equivalence clggs;, 8)

lim 1 log p(2 (h): B) will eventually concentrate its probability mass uni-
A—22 | A formly on 2, (h,), and therefore become a Julesz en-
_ 1 9 A semble of typen, = p.
= lim, Al log | (24 (M) ]_[ P For statisticsh(l), theh, can be called theypical
=1 valueof h(l) under the modep(l; ) because images

9 h; with h, absorb all the probability mass @f(l; 8) on
- Z hi log b = —KL(hlp) large lattice. In other words, if we sample frgud ; 8)

=t on large lattice, we will almost always get an image
where KL(h|| p) denotes the Kullback-Leibler dis-  Of typeh,. Therefore, as far as statistibsl) is con-
tance fromh to p. KL(h||p) > 0 for all h and p, cerned, images if2, (h,) can be calledypical images
with equality holds whet = p. of p(l; B).

Thus, on a |arge enough lattice, the total proba_ Itis important to dlStIﬂgUlSh between typ|Ca| images

bility mass of an equivalence clags, (h) is said to and most likely images. To see this point, let’s consider

be in the order of-KL (h| p), i.e., the following example. Suppose amopg, ..., Py,
pm < 1 is the largest probability. Consider one ex-
p(Q2a(h); B) ~ e IAKLGIP), 2) treme typeh, with hy, = 1, andh; = 0, Vi £ m. Then

the image in thi2, (h) is the most likely image under
The —KL (h||p) is the probability rate function model p(l; B), i.e., it receives the highe_st probability.
of h under modelp, and is denoted by (h) = However,2, (h) has only one constant image, and the
—KL (h| p). probability thatp(l; ) assigns to thig2, (h) is es-
sentially zero for large lattice. In other words, when
Having introduced the basic concepts, we now ex- Sampling from the modep(l; ) on large lattice, we
plain the basic ideas of ensemble equivalence in the Will almost never get the most likely images, instead,

next two subsections by going both directions from We will almost always get the typical images (or most
one to the other. common images). Therefore, it is the typical images

that a statistical model is intended to characterize.

2.2. From a FRAME Model to a Julesz Ensemble

. ) 2.3. From a Julesz Ensemble to a FRAME Model
on Infinite Lattice

on Finite Lattice

A simple fact will be repeatedly used in this paper.
To see this fact, let's consider the following example.
Suppose we have two terms, onei8, and the other

is ¥, Consider their sure® + e®. Asn — oo, the
sume™ + e is dominated bye™, and the order of
this sum is still 5, i.e., lim_.« 2 log(e™ + ") = 5.
This means that for the sum of many terms, the term
with the largest exponential order dominates the sum,
and the order of the sum is the largest order among the
individual terms.

Now let's study the limit of the FRAME model
p(l; B) asA — Z?2. According to (2), the probability
that p(l; B) assigns to the equivalence cla3g(h) is
of the exponential ordesz(h) = —KL (h|| p), which, [A]!
as a function of typeh, achieves the maximum 0 (] = W
at h, = p. Thus, the equivalence clask, (h,) even- =1 '
tually absorbs all the probability mass g(l; ) We fix 1,5, and calculate the number of images in
as A — Z2. For otherh p, the probability that Q4 (h) whose image value (i.e., intensities) an is
Q4 (h) receives goesto 0 at an exponential sit) = I A,- Clearly, for every such image, its image value on

In this section, we tight up the notation a little bit. We
usel , to denote the image defined on lattiseand we
usel ,, to denote the image patch definedtn C A.
For a fixed typeh of feature statistics, consider the
uniform distributionq(l; h) on 2,4 (h). Underq(l; h),
the distribution ofl ,,, denoted byg(l ,; h), is well
defined* Notice that the rest of the imade, », influ-
enced 5, through a global constraithi(l ,) = h. We
shall show that if we fixAg and letA — Z2, then
g(I a,; ) goes to the FRAME model (see Eq. (1)) with

=h.

The number of images ift (h) is
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the rest of the latticé\ /Ao, i.e.,| o/a,, Must satisfy
H(1a/a0) = hIAl = H(Ia,).

whereH (1 5,) = |Aolh(l4,) is the unnormalized his-
togram of | 5,, and H(l/s,) is the unnormalized
histogram ofl 5 /»,. Therefore

So the number of such images [[€4/4,((h|A] —
H{4p))/I1A/AoD)|. Thus,

hiA| — H(IAO)

larmo € QA/A°< A/ Aol

q(IAo; h)
_loun ()|
EROY
(AT = 18] / T (AT = Hi(18o))!
AL/ Ty 1A D!

i AD(AL = 1) - (Al = Hi(lx) + 1)
IAIJAI =D - (JA] = Aol + 1)
g hi(hi — 3/1A] - (hi — (Hi(1a) — D/1A])
A =1/IAD--- Q= (1Al = D/IAD

& Hillag)
N 1_[hi as|A| — oo.
i=1

Therefore, the distribution df, , is the FRAME model
(see Eq. (1)) withp = h under the Julesz ensemble of
typeh.

The above calculation can be interpreted in a non-
probabilistic way, i.e.q(l »,; h) is the frequency or
the proportion of images if2 5 (h) (on largeA) whose
patches om\g arel 5,. In other words, if we look at
all the images in the Julesz ensemble thronghthen
we will find a collection of image patches ax,, and
the distribution of this collection is described by the
FRAME model. Under the hard constraint bfl »),

h(l ,) can still take any possible values.

3. Background IlI: Julesz Ensembles
and FRAME Models for Textures

For this paper to be self-contained, we briefly describe

the Julesz ensembles and FRAME models for textures.

3.1. Julesz Ensembles—A Mathematical Definition

of Textures

To study real world textures, one needs to character-
ize the dependency between pixels by extracting spa-
tial features and calculating some statistics averaged
over the image. One main theme of texture research
is to seek the essential ingredients in terms of features
and statisticé(1), which are the bases for human tex-
ture perception. From now on, we use the bold font
h to denote statistics of image features. Recently, the
search foh has converged to marginal histograms of
Gabor filter responses. We believe that some bins of
joint statistics may also be important as long as we can
keep the model complexity under check. We refer the
reader to Zhu et al. (2000) for discussion of various
choices of statistics.

Given K Gabor filters{F®, ..., F®)} as feature
detectors, we convolve the filters with the imagm®
obtain subband filtered imagés?, ..., 1%}, where
10 = F® « ] Leth® pe the normalized intensity
histogram ofl ¥, then the feature statistitscollects
the normalized histograms of thelsesubband images,

h(y = ("), ..., h*O)).

We useH (1) = (HO (), ..., H® (1)) to denote the
unnormalized histograms. We assume that boundary
conditions are properly handled (e.g., periodic bound-
ary condition). It should be noted that the conclusions
of this paper hold as long dg1) can be expressed as
spatial averages of local image features. The marginal
histograms of Gabor filter responses are only special
cases.

Given statisticsh(l), one can partition the image
spaceR, into equivalence classé€s, (h) ={l : h(l) =
h}, as we did for the iid case. For finit&, the exact
constrainth(l) = h may not be satisfied, so we relax
this constraint, and replage, (h) by

QAH) ={l :h(l) € H}

with H being a small set arourid Then we can define
the uniform counting measure or the uniform probabil-
ity distribution onQ2, (H) as

/1825 (FD1,
0»

if | € QuA(H),
otherwise

a7 = | )
where|Q2, (H)] is the volume of or the number of im-
agesim, (H). Nowwe can define the Juleszensemble
as follows.
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Definition. Given a set of feature statistitgl) = Then a maximum entropy distribution, called
(hD (1), ..., h®(1)), a Julesz ensemble of types a FRAME, is selected among all distributions that satisfy
limit of q(I; H) asA — Z? andH — h with some the constraint. The distribution assumes the following
boundary conditioR. exponential form

As inthe iid example, the Julesz ensemble is defined 1
mathematically as the limit of a uniform counting mea- pd; B) = 7.0 exp{—(8, H()}, (4)
sure. Itis always helpful to imagine the Julesz ensem- A
ble of typeh as the image s&t , (h) on alargeA. Also,
in the later calculation, we shall often ignore the minor Whereg is the parameter of the model add (3) is
complication that the constraihil) = h may notbe  the normalizing constant. The parameteis solved

exactly satisfied, and shall simply takéto beh. from the constraint .4 [h(1)] = h. p(l; 8) unifies
With Julesz ensembles, we are ready to give a math- €Xisting MRF texture models, which are different only
ematical definition for textures. in their definitions of feature StatIStItEQI ) A detailed

account of the FRAME models and the minimax en-
tropy principle in selecting statisti¢g1) is referred to
an early paper (Zhu et al., 1997).

Unlike the Julesz ensembles, the FRAME models
assign probabilities to all the images definedxanAl-
though the FRAME models are less straightforward
than the Julesz ensembles, they are much more ana-
lytically tractable due to the Markov property. That is,
for any Ag C A, the conditional distribution of,
given the rest of the image,,», only depends on the
intensities of the neighboring pixels,,, whered Aqg
collects all the pixels around that can be covered
by the same filters as the pixelsAy. The conditional
probability is

Definition. A texture patternis a Julesz ensemble de-
fined by a typeh of the feature statistids(l ).

Just as the wavelengthidentifies a color, the type
h defines a texture. One of our early paper (Zhu et al.,
2000) provides a detailed account for the definition
of Julesz ensembles and Markov chain Monte Carlo
algorithms for exploring the Julesz ensembles.

3.2. The FRAME Models

While a texture is uniquely identifiable by typenz?,
on finite lattice the texture statistics of different Julesz
ensembles ove_rl_ap due to sta;istical fluctuations, and P(Iao [ Tasae: B) = P(Iao | 1oa0: B)
boundary condition plays an important role. There-
fore, on finite lattice, texture is best represented by exp{—(ﬁ, H(IAO | |3A0))},
a conditional probability distribution. Very often one
calls the conditional probability distribution a texture
model where H(I 5, | 154,) collects the unnormalized his-
Among the studied texture models, Markov random tograms by filtering inside\g U dAg. Note that this
field models, or equivalently the Gibbs distributions, conditional distribution is still of the FRAME form
are the most popular and elegant ones. Recently, (Zhuwith parametei3, indicating that the FRAME model
et al., 1997) proposed a class of MRF models called gives a consistent specification of all the conditional
FRAME (Filter, Random field, And Maximum En- distributions of image patches.
tropy). The basic idea is as follows.
Given statisticti(1) used in the texture definition, we
want a modebp(l) so that it has the expected statistics 4 Equivalence Between Julesz Ensembles

h,i.e., and FRAME Models

1
B ZAo(IB)

Eplh(D] = h. In this section, we unify the two research themes by
showing the equivalence between the Julesz ensem-
This is a “soft” constraint in comparison with the Julesz bles and the FRAME models, using the fundamen-
ensemble because it only requires that the statistics aretal principle of equivalence of ensembles in statistical
matched on average. mechanics.
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4.1. Physics Background

In statistical mechanics, there are two major models
for physical systems with a large number of degrees
of freedom. One is called the “micro-canonical” en-
semble, which is the ensemble of all the possible states
of a physical system with a fixed energy. The micro-
canonical ensemble is used to model a physical sys-
tem in thermal isolation, i.e., it does not exchange heat
with the environment and therefore has a constant en-
ergy. When such a system reaches equilibrium, its state A
is supposed to follow a uniform distribution over the
micro-canonical ensemble. The otherimportant model
is the Gibbs distribution, or the “canonical ensemble”.
Itis used to model a physical system in thermal equilib-
rium with an environment of a fixed temperature. Asto
the equivalence between micro-canonical and canoni-
cal ensembles, Gibbs (1902) argued that: 1) If a large
physical system is micro-canonically distributed, i.e.
following a uniform distribution over the states with
a constant energy, then any small part of it follows a
Gibbs distribution. 2) A Gibbs distribution for a large
physical system is essentially micro-canonically dis-
tributed. Gibbs (1902) also proposed other arguments
to justify the Gibbs distribution. If we replace the en-
ergy of the physical system by the feature statistics
of the texture image, then we can identify the micro-
canonical ensembles with the Julesz ensembles, an
the Gibbs distributions or the canonical ensembles with
the FRAME models. So the equivalence between the
Julesz ensembles and the FRAME models follow di-
rectly from the principle of equivalence of ensembles
in statistical mechanics.

Since Gibbs’ time, many proofs have been given to
the equivalence of ensembles. Recently, Lewis et al.
(1995) gave a rigorous proof of the equivalence for lat-
tice systems under very general conditions. However,
modern rigorous treatments with large deviation tech-
nicalities tend to be too complicated and unapproach-
able for computer scientists. In this article, therefore,
we concentrate on understanding basic ideas and im- Ho
portantinsights in the context of texture modeling while q(IAo ‘ I Ar/A0s h) 08 ‘QAl (h— 1A |>‘
taking a relaxed attitude towards mathematical rigor. -1
Readers interested in rigorous formalisms are referred unlike the iid case, the about volume cannot be com-
to Lewis et al. (1995) and the references therein. puted ana|ytica||y_ However, the volum@ , (h)] still
shares the same asymptotic behavior as in the iid case,
namely,

Ao

dAo

Al

Figure 2 The lattices systemAg is a local patch, and A is the
MRF boundary ofAg. Both are inside a fixed lattica1, and the
image latticen goes taz2.

argument in statistical physics. It is not as rigorous as
modern treatments, but is much more revealing.

Suppose the feature statisticshi@) wherel is de-

" fined onA. For a fixed value of feature statistibs
consider the image s&,(h) = {l:h(I) = h} and
the associate uniform distributiaytl; h). First, we fix
A1 C A, and then fixAg C Ay, as shown in Fig. 2.
We are interested in the conditional distribution of the
local patcH 4, given its local environment,, /4, under
the modelg(l; h) asA — Z?. We assume thakg is
sufficiently smaller tham\; so that the neighborhood
dpf Ao, dAg, is contained imA 1.

Let Ho=H(l s, | l154,) be the unnormalized statis-
tics computed fol 5, where filtering takes place within
AgUdAg. LetHg; be the statistics computed by filter-
ing inside the fixed environmemt;/Ag. Let A_; =
A /A1 be the big patch outside @f;. Then the statis-
tics computed forA _; ish|A| — Hg — Hoz. Leth_ =
(h|A| — Hp1)/|A_1], then the normalized statistics for
A_pish_ — Ho/|A 1]

For a fixedl »,, the number of images i, (h)
with such a patcth,, and its local environmerity, /4,
is |Q2a_,(h— — Ho/|A_1])|. Therefore the conditional
probability, as a function dfy, is

4.2. From a Julesz Ensemble to a FRAME Model
, 1

In this subsection, we derive the local Markov prop- A“LT}Z N log [$24 (h)| — s(h),

erty of the Julesz ensemble, which is globally defined

by typeh. This derivation is adapted from traditional wheres(h) is a concave entropy function bf
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Like the iid case, in the above derivation, we ignore which is exactly the Markov property specified by the
the minor technical complication th&t, (h) may be FRAME model. This derivation shows that local com-
empty because the exact constraint may not be satisfiedputation using the FRAME model is justified under
on finite lattice. A more careful treatment is to replace the Julesz ensemble. It also reveals an important rela-
h by a small se#{ aroundh, and letH — hasA — tionship, i.e., the parametgr can be identified as the
Z?%. Let QA(H)={l:h() € H}, then we have the derivative of the entropy functios(h), 3 = s'(h).
following

Proposition 1. The limit 4.3. Fromthe FRAME Model to the Julesz Ensemble
lim 1 log 2, (H) = S(H) In this subsection, we study the statistical properties of
A—z2 | A the FRAME model as\ — Z2.

. . . Consider the FRAME model
exists. Let éh) = limy_n S(H), then gh) is concave

and g H) = sup,y sth).

pdl; B) =

See Lanford (1973) for a detailed analysis of the above Zr (B
result. Thes(h) isameasure of the volume of the Julesz
ensemble of typd. It defines the randomness of the
texture appearance of type The exponential order of
|24 (H)| is the same as the order of the most random
equivalence class. For exampleif (H) = Qa, then p(QA(h); B) =
the order is decided by the equivalent class of images ZA(B)
whose intensities are uniformly distributed.

With such an estimate, we are ready to compute
the conditional probability. Note that the conditional

exp{—|A[(8, h(D)},

which assigns equal probabilities to imagesin(h).
The probability thatp(l; 3) assigns ta2, (h) is

exp{—|A[(B, h)} I (h)].

The asymptotic behavior of this probability is

distribution,q(l o, | 1 o,/4,, 1), @s a function of 4, is sg(h) = I|m — log p(225 (h); B)

decided only byHq, which is the sufficient statistics. |A|

Therefore, we only need to trakkly while leaving other —(B, h) +s(h) — I|m —_log Zx(B).
terms as constants. For large a Taylor expansion at |A|

h_ gives

For the last term, we have
|qu(|A0 | IAl/Ao’ h)

_ constantt log|2, 1(h_ _ Ho )‘ Proposition 2. The limit
[A_q]
Ho — i 1 loq Z
= constant IA_1|S(h_ — 7 |) p(B) AIIJ}Z N 09 ZA(B)
-1
=constant- (s'(h_), Ho) + 0( 1 ) exists and is independent of the boundary condition.
|A] 0(B) is convex.
Assuming the entropy functiors(h) has continuous
derivative ath, and let3 = s'(h), then, asA — Z?2, The p(B) is calledpressurein physics. See Griffiths
h_ — h, ands'(h_) — 3. Therefore, and Ruelle (1971) for arigorous analysis of the pressure
function.
Iogq(IA0 | I Ar/Aos h) — constant- (s'(h), Ho) Therefore, we have

= constant- (3, Ho),
Proposition 3. For 2, (h), the probability rate func-

so tion sz(h) of the FRAME model (@; 3) is

A1 | Far/ao- D) s(h) = lim W log p(%24 (h): B)

1
— ZAO(/@) eXp{_<,8, H(le | |3A0)>}7 :S(h) _ ﬂv h _ ,O(ﬂ)
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Then the probability mass thatl; 3) puts onQ2, (h)
has an exponential order

p(l € Qa(h); B) ~ eAF®, (5)

sg(h) < O for anyh and3, otherwise the probability
will go unbounded.

Therefore, p(l; 3) eventually concentrates on
Q4 (h,) with

h. = arg mavsy (h) = arg max{s(h) —(8. h)—p(B)}.

Moreover, the maximum ass (h), i.e., sg(h,), should
be 0. Otherwise, is(h.) < 0, then the total probabil-
ity on Q, goes to zero, becaubdelongs to a compact
set. So we have the following

Theorem 1. If there is a uniqueh, where g(h)
achieves its maximu®, then gl; 3) eventually con-
centrates orh, as A — Z2. Therefore the FRAME
model fl; 3) goes to a Julesz ensemble of type
Moreover if s(h) is differentiable ah,, then $(h,) =

B.

The uniqueness di, holds under the condition that
there is no phase transition @t

The above analysis establishes a one to one corre-

spondence betweefi and h, on large lattice in the
absence of phase transition.

sg(h) can be identified with-KL (h||p) in the iid
case, following the proposition below.

Proposition 4. Suppose two FRAME modelg p=
p(; B,) and g5 = p(l; Bg) concentrate orha and
hg respectively. Then

1
Kl(pllpa) = lim 1AL (Pellpa) = —Spa (he),

where ki pg|| pa) denotes the Kullback-Leibler diver-
gence ratg per pixel).

Proof: By definition, we have

1
lim — logKL
ALmzz N 0g KL(pgllpa)

lim 1 logE, | lo
BT
Z(Ba)

Z(Bp)

pd; /GB):|
pd; Ba)

1
= lim — log + (Ba. hs) — (Bg, hg)

A—Z2 |A|

=(Ba, he) — (Bg. hg) + p(Ba) — p(Bp)
=—s(hg) + (Ba, hg) + p(Ba) = —Ss, (hp).

The last step follows from the fact thag, (hg) =
s(hg) — (Bg, he) — p(Be) = 0. O

The above conclusion provides an intuitive explana-
tion for Eq. (5). The probability mass gi(l; 3) on
class2, (h) decreases exponentially in an order that is
equal to the KL-divergence rate between the two mod-
els specified by andg3.

4.4. Typical Versus Non-Typical Images
in a Julesz Ensemble

In this section, we discuss typical and non-typical im-
ages in a Julesz ensemble.

Consider a Julesz ensemblg (h) of typeh. Images
in 24 (h) all share the same statistics of tylpehow-
ever, they may differ in terms of other statistical prop-
erties. Suppose we introduce an arbitrary new statis-
tics h©@ (1) which measures additional image features
(e.g., marginal histogram of a new Gabor filter). Then,
images in2, (h) may differ in theirh© (). This sug-
gests that we can partitian, (h) into finer equivalence
classes (or sub-classes) accordinh¥(1), i.e.,

Qa(h) = Uno Q24 (h, h©@),
where
Qa(h,h@) ={1:h@) =h, K@) =h@}.

Now let’s study the volumes of these finer Julesz
ensembles. Let

s(h. h®) 1 log|a(h.hO)|

= lim

A—Z2 |A|
be the entropy function of the subclagg(h, h®). For
a fixedh, if there is a uniqué’® such thats(h, h©@)
achieves its maximum as a functiort? , then the vol-
ume|24 (h)| is dominated by the volum&, (h, h'?)|,
and

s(h) = s(h, h{?),

because the order of the sum equals to the largest order
among individual terms.

Proposition 5. For a fixedh, if there is a unique v
that maximizes@, h@) as a function of ¥, then the
Julesz ensemble of tygeconcentrates on R, ie,
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Figure 3 For each row, the left image is observed as the training image, the middle image is a typical sample from the Julesz ensemble, and
the right image is a typical sample from the corresponding FRAME model.

almost all the images in the Julesz ensemble of type corresponding FRAME models, and discuss practical
have statistics @ (1) = h{?. We call H? typicalvalue  implications of ensemble equivalence in modeling vi-
of h©(I) for the Julesz ensemble of type sual patterns beyond textures.

We conduct our experiments on a set of 20 texture

Therefore, the Julesz ensemble of typis essentially ~ IMmages, five of which are shown in Figs. 3 and 4. For
the Julesz ensemble of tyge. h©)y. Al images in the ease of computation, these images are quantized into 8
other sub-classes are non-typical and have zero proba-9'ay 1evels only. We do not implement the filter pur-

bility mass asA — Z2. The uniqueness ¢t holds suit process used in our early work (Zhu et al., 1997).
in the absence of phase transition. Instead we fix a set of 34 filters for all 20 images: one

Becauseh©(1) is arbitrary, we can let it collect for intensity, four gradient filters for the horizontal and

as many statistical properties as possible. The abovever.tical directions, five Laplacialj of Gaussian filters at.
proposition then tells us that almost all the images in the V&1ious scales, and 24 Gabor filters at 4 scale and six
same Julesz ensemble share the same typical statistidifferent orientations. The statisti¢gl) collects the

cal properties® and therefore the same typical visual histograms of the 34 filters. _

appearance. As a restiftye can sample just one typ- For each of the 20 images, we simulate thr_ee
ical image frome2,, (h) on large lattice then we should Monte. Carlo Markov Chains (MCMC) for stochastic
be able to tell the visual appearances of almost all the SamPling.

images in2, (h). Obtaining a typical image can be ac-
complished by sampling fromp(l; h), i.e., the uniform
distribution over2, (h), or sampling from the corre-
sponding FRAME modep(l; 3). See the next section
for some experiments. The non-typical subclasses in-
clude images such as human faces and office scenes,
which may not be considered as texture in perception.

MCMC | : it starts from a white noise image, and sam-
ples from the uniform distribution(l; hops) USINg

a simple annealing process, whéxgs = h(l o) is

the type of the observed image. This process sim-
ulates typical images from the Julesz ensemble of
typeheps A detailed account is given in (Zhu et al.,

2000).
MCMC 1l : it simulates an inhomogeneous Markov
5. Equivalence of Ensembles: Experiments chaintolearn the parametg3sn the FRAME model
and its Significance p(l; B) from the observed statistitgys, as is dis-
cussed in our early work (Zhu et al., 1997).
In this section, we demonstrate some experimental MCMCIII :itstarts from awhite noise image, and sim-

results on sampling the Julesz ensembles and their ulates a homogeneous Markov chain sampling from
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Figure 4 For each row, the left image is observed as the training image, the middle image is a typical sample from the Julesz ensemble, and

the right image is a typical sample from the corresponding FRAME model.

the modelp(l; 3) learned using MCMCIII. Thispro-  a dictionary shown on the right side. Given a natural
cess synthesizes typical images from the FRAME pattern generated by some unknown stochastic process,
model, which, as we have shown, is equivalent to we have as observation a set of samples, such as a set
the Julesz ensemble on large image lattice. of images. The natural process is shown by the dot-
ted ellipse. The goal is to characterize these samples in
MCMC | and MCMC Il provide two differentways  computer applications. There are two methodologies as
to explore the typical images of the Julesz ensemble of shown by the two pathsin Fig. 5. The solid line (path 1)
typehgps It is worth mentioning that the convergence represents the research theme that pursues a Gibbs
of MCMC Il is practically much slower and harder model based on a minimax entropy learning scheme
than that of MCMC I. (Zhu et al., 1997). The dashed line (path 2) represents
The results of MCMC | and Ill are shown in the the research theme that seeks the definition of the pat-
middle and right columns of Figs. 3 and 4 respectively. tern on large lattice systems, i.e. the Julesz ensemble.
The visual similarity of their appearances demonstrates Both the Gibbs model and the Julesz ensemble are ver-
that both the Julesz ensemble and the FRAME model ified through stochastic sampling using Markov chain
focus on the same set of typical images that share iden-Monte Carlo as a general engine. The two lines are
tical statistical properties subject to minor statistical connected by the equivalence of ensembles.
fluctuations on finite lattice. Practically, the ensemble equivalence enables us to
The ensemble equivalence has a broad implication utilize the advantages of both methodologies. Path 2
for modeling general visual patterns beyond textures, is more effective for model verification and model se-
for example, shapes, flow patterns, speech signals andection, since it does not have to learn the expensive
natural languages. Gibbs model explicitly. Path 1 is useful for local com-
Figure 5 summarizes a unified paradigm for model- putation in vision tasks, such as image segmentation
ing general visual patterns using feature statistics from and discrimination.
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Figure 5 A global picture for theories of stochastic modeling.

Conceptually, the unification helps us link mathe- 2. Given parametey8 and its FRAME modep(l; 3),
matical concepts such gsobability modelsand en- we have the pressure functigi3) that is the ex-
tropyin finite lattice systems to intuitive concepts such ponential order of the partition functian, (3),
asensembleandvolumeson large lattice systems.

In a.broader sense, Fig. 5 re_presentsaself-consistent p(B) = lim i log ZA ().
paradigm based on the philosophy dated back to A—22 |A]

Julesz (1962): perception is a process that computes

essential features and statistics. In recent papers, this”

paradigm has been applied to modeling other visual ;

patterns, such as 2D object shapes (Zhu, 1999) and Mass thap(l; B) assigns taz, (),

generic images and clutter (Zhu and Mumford, 1997). s, (h)
B

The probability rate functiosg(h) links 3 andh.
sg(h) is the exponential order of the probability

— lim log p(l € Qa(h); B)
A—>Z2 |A]
6. Geometric Interpretation = s(h) — (B, h) — p(B).

and Phase Transition . . .
Whensg (h) achieves its maximum zero, we have the

In this section, we review the geometric interpretation "€ationship betweeh ands.

of the relationship betweesth) andp (3), and discuss
phase transition briefly.

So far, we have introduced three important concepts
in the limit A — Z2.

Definition. If sg(h)=0, i.e., s(h)— (B, h) —p(3)
= 0, thend andh are said to correspond to each other.

From the definition, one can derive the interesting
geometric relationship betweghandh as displayed

1. Given statistich and its Julesz ensembie, (h), in Fig. 6.

we have the entropy functios(h) that is the
exponential order of the volume 6f (h), Proposition 6.  If B, andh, correspond to each other
and if p(9) is differentiable af3,, then

s(h) = lim i log |24 (h)]
T Asz2 |A| 91824 (. S'(ho) = By, and p'(Bg) = ho.
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Figure & Convex conjugate betweeri3) ands(h). (a) The tangent’(3g) = ho and all planes are belop(3); (b) The tangens’ (hg) = 3q

and all planes are abogghp).

Thatis,3, is the tangent o§(h) ath = hg andhg is
the tangent op(3) at3 = 3,. Furthermore, because
p(B) is convex, all the planes = s(h) — (3, h) are
below the point3,, p(B8y)), i.e.,

p(Bo) = s(h) — (By, h)

In a similar way, becausgh) is concave, all the planes
s = p(B) + (B, ho) are aboveahyg, s(hg))

vh, ¥3,.

s(ho) < p(B) + (ho, B) VB, Vho,

This is formally expressed by the following proposi-
tion, illustrated in Fig. 6. It holds even wher(3,) is
not differentiable.

Proposition 7. s(h) andp(3) are convex conjugates
ie.,

p(B) = mgx{S(h) —(B.h)}, (6)
sth) = rTyn{p(ﬁ) + (B, h)}. (7)
Pep)
N I,\I,\h 2
B B
a

Figure 7.

p(Bo

If one of(6) and(7) is true, then the other must be true.

The equalities in (6) and (7) holds whe¢handh
correspond to each other. See Lanford (1973) for a
detailed analysis.

The differentiability of p(3) at 8, determines
whether there is a phase transitiongat Recall that

0 1
———10gZA\(B) =

BNl —Eg[h(D].

Although p(3) as the limit of logZ, (3)/|A| always
exists, it may not be differentiable #t,, indicating
that a phase transition occurs@y. So E,[h(l)] may
go to multiple limits under different boundary condi-
tions. Meanwhile, the probability rate functieg,(h)
ors(h) — (3, h) may achieve its maximum at multiple
h. Becauses(h) is a concave function, this can happen
only whens(h) is not strictly concave, i.es(h) has a
linear piece. Figure 7 illustrates the concept. In a), a
cusp appears at poift), so the convex functiop(3)
can be above multiple planes @§. In b), there is a

b

(a) If p(B) is not differentiable aB = 3y, a phase transition occurs, and there exists a convex set of expected statasishiown

by the interval f1, hy]; (b) The entropy functiors(h) has a constant tangefig over a set oh.
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flat linear piece irs(h) so that manyh share the same  Gaussian distributed, this KL-divergence is reduced to
tangents,. the Mahalanobis distance (Rosenholtz, 1999) or signal
If there is a phase transition #&,, then when we to noise ratio (SNR) in traditional signal detection the-
sample from the FRAME modegb(l; 3y) on a large ory (Green and Swets, 1988). To our knowledge, there
lattice, we may get images of different statistical prop- has been no rigorous work for computing distance for
ertiesh(l) and therefore different visual appearances signals that are not independently distributed, such as
if we use different boundary conditions. This indicates textures on random fields.
that the effect of boundary conditions does not vanish ~ The basic scenario is as follows. A background of

on large lattice. texture A defined on a large lattideis generated from
If for an hg, the corresponding, leads to a phase a FRAME modelp(l; 3,). Within the background, a
transition, then when we sample froqtl; h), i.e., small patch ,, of texture B withAg C A is generated

the uniform distribution oveg2,(h) on a large lat- from a modelp(l; Bg). There are two ways to gen-
tice, we may get images consisting of several large erate B in A. One is to generate the foreground patch
pieces of different statistical properties (and visual ap- |,, fromthe conditional distributiop(l o, | 1 A/, Bg)
pearances), and each piece can arise from the FRAMEwith 1,4, ~ P(la/a,; Ba) being the boundary con-
model p(l; By) under suitable boundary conditions. dition. The other method crops a patth, from
See Martin-Lof (1979) for a more discussion. A~ p(l; Bg), and pastes it to the background of tex-
In our experiments, we have not captured a definitive ture A by occlusion, sd,, is generated from the
phase transition phenomenon described above. We will marginal distribution ofp(l; 3g) with the boundary
leave this issue for future investigation. condition integrated out according fo(l; 3g). The
second case often generates sharp edges, which con-
stitute a strong artificial cue for discrimination, thus
7. Measure of Texture Distance and Asymmetry we only discuss the first case where the background is
used as the boundary condition.
In this section, we study model-based texture dis- We formulate the problem in a Bayesian inference
tance that extends the traditional signal detection the- framework. The easiness of pop-outis measured by the
ory (Green and Swets, 1988) fromiid signals to random ratio of the posterior probabilities of pop-out versus no
fields. pop-out.

. . rl
7.1. Distance Measure on Random Fields (a)
Pr(pop-out| I 4)

In search of texture statistibgl ) to which pre-attentive Pr(no pop-out 1 )

vision is sensitive, psychophysicists use texture dis- Pr(pop-ouy  Pr(l 5 | pop-ou}

crimination experiments to see how effortlessly afore-  — Pr(no pop-out Pr(l , | no pop-ou

ground texture patch B can “pop out” from a back-

ground texture A and vice versa. __Pr(pop-out p(Ia/a03 Ba) P(1 o | 17803 Bs)
One widely observed phenomenon in the pop-out Pr(no pop-out Pl A5 Ba) '

experiments is asymmetry. For example, it is easier ) L
for a moving dot to pop out from a background of = Pr(pop-ouy _ P(ln, |!ny: ﬁB),
static dots than for a static dot to pop out from a back- Pr(no pop-out p(l s, [ 1aas; Ba)
ground of moving dots. A curve pops out easily from Iazao ~ P(Ia/a0: Ba):

a background of straight lines, whereas it is harder

to detect a straight line from a background of curves. where P¢pop-out and Ptno pop-out are prior proba-
The perceptual distances between two texture imagesbilities of pop-out and no pop-out respectively. There-
are also found to be asymmetrical (see Richard and fore, the log of posterior ratio
Koenderink, 1995 and references therein).

This asymmetry can be explained by the asymmetry | |
of the Kullback-Leibler distance between the statistical ogra)
models of the two signals. In the case where elements .y P(1 a0 | 19205 Be) Pr(pop-oul

= log ——— "7
in each signal, such as moving dots, are independently p(l Ao | laAgs ,BA) +log Pr(no pop-out
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is decided by the first term with fixed prior proba-
bilities. In the following, we assume Rrop-ouy =
Pr(no pop-ou}, so the second term in the above
vanishes. Averaging over, ~ p(l x, | 1a/a,; Bg) and
la/n0 ~ P a/aq; Ba), the easiness of pop-out is

Mag = Ep(i,/ag0) {Ep(lellaAo:gB)UOg r( A)]} (8)
= Ep(lA/Ao;,ﬁA){KL(p(IAo | IBAD; ,BB)
I p(IAo | If’Ao; ﬁA))} (9)

The largerMpg is, the easier for patcB to pop out
from backgroundA.

Given 3, and3g, Mag only depends on the shape
of the foreground patch . We now briefly study the
behavior ofMag whenA is sufficiently large such that
the effect of the boundary condition diminishes. Let
ha andhg be the statistics correspondingdg andGg
respectively. We have

M}

Mag ~ EP(IAO;ﬁB)|:|09 0(1n0: Ba)
~ 109 Zp,(Ba) + [Aol(Bas hs)
— 109 Zx,(Bg) — |Aol(Bg, hs)
| Aol {p(Ba) + (Ba, he) — p(Bg) + (Bg. hs)}
= —|AolSg, (he) = [AolKI(Ps|l PA)
—log p(l € 24,(he); Ba)-

2

p(l € Q4,(hg); Ba) measures how likely a texture
patch of typeA has typical statistichg of textureB. If
this probability is large, then the backgrouAds very
distracting, and it is hard foB to pop out.

From the above derivation, for large pataty,
Mag increases in proportion tdAg| with a rate
—sg, (hg) > 0, which is the Kullback-Leibler diver-
gence rate. Because(kk| pa) # kl(pall ps) in gen-
eral, Mag # Mga, Which leads to the asymmetry
in pop-out easiness. Also, for large lattice, the task
of texture discrimination becomes trivial, that the
foreground texture must pop out effortlessly unless
Kl(psllpa) = 0. This is why psychologists can use
pop-out experiments to test what kindlofl ) are es-
sential in the pre-attentive visual processing stage.

7.2. Experiments on Texture Distance

The KL-divergence rate between two FRAME models

are not analytically computable, so we seek numerical

approximation.

First, we synthesize a large imagg~ p(l; Ba).
Then we dig a number dfl holes inl 5, each hole has
m x m pixels. We denote by, the lattice form x
m pixels, and we label the boundary images for each
hole asIA' ,i =1,...,N. They are typical samples
from p(l a/a,.; Ba)- Then within each hole, we sample
L patches fromp(l 4,, |I(') Bg), and we denote these
L patches byl$" for j = 1,...,L. Then we can
approximate theMag for the foreground of shap&n,
by Monte Carlo integration,

M(B = Ep(IA/AmBA {EP(IAm IdAmﬂB)[IOgr(IA)]}

((I J)||(I) )

ﬁ (|1>||<|> )
1 N L (I(l) /BA):|

= — log :
ZZ{ s
x (B — B HIE [11)).

In practice, we sdt = 100 andN = 200. The key dif-
ficulty is to compute the ratid(1%, 8,)/Z(1%, Bg).

We estimate the ratio by importance sampling (Meng
and Wong, 1996). We choose anintermediate mggel
between3, andg3g, for example3, = (8 + Bs)/2,
and generatda(l) e, I(“) from p(la,, [1%; By), and
then compute the ratio as

Z(Ba)
Z(BB)
|A exp{—(Ba. H(l Am)
|A p{ <ﬁBa H (' Am)
|A exp{—(Ba — Bo. H(1an)) 1 P(I 4y | Toam: Bo)
|A exp{—(Bs — Bo. H(lAm)>}p(| Am | Toams /30)
ZI L, exp{—(Ba — Bo. H(IY, ))
Z. ", exp{—(Bs — Bo. H(IY. )>

For small hole sizem, e.g.,, m <40, the model
p(l a,; Bo) has enough overlap with(l 5, ; 3,) and
p(a,; Bg). Thus we can obtain reasonable approxi-
mations.

Given the distance computed for small lattices of
m x m pixels, we computdag as

A
Mag ~ | 0| M'E\n[;)

Figure 8 shows a pair of imagég andlg. We syn-

thesize three images férinsideB with Ag = 32x 32,
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Figure 8 Pop-out experiments with different foreground patch sizes. The size of the whole images i Z86 (a) Texture A;
(b) Texture B; (c)—-(e) A in B with|Ag|=32x 3264 x 64, and 96x 96 pixels respectively; (f)-(g) B in A withAg|=32x
32,64 x 64, and 96x 96 pixels respectively.

64 x 64, and 96x 96 pixels respectively. In compari- mathematical perspective. The proposed paradigm (see
son we also synthesize three images for texBine A. Fig. 5) is quite powerful judged from the recent suc-
The estimated divergendd ,(JQ) and Mé’R) are plotted cesses of texture synthesis experiments by ourselves
in Fig. 9. The KL-divergence rates per pixel are also and others (Heeger and Bergen, 1995; Bonet and Viola,
plotted in the same figure. 1997; Portilla and Simoncelli, 1999). In the following,
We observed that the KL-divergence rate per pixel we pose two major questions and challenges which may
become almost a constant as the patch size increasedead to further development of texture research.
This indicates that the computed distance is a valid es-
timation. Mgy > MR, indicating that A in B should ~ Question 1. What if texture perception is not bottom-up
be easier to discriminate than B in A. computatior?
It would be interesting to compare the numbers with

. The texture theory (both definition and model) is self-
human perception.

consistent and mathematically sound. This theory is
built on the philosophy expressed implicitly in the fun-
8. Discussion—Remaining Issues damental question asked by Julesz (1995):

This paper and two of our previous papers (Zhu  what features and statistics are characteristic of a
et al.,, 1997, 2000) study texture phenomena from a texture pattern, so that texture pairs that share the



264  Wu, Zhu and Liu

=) o
T

@

KL divergence per hole

L 1 L L
40 60 100 120 140

KL divergence per pixel

L L L
80 100 120 140
2

L L L
20 40 60

b

Figure 9. Estimated KL-divergencb’IXg) for the image pair shown

in Fig. 8 plotted against the hole sing?. (a) The dashed curves
is MJY: texture A in texture B, and the solid curvesN&n: B
in A; (b) The average KL-divergence per pix?# Mg,';) (dashed)
and %MD (solid).

same features and statistics cannot be told apart by

pre-attentive human visual perception?

Two important assumptions are implied in Julesz’s
guestion. One is that textures are “subjective” notion
defined by a particular visual system, such as pre-
attentive vision. The otherassumption is that this notion
is determined byxomputing a set of feature statistics
Thus by definition, statistics are extracted determinis-
tically in a bottom-up process. In other words, these
statistics are considered as attributes of the observe

texture images. This notion is also adopted in recent

work on extracting textons (Leung and Malik, 1999).
However, if these assumptions are not exactly right
then we may have to investigate texture models of othe
forms (Zhu and Guo, 2000).

Question 2. What are the other factors in texture
perceptior?

Textures should also be studied for attentive vision in

a broad context of visual perception, and many other

(Rubner et al., 1998) and trajectory mapping (Richard
and Koenderink, 1995) have been used in some ex-

ploratory studies.
We leave these questions for future investigation.
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Notes

1. Throughout the paper, our discussion is focused on homogeneous
texture patterns on a 2D plane, and we do not discuss texture
deformation on 3D surface.

We shall discuss phase transition in a later section.

We hope that the notatidn(l) = h will not confuse the reader.
Theh on the left is a function of for extracting statistics, while
theh on the right is a specific value of the statistics.

In the iid caseq(l »4; h) is both the marginal distribution and
the conditional distribution af(I; h), while in random fields, we
only consider the conditional distribution.

We assume\ — Z2 in the sense of van Hove, i.e., the ratio
between the boundary and the sizeAofoes to 0.

2.
3.

4.

5.
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