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Efficient Path-Based Stereo Matching
With Subpixel Accuracy

Arturo Donate, Xiuwen Liu, and Emmanuel G. Collins, Jr.

Abstract—This paper presents an efficient algorithm to achieve
accurate subpixel matchings for calculating correspondences be-
tween stereo images based on a path-based matching algo-
rithm. Compared with point-by-point stereo-matching algorithms,
path-based algorithms resolve local ambiguities by maximizing the
cross correlation (or other measurements) along a path, which
can be implemented efficiently using dynamic programming. An
effect of the global matching criterion is that cross correlations
at all pixels contribute to the criterion; since cross correlation
can change significantly even with subpixel changes, to achieve
subpixel accuracy, it is no longer sufficient to first find the path
that maximizes the criterion at integer pixel locations and then
refine to subpixel accuracy. In this paper, by writing bilinear in-
terpolation using integral images, we show that cross correlations
at all subpixel locations can be computed efficiently and, thus,
lead to a subpixel accuracy path-based matching algorithm. Our
results show the feasibility of the method and illustrate significant
improvement over existing path-based matching methods.

Index Terms—Bilinear interpolation, computer vision, dispar-
ity, dynamic programming, integral image, normalized cross cor-
relation (NCC), path-based matching, stereo, stereo matching,
subpixel accuracy.

I. INTRODUCTION

THE USE of stereo images in computer vision is crucial
for applications requiring depth perception [1]. In order

to be useful, stereo-vision algorithms rely on the ability to
perform accurate point correspondence between an image pair
[2], where the correspondence is defined as the problem of
finding the accurate location of the same point in the scene in
a pair of stereo images. Therefore, corresponding points must
describe the same content, although their image coordinates
may differ. It is useful to note that these corresponding points
may also be used for motion estimation, as well as many other
applications.

Stereo correspondence methods can be divided into two main
types: region-based and feature-based methods. Region-based
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methods attempt to find corresponding points by matching
intensity values across images. These searches are typically
performed within local image windows in both images. In some
cases, if the geometry of the cameras is known, the search can
be performed across lines, as defined by the epipolar constraint
[3]. Feature-based methods typically rely on matching more
distinctive but sparse features. Such features are typically as-
sumed to have some higher level meaning (as opposed to image
points) and, thus, are assumed to be more stable. Several types
of image features, such as Harris corners [4], Canny edges [5],
or SIFT points [6], are likely to be easily located in stereo-
image pairs.

In this paper, we focus on region-based methods, as they are
widely used to generate dense matching. A common approach
for solving the correspondence problem is to match the local
windows using some matching criterion such as normalized
cross correlation (NCC). This region-based method yields re-
sults with pixel-level accuracy. In order to achieve accuracy at
a subpixel level, typically, a second-order polynomial is used
to fit matching scores in a local neighborhood [7]. One of the
intrinsic limitations of such region-based matching methods
is their inability to resolve local ambiguities effectively. For
example, for a given image point, there can often be multiple
matching candidate points in the candidate region of the cor-
responding image. These multiple candidate points often arise
from situations with low texture variations, as well as other
factors. In addition, local deformations may cause the correct
matching point not to be the local maximum, causing many of
the algorithms dependent on local maxima to fail.

To overcome the local ambiguities and achieve more robust
matching, a global matching criterion may be used. Sun [8]
poses the stereo-matching problem as an optimization of the to-
tal cross-correlation scores over a surface through a 3-D cross-
correlation volume (whose dimensions are given by height,
width, and the disparity range of a region). The matching is
solved efficiently using a two-stage dynamic programming al-
gorithm. This algorithm attempts to maximize cross-correlation
scores along paths in the 3-D cross-correlation volume. It is
important to note that by using a global matching criterion,
accurate cross-correlation values are needed at all locations
since they affect the optimal path estimation (and, thus, the
matching). Since cross correlations can change significantly
even at the subpixel level, correlation measurements must be
calculated with subpixel accuracy in order to achieve an optimal
stereo matching.

In [8], Sun performs subpixel measurements as a post-
processing stage by fitting a quadratic function in a neigh-
borhood. In this paper, we aim to show that cross-correlation
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values calculated with subpixel accuracy provide a significant
improvement to the path-based stereo matching, and this is
supported by experimental results. These measurements can
be performed efficiently by exploiting certain aspects of the
calculations and employing the use of integral images [9], [10].

The rest of this paper is organized as follows. Section II pro-
vides a review of the recent literature in the area. In Section III,
we summarize the path-based stereo-matching algorithm [8],
and in Section IV, we show how the subpixel accuracy can be
incorporated efficiently using integral images; note that while
Sun [8] also performs subpixel matching, it is done after the
path matching. As shown by our results in Section V, our
algorithm improves the performance significantly by having
more accurate correlation coefficients. Section VI concludes
this paper.

II. RELATED WORK

Although stereo matching is one of the classical problems in
computer vision, it also appears in other areas such as medical
imaging, computer graphics, and image processing. A consider-
able amount of work has been done on this specific subject over
the last 30 years. More specifically, the past decade has brought
a plethora of proposed methods for solving the correspondence
problem. Even so, the use of subpixel measurements is not
common. Typically, subpixel accuracy is done by a separate
postprocessing step, calculated after the initial matching. Sev-
eral methods for calculating subpixel measurements include
iterative gradient descent as well as curve fitting on matching
costs [11]. This section presents a survey of recent publications
dealing with stereo matching, particularly those that incorporate
subpixel measurements.

Of all the works discussed here, Sun’s method [8] is clearly
the most relevant to the proposed method. As mentioned earlier,
it uses NCC to determine matching cost coefficients between
two images for a given disparity range. These coefficients are
arranged into a 3-D volume, and a dynamic programming
algorithm is used to determine the shortest path across the
volume; the optimal path yields the disparity values. Subpixel
measurements are obtained by fitting a second-degree polyno-
mial to the resulting correlation coefficients of pixels around a
neighborhood, and the extrema are used as the final disparity.
See Section III for further details.

De la Hamette and Tröster [12] present the FingerMouse
system, a human–computer interaction framework allowing
users to interact with a computer using finger gestures as
input. This input is captured by a pair of stereo cameras,
and the corresponding images are then used to calculate a
3-D reconstruction of the scene. For greater accuracy, the
authors incorporate subpixel measurements into their stereo
calculations, where the measurements are performed by
averaging the values of several disparity maps of the same view
generated at different points in time.

Knoblauch and Kuester [13] propose a system for gen-
erating a 3-D avatar of a person for use in tele-immersion
environments. After obtaining stereo images from a pair of
cameras, the system first performs background extraction and
then estimates the best possible disparity value within a given
range. This optimal value is defined as the one with the smallest
matching cost. The neighboring disparity values are then taken

into consideration, and linear interpolation is used in order to
calculate the final disparity value.

Sand and Teller [14] introduce a method for achieving a
spatiotemporal alignment of two videos recorded at different
times. The videos are aligned by using a regression method that
matches video frames with large likelihood of correspondence.
Given a feature point in the first frame, they perform a local
motion optimization on candidate regions of the second frame
in order to perform a match. The authors state that the local
motion optimization allows for subpixel measurements, which
yield better matching results than just simply matching corre-
sponding image features in both frames.

Franke and Joos [15] present a framework for understanding
complex traffic scenes. Using stereo vision, they generate a
disparity image of the scene observed by a stereo camera.
From the scene, the authors perform obstacle detection, space
analysis, as well as object recognition. In order to obtain
accurate results in real time, the authors propose a method
for calculating multiscale disparity images in real time and
with subpixel accuracy. Here, subpixel accuracy is obtained by
fitting a parabolic function through the correlation coefficients.

Morgan et al. [16] propose a stereo-matching technique for
determining terrain elevation using stereo images when the
images are taken with a relatively small baseline. The method is
based on phase correlation techniques to perform the matching.
The phase correlation technique, first proposed by Liu and Yan
[17], is based on the displacement between two images to be
measured in the phase difference of their Fourier transforms.
The authors are able to achieve subpixel accuracy by solving
the phase difference in the Fourier domain via singular value
decomposition.

Szeliski and Scharstein [18] introduce an algorithm that
derives a matching cost from reconstructed image signals and
then assigns disparity values based on a symmetric matching
process that incorporates subpixel information. Interestingly,
their experiments show that subpixel measurements sometimes
yield higher errors in the stereo matching due to the increased
sensitivity to noise in the original image pairs.

Kim and Chung [19] present an algorithm for stereo match-
ing, which successfully handles large depth discontinuities by
using variable windows on the images. The correlation between
candidate points is determined using NCC, as well as the sum
of squared differences. Subpixel measurements are used to
reduce occasional local deformations, which may arise due to
the variable windows.

Sarkar and Bansal [20] propose a solution to the stereo-
matching problem using wavelets, which uses the joint prob-
ability density function (pdf) of intensity values between two
image windows in order to find the best matching; the pdf
allows the method to become more resilient to changes in
illumination. Wavelets are used in order to perform the match-
ing hierarchically. Pajares and de la Cruz [21] solve the stereo-
matching problem by using edge segments as features. The
features are matched locally as well as globally using con-
straints based on epipolar, similarity, smoothness, ordering,
and uniqueness. An optimization-based process incorporating
simulated annealing is used to perform global matching. Zhang
and Kambhamettu [22] present two systems for multiview
matching (using three views). The first system uses a 3-D affine
model to represent the motion of a 3 × 3 image region and
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incorporates the use of nonlinear least squares to fit the model
at each region. The second system is described as an extension
to 2-D optical flow. Depth discontinuities are modeled using
an image segmentation algorithm. Three-dimensional scene
flow is then estimated as a minimization of the optical flow
constraints from different views.

Brockers et al. [23] pose stereo matching as an optimization
problem. For a given pixel, a range of possible disparities
is first assigned. Then, the best disparity value is calculated
by optimizing a global cost function, taking into account
stereoscopic properties as well as similarity measurements, in
order to produce dense matching. Kim [24] proposes a stereo-
matching algorithm that handles depth discontinuities as well
as smooth curved regions using variable windows. Similarity
measurements are performed using a correlation function based
on voxel components. Rosenberg et al. [25] present a system for
real-time stereo using programmable graphics hardware. The
system employs a matching algorithm originally proposed by
Hirscmuller [26], which uses dynamic programming to work
across an image in multiple directions; at each pixel, it uses the
cost and disparity range to find the shortest path through the
disparity range, which gives the final disparity value.

III. PATH-BASED STEREO MATCHING

The proposed method is inspired by the work of Sun [8].
There, Sun presents a dynamic programming algorithm that
uses rectangular subregioning and maximum surface tech-
niques in order to perform path-based matching. This section
describes different parts of his proposed approach. His method
assumes that the input images to the system are rectified so that
a shift along the epipolar lines corresponds to a shift along the
x-axis of the image. This means that, for a given pixel location
(i, j) in the left image, the corresponding match in the right
image contains the same value for i, while the value for j can
vary within some range [−w,w].

The basic outline of the algorithm is as follows. First, a
k-level image pyramid is formed for each of the input images.
For each level of the pyramid, rectangular subregions are first
found using the temporary disparity map calculated at the previ-
ous pyramid level. For each subregion, zero-mean NCC is used
in order to calculate the correlation coefficient values among
pixels. Finally, dynamic programming is used to determine
the best path across these correlation coefficients in order to
compute a disparity image. The disparity image generated for
the last level of the pyramid is the output of the algorithm.

A. Rectangular Subregioning

Initially, the images are segmented into subregions in order
to reduce computation time, as well as memory requirements of
the system. In a given stereo-image pair, different image points
may have disparity values that lie within very different ranges.
The aim of the subregioning step is to segment the image in a
way such that each point in a given subregion contains a similar
range of disparity values.

Prior to the subregioning step, the images are decomposed
into pyramids, each with k levels, in order to employ a coarse-
to-fine matching strategy. Starting off with the original images,

Fig. 1. Illustration of Sun’s algorithm. (a) Image volume, composed of an
input image with varying disparities. (b) Three-dimensional volume of coef-
ficients with subregioning. (c) Vertical sections. (d) Calculating intermediate
volume.

each is subsampled for the next pyramid level by finding the
mean intensity value across a window of size r × r.

Next, the images are segmented into subregions using the
disparity map calculated at the previous pyramid level as input.
This input image is first divided evenly into a set number of
rows. Adjacent rows are compared and merged using a criterion
for minimizing overall computational complexity. Next, each of
these resulting regions is divided into a set number of horizontal
columns. A similar merging process is repeated until there are
no more columns that can be merged. The resulting subregions
aim to segment the image in a way such that we end up
with large regions containing small disparity ranges and small
regions containing large disparity ranges.

It is important to note that for the first level, the disparity
map is initialized to zero, so the algorithm disregards the use
of subregions at this level. Also, note that by definition, a
multiscale image pyramid contains the same image at different
scales. In this case, the pyramid contains k levels, each corre-
sponding to a different resolution. For a given level t, the input
to the subregioning step is the disparity image calculated at the
previous level t − 1, and, hence, it is at a lower resolution. In
order to address this, this input disparity image must first be
enlarged by interpolating through the pixel values.

For a given image point location, the goal is now to deter-
mine the disparity value within the specified disparity range,
which yields the optimal NCC measurement. A 3-D volume
of size W × H × D can be constructed from the correlation
coefficients, where W and H are the dimensions of the original
stereo pair, and D is the size of the disparity range. Since
the subregioning process segments the images into regions
containing similar disparity ranges, each region can then be
viewed as a smaller 3-D volume of size Wi × Hi × Di, where
Wi ≤ W and so on. This is illustrated in Fig. 1(b).
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B. Matching Algorithm

After the rectangular subregioning process, a 3-D volume of
correlation coefficients can be created for every point (i, j, d)
in the image volume, where i and j are the row and column
indexes obtained from the pixel coordinates, respectively, and
d is a possible disparity value in the disparity range (which
may vary across different subregions in order to decrease
computational costs). In other words, the value at coordinate
(i, j, d) within the volume is the zero-mean NCC value between
windows in the stereo images f and g using a disparity value
of d. Each window is centered at location (i, j). This NCC is
defined as

C(i, j, d) =
covij,d(f, g)√

varij(f) ×
√

varij,d(g)
(1)

where (i, j) are the row and column indexes of the 3-D correla-
tion volume (i.e., pixel location), and d is the possible disparity
value. Here, varij(f) refers to the variance within a window
centered at (i, j) of the image f , and covij,d(f, g) refers to the
covariance between the windows of the left and right images.
The disparity term d is obtained from the given disparity
range in the subregion, corresponding to a shift of the window
along the epipolar lines. In order to compute correlation values
efficiently, Sun uses box filtering [8], [27], [28].

Given the 3-D volume of correlation coefficients, Sun em-
ploys a two-stage dynamic programming algorithm to find the
best surface across the volume and obtain a smooth set of
disparity values. The first stage of the dynamic programming
algorithm is to separate the volume vertically and calculate
an intermediate 3-D volume in the vertical direction for each
vertical section [as illustrated in Fig. 1(c)]. Given the original
3-D correlation volume C, the intermediate 3-D volume Y is
calculated according to

Y (i, j, d) = C(i, j, d) + max
t:|t|≤p

Y (i − 1, j, d + t) (2)

where p determines the number of local values to be considered.
For example, when p = 1, three locations d − 1, d, and d + 1
are considered, as shown in Fig. 1(d). In other words, at a
given vertical level, only the values that are within distance p
from the previous value (in both directions) are considered. The
algorithm begins on the highest vertical section and works its
way down. In this initial step, i − 1 will be undefined, so it is
set to zero. Therefore, when i = 0

Y (0, j, d) = C(0, j, d) (3)

so that the very top vertical section is identical to the top
section of the 3-D volume C. By the end of the first stage
of this dynamic program, the bottom vertical section of the
intermediate volume Y contains a summation of the maximum
correlation values.

Note that the stereo pair is assumed to be rectified, i.e., the
corresponding row in the left image matches with that of the
right image, and, thus, the disparity is specified by d. The 3-D
volume of Y then contains the maximum summation of cor-
relation coefficients in the vertical direction. The second stage
of the algorithm works in the horizontal direction calculating
the path from the left side to the right side of the volume that

maximizes the summation of Y ’s along the path. First, the al-
gorithm begins by selecting the bottom slice of the intermediate
volume Y . It begins at the bottom slice because this is where the
correlation values are accumulated.

Using the shortest path algorithm similar to the one used
in the first stage, the shortest path along the bottom slice of
the intermediate volume Y is calculated (this bottom slice has
a dimension W × D). For the next iteration, the algorithm
calculates the shortest path in the next level above the current
one, until it finds a path at all levels of Y . For each level
(not including the bottom level), the shortest path in a given
level is constrained to be at a distance no larger than p from
the previous shortest path. The value of p was previously
defined in (2) and is typically kept at or near 1 in order to keep
computational costs low.

This method proposed by Sun [8] leads to an efficient path-
based matching algorithm. In order to increase the quality of
the matching, subpixel accuracy is performed as a postprocess-
ing step by the use of a quadratic function over pixels in a
neighborhood. The author fits a second-degree curve to the
correlation coefficients around the neighborhood of a pixel and
uses the extrema of the curve to solve for the disparity. This
additional step improves the quality of the results over only
using pixel values at integer locations. However, this subpixel
accuracy matching is not optimal, as the obtained paths may not
be optimal if we consider subpixel cross correlations.

IV. STEREO MATCHING WITH SUBPIXEL ACCURACY

Our goal is to achieve dense matching accurate to the sub-
pixel level while maintaining a low computational cost in order
to obtain optimal path matching efficiently. As in the work by
Sun [8], we assume that the input stereo pair is rectified, i.e.,
the matching row is within one row from the corresponding
row. Unlike Sun’s approach, however, our proposed method
incorporates the use of subpixel measurements into the correla-
tion calculation, effectively making the correlation coefficients
more accurate and allowing the path-based matching to achieve
more precise matching. In order to perform such computa-
tions efficiently, we employ the use of integral images. Our
main contribution is an improvement in the way Sun’s method
calculates correlation coefficients. As such, Section IV-A
describes in detail our implementation for fast correlation
measurements accurate to the subpixel level. The other parts
of Sun’s algorithm remain unmodified and, hence, are not
discussed in detail.

A. Correlation Measurements

As in the work by Sun [8], we also adopt NCC as given in
(7). Given a left image f , a right image g, and a pixel location
in the left image f(x0, y0), the goal is to compute the optimal
pixel location in the right image g corresponding to the point
f(x0, y0) in the left image. In order to achieve this, NCC is
used as a similarity measure on a window of size of (2M +
1) × (2N + 1) on the right image for a displacement (u, v).
The value obtained from the similarity measure will then be
used with the path-based matching proposed by Sun [8]. Here,
the first dimension (e.g., x, u, x0, M ) refers to the column of
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the image, and the second dimension (e.g., y, v, y0, N ) refers
to the row of the image.

To define the NCC, we first define the mean of the window
in the left image as

f(x0, y0) =
1
S

i=M∑
i=−M

j=N∑
j=−N

f(x0 + i, y0 + j) (4)

and the variance of the window as

f(x0, y0)=

⎡
⎣ 1

S

i=M∑
i=−M

j=N∑
j=−N

f(x0 + i, y0 + j)2 − f(x0, y0)2

⎤
⎦

(5)
where S is defined as

S = (2 × M + 1)(2 × N + 1). (6)

To be specific, let f(x, y) and g(x, y) be the mean of the
left and right windows centered at (x, y) and of size (2M +
1) × (2N + 1), respectively. Similarly, let f(x, y) and g(x, y)
be the variance of the left and right windows, respectively. We
can define the NCC between the left image window at (x0, y0)
and the right image window at (x0 + u, y0 + v) as∑

i,j f̂(x0 + i, y0 + j)ĝ(x0 + u + i, y0 + v + j)

S

√
f(x0, y0)g(x0 + u, y0 + v)

(7)

where f̂ is defined as

f̂(x0 + i, y0 + j) = f(x0 + i, y0 + j) − f(x0, y0) (8)

and the summation for i is from −M to M and j from −N
to N (also in subsequent equations). As pointed out in [8] and
[9], for fixed u and v, the summations can be done efficiently
using integral images as well as the mean and variance of a local

window. For the variance, note that f(x, y) can also be done
efficiently using an integral image with pixel values squared.

B. Integral Images

Originally proposed by Crow [29], an integral image (also
known as a summed-area table) is an intermediate represen-
tation of an image that aids in solving certain problems in
computer vision. It is essentially an additive representation of
an image where the value at a given location is equal to the sum
of the pixel values at locations to the left and above the current
index location.

Formally, they are defined as

I(x, y) =
x∑

i=0

y∑
j=0

O(i, j) (9)

where O is the original image, and I is the integral image being
calculated. As described by Viola and Jones [9], they can be
computed in one pass over the original image. The main benefit
for such a data structure is that any given rectangular sum can
be calculated from four references to the integral image.

Integral images have been used extensively in solving real-
time computer-vision problems. Viola and Jones [9] use them to

solve the problem of face recognition in real time. Frintrop et al.
[30] use integral images to aid in fast image feature computa-
tion in their real-time visual attention system. Kisacanin [31]
uses integral images in embedded systems to solve complex
computations efficiently and describes optimization methods
that allow acceptable execution costs in embedded processors
by taking advantage of recursion and double buffering tech-
niques. Bay et al. [10] use integral images in order to speed up
the computation of their robust feature extraction algorithm. In
this paper, we will show that integral images can also be used to
compute NCC values of stereo images with subpixel accuracy
in an efficient manner.

C. Bilinear Interpolation

Due to the nature of digital images, pixel values are only
defined at integer locations. Therefore, in order to perform
effective subpixel measurements, we propose the use of bilinear
interpolation. For a given noninteger image location (xs, ys),
where x < xs < x + 1 and y < ys < y + 1, we can use the
values in the surrounding coordinates at locations (x, y), (x +
1, y), (x, y + 1), and (x + 1, y + 1) to estimate the value at
(xs, ys) by linearly interpolating in each direction. This allows
the estimation of the value at (xs, ys) to be computed as a
weighted average of the four known points. The interpolation
provides a way to estimate the value of an image at subpixel
locations (corresponding to noninteger coordinates previously
undefined in the image).

Bilinear interpolation has been widely used to solve
computer-vision and image-processing problems in the liter-
ature. Kim and Kim [32] propose a system that uses image
measurements to detect scratches in film and then employs the
use of bilinear filtering in order to sample the surface of the
image and recover the scratched regions. Van Velden et al. [33]
propose the use of bilinear filtering for filling in gaps from
high-resolution medical scans obtained using 3-D-filtered back-
projection strategies. Fahmy [34] proposes an architecture for
efficient calculation of bilinear filtering techniques on field-
programmable gate arrays.

Since images are discrete in nature, we define the bilinear
interpolation for 0 ≤ s and t ≤ 1 in the right image only. In
other words, given a pixel location in the left image, we would
like to find the subpixel location in the right image that gives an
optimal match. According to the bilinear interpolation, we can
express the right image g as

g(x + s, y + t)

= (g(x, y)(1 − s) + g(x + 1, y)s) (1 − t)

+ (g(x, y + 1)(1 − s) + g(x + 1, y + 1)s) t

= g(x, y)(1 − s)(1 − t) + g(x + 1, y)s(1 − t)

+ g(x, y + 1)(1 − s)t + g(x + 1, y + 1)st

= [g(x, y) − g(x + 1, y) − g(x, y + 1)

+g(x + 1, y + 1)] st

+ [−g(x, y) + g(x + 1, y)] s

+ [−g(x, y) + g(x, y + 1)] t + g(x, y). (10)
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D. Correlation Measurements at the Subpixel Level

Using bilinear interpolation as defined by (10) along with
NCC as defined by (7), we can compute correlation measure-
ments for points previously undefined at subpixel locations.
The correlation value between two such points can change
significantly, even for fractional changes in u and v. In order
to make the path-matching algorithm effective at the subpixel
level, we define ̂NCC(x0, y0, u, v) as

= arg max−.5≤s≤.5,−.5≤t≤.5 NCC(x0, y0, u + s, v + t)

= maxk=1,...,4

{
̂NCCk(x0, y0, u, v)

}
(11)

assuming that u and v will be integer values used to define
a pixel offset from the center, but still within the correlation
window. To determine the values of s and t, we take discrete
samples [10 × 10 samples centered around each pixel are used
to achieve (1/10)-pixel accuracy in all the experiments]. Here,
s and t correspond to subpixel locations. For each value of k
(corresponding to one of the four quadrants around a pixel), we
define ̂NCCk as

̂NCC1(x0, y0, u, v) = arg max−0.5≤s≤0,−0.5≤t≤0

× NCC(x0, y0, u + s, v + t)

̂NCC2(x0, y0, u, v) = arg max0≤s≤0.5,−0.5≤t≤0

× NCC(x0, y0, u + s, v + t)

̂NCC3(x0, y0, u, v) = arg max−0.5≤s≤0,0≤t≤0.5

× NCC(x0, y0, u + s, v + t)

̂NCC4(x0, y0, u, v) = arg max0.0≤s≤0.5,0≤t≤0.5

× NCC(x0, y0, u + s, v + t). (12)

Here NCC(x0, y0, u + s, v + t) are defined using bilinear inter-
polation. Although the images are rectified, we do not assume
that the search for corresponding points between two images
is limited to only one dimension; instead, we use bilinear
interpolation to interpolate in both the x and y directions,
thus allowing for correspondences that do not fit the recti-
fied image exactly. The central problem now is to compute
̂NCCk(x0, y0, u, v) (for all k = 1, . . . , 4) efficiently. Clearly, a
brute force implementation will be computationally expensive
and undesirable. Instead, we exploit certain properties of these
calculations through the use of integral images in order to
compute ̂NCCk efficiently for all values of k.

In the following example, we show how the computation can
be done for ̂NCC4, but the same basic algorithm can be used for
the three other values of k. As given in (7), in order to compute
̂NCC4(x0, y0, u, v), we need to compute the summation of
images with pixel values squared. Let

x1 =x0 + u

y1 = y0 + v

x2 =x0 + u + 1

y2 = y0 + v + 1. (13)

Using bilinear interpolation, we have∑
i,j

g(x1 + i + s, y1 + j + t)2

=
∑
i,j

[g(x1 + i, y1 + j)(1 − s)(1 − t)

+ g(x2 + i, y1 + j)s(1 − t)
+ g(x1 + i, y2 + j)(1 − s)t
+g(x2 + i, y2 + j)st]2

= (1 − s)2(1 − t)2

⎡
⎣∑

i,j

g(x1 + i, y1 + j)2

⎤
⎦

+ s2(1 − t)2

⎡
⎣∑

i,j

g(x2 + i, y1 + j)2

⎤
⎦

+ (1 − s)2t2

⎡
⎣∑

i,j

g(x1 + i, y2 + j)2

⎤
⎦

+ s2t2

⎡
⎣∑

i,j

g(x2 + i, y2 + j)2

⎤
⎦

+ C1

⎡
⎣∑

i,j

g(x1 + i, y1 + j)g(x2 + i, y1 + j)

⎤
⎦

+ C2

⎡
⎣∑

i,j

g(x1 + i, y1 + j)g(x1 + i, y2 + j)

⎤
⎦

+ C3

⎡
⎣∑

i,j

g(x1 + i, y1 + j)g(x2 + i, y2 + j)

⎤
⎦

+ C4

⎡
⎣∑

i,j

g(x2 + i, y1 + j)g(x1 + i, y2 + j)

⎤
⎦

+ C5

⎡
⎣∑

i,j

g(x2 + i, y1 + j)g(x2 + i, y2 + j)

⎤
⎦

+ C6

⎡
⎣∑

i,j

g(x1 + i, y2 + j)g(x2 + i, y2 + j)

⎤
⎦ (14)

where

C1 = 2(1 − s)s(1 − t)2

C2 = 2(1 − s)2(1 − t)t

C3 = 2(1 − s)s(1 − t)t

C4 = 2(1 − s)s(1 − t)t

C5 = 2s2(1 − t)t

C6 = 2(1 − s)st2. (15)

As the derivation of (14) breaks down the original equation into
a series of summations, these

∑
i,j terms can all be computed

very efficiently via integral images, in the same manner as
described in Section IV-B.
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In order to compute ̂NCC4(x0, y0, u, v), four additional inte-
gral images are required, i.e.,

g(x, y)g(x + 1, y)
g(x, y)g(x, y + 1)
g(x, y)g(x + 1, y + 1)
g(x, y + 1)g(x + 1, y + 1). (16)

For g(x1 + s, y1 + t), we have

g(x1 + s, y1 + t)
= (1 − s)(1 − t)g(x1, y1)

+ s(1 − t)g(x1 + 1, y1)
+ (1 − s)tg(x1, y1 + 1)
+ stg(x1 + 1, y1 + 1). (17)

By combining (14) and (17), we are able to compute NCC
values accurate to the subpixel level. The calculation is done
efficiently by solving the summation terms using integral im-
ages. As all the integral images only need to be computed
once, they will not increase the computational complexity in
a significant way for a given stereo pair. It is important to note
that the subpixel measurements are used only when calculating
correlation coefficients.

At this point, we have one correlation coefficient for each
disparity value at each location of the image. For example, if
our subregion is of size 24 × 24, and our disparity range is from
0 through 9, then we have a total of (24 × 24 × 10) correlation
coefficients. This (X × Y × D) volume of coefficients is then
used as input to the path-based matching in order to find the
final disparity values for each pixel pair in the stereo images.
In our implementation, this step is performed in the exact
same manner as proposed by Sun, which was described in
Section III-B.

V. EXPERIMENTAL RESULTS

Here, we provide several examples to illustrate the improved
results obtained by our proposed algorithm. Since our method
is an extension of the work by Sun [8], we provide direct
comparisons between his results and ours. The results presented
here show the feasibility of our method, as well as illustrate the
improvements over the original algorithm. All data sets were
either obtained from Sun’s publication [8] and the stereo-image
database of Scharstein and Szeliski [11], or generated by us
with a Bumblebee stereo camera. For some of the experiments
presented here, we do not show the entire image frame in our
examples. Rather, we show cropped regions of the results in
order to better illustrate the finer differences obtained between
the two algorithms. For all the experiments, a window size
of 11 × 11 pixels was used. All experiments illustrated here
were carried out with relatively small subregions (no larger than
100 × 100 pixels) in order to exploit and better illustrate the
advantages of our subpixel correlation measurements and better
demonstrate the merits of our approach.

A. Initial Results

This first set of results, shown in Figs. 2 and 3, was initially
published in our preliminary paper [35]. The first example illus-

trated in Fig. 2(a) presents results using stereo images obtained
from the test data of Scharstein and Szeliski [11]. The left
image shows one of the stereo images, i.e., a baseball against a
noisy background. The second image shows the disparity map
obtained by Sun’s algorithm. Notice that the algorithm obtains
good matching of the image points. The rightmost image is
the disparity image obtained with our algorithm, incorporating
our subpixel measurements. Notice that the boundaries of the
ball are sharper and better defined than the ones provided by
Sun’s algorithm. This example shows a clear advantage of our
subpixel measurement approach.

The second example in Fig. 2(b) presents an outdoor scene
from the test data of Scharstein and Szeliski [11]. The disparity
image generated by Sun’s algorithm presents an accurate esti-
mate of the scene’s depth, but contains some noise, particularly
in areas of low texture. Our disparity image, however, obtained
sharper boundaries and smoother disparity areas. The third
example illustrated in Fig. 2(c) presents an image of the ground
taken from a 45◦ angle such that the top region of the image
represents the part of the ground that is furthest from the
stereo camera. As before, Sun’s algorithm provides an accurate
estimate of the depth in the scene. Our results, however, provide
a smoother disparity image with correct depth estimation. This
example illustrates the path-based matching algorithm’s ability
to find smooth paths along the intermediate 3-D volume of
correlation coefficients when these coefficients are obtained
with subpixel accuracy. Although the result of Sun’s method
is smooth, it is still outperformed by our approach.

The fourth example illustrated in Fig. 3(a) combines the
image of the third experiment [illustrated in Fig. 2(c)] with the
rearview mirror of a car in the foreground. As in the previous
cases, Sun’s algorithm does a good job of recovering scene
depth. Our disparity image, however, is able to recover better
boundaries between the foreground object (car) and the back-
ground (ground), as well as provide a smoother disparity map
overall. It also appears to perform slightly better in recovering
the depth of the ground in relation to the car.

The fifth example presented is illustrated in Fig. 3(b). The
input images were a stereogram pair obtained from the publica-
tion by Sun [8]. The results show that, although Sun’s method
provides a good disparity map, our results show more accurate
boundaries around the edges of the squares, as well as overall
smoother measurements inside each region.

B. Accuracy Measurements

As shown in Section V-A, our proposed method of includ-
ing subpixel measurements into the correlation calculations
exhibits clear advantages over the previously published work
by Sun [8]. Our results show improvements in finding accurate
boundaries between the objects in the scene, but sometimes
may sacrifice small image details. Here, we perform a matching
on images obtained from the data set provided by Scharstein
and Szeliski [11]. We compare results of our method as well
as Sun’s previously published method against ground-truth im-
ages. Distances between the disparity images and the ground-
truth images are quantified using well-known error metrics.

This set of experiments contains comparison results for seven
different data sets, illustrated in Figs. 4 and 5. For each row
in the figures, four images are displayed: The leftmost image
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Fig. 2. Disparity map for (left images, only one image shown in each pair) stereo pairs using (middle images) method in [8] and (right images) proposed method.
(a) Baseball pair. (b) Park meter scene. (c) Outdoor ground.

Fig. 3. Two additional disparity map examples; see Fig. 2 for figure legend. (a) Part of a car and ground. (b) Stereogram pair.

is one of the original stereo images; the second image is the
ground-truth disparity image; the third image is Sun’s disparity
matching; finally, the fourth image is our algorithm’s result for
disparity matching. Each experiment was calculated over an
arbitrary image region of pixel size 100 × 100. Only pixels for
which occlusion does not occur were taken into consideration
(occluded pixels are displayed as black in the ground-truth
image). Although the path-based algorithm does a good job of
estimating disparity values for regions where occlusion occurs,
we decided to only take into account regions for which the
ground-truth value is known. Both the disparity images and the
ground-truth images were normalized (by dividing the largest

disparity value in the corresponding ground-truth image) prior
to any comparison.

In order to quantify the comparison results, two different
error metrics were used: RMS and bad matching pixels (BMP)
[36]. Each is defined as follows:

RMS =

(
1
N

∑
x,y

|dI(x, y) − dT (x, y)|2
) 1

2

BMP =
1
N

∑
x,y

(|dI(x, y) − dT (x, y)| > δd) (18)
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Fig. 4. Disparity maps for stereo pairs. The first column shows one of the original images, the second column shows the ground truth, the third column shows the
results using the method by Sun [8], and the fourth column shows the results with the proposed method. (a) Baby doll against textured background. (b) Bowling
ball and pin against partially textured background. (c) Several dolls at different distances.

where dI is the calculated disparity image, dT is the ground-
truth disparity image, and δd is a disparity error tolerance (i.e.,
the allowed error threshold). Note that each disparity image was
normalized to have values between 0 and 1. In the following
experiments, an error tolerance of δd = 0.05 was used.

The quantified results of comparing each of the disparity
images against the ground truth are shown in Table I. These
error measurements illustrate the distance between each dis-
parity image and its corresponding ground truth; for clarity,
these measurements are also illustrated in the graphs of Fig. 6.
The vertical axis of the graph represents the error values, and
the horizontal axis represents each of the seven experiments
in Table I (shown in Figs. 4 and 5). Although the difference
between error measurements may vary for a given example,
both graphs follow the same general trend and show that our
method almost always outperforms Sun’s method by generating
more accurate disparity maps that contain fewer errors.

Visual analysis of the disparity images illustrates that our
results almost always look far more accurate than Sun’s original
method. Our method is able to provide matching that is closer
overall to the ground truth than the matching obtained by Sun’s
method. The error measurements show that for the first three
experiments presented (Fig. 4), we achieve results significantly
closer to the ground truth.

This first example in Fig. 4 shows a partial view of a doll
against a textured background. The arm of the doll is more
clearly visible in our result than Sun’s, and the object distances
more closely match the ground truth. The second example
shows the top of a bowling pin in front of a bowling ball, with
a partially textured background. Here, both methods achieve
good results for the bowling pin. The ball is a bit more clearly
defined in our method. The background is also more accurately

defined in our method, whereas Sun’s method is unsuccessful
in determining the proper disparity. Both methods include an
area of the background with incorrect disparity measurements,
caused by the complete lack of texture in the region. The final
example of Fig. 4 shows a series of dolls at different depths.
The bear in the foreground is much more clearly defined in our
method. Also, the boundary between the furthest doll and the
background is more clearly defined by our method, whereas
Sun’s approach fails to detect this boundary in a clean manner.

The first example in Fig. 5(a) shows the top corner of a
lampshade against a textureless background. Both disparity
maps for this image look similar, but our map is able to
calculate a more accurate boundary between the foreground and
background objects. It is also able to obtain a more accurate
disparity value for the foreground object, one closer to the
values of the ground-truth image. Interestingly, both methods
seem to shift the location of the boundary between the lamp
and the background toward the top of the frame. This is due
to the shortest path calculation containing small errors due
to the ambiguity within each object (since they contain no
textures).

The next example in Fig. 5(b) shows the lower corner of a
lampshade (in the upper left corner of the image), a section of
a pillow, part of a hat, and a textureless background. This ex-
ample proved challenging for both algorithms, as neither of the
methods achieved accurate boundaries for the disparity map.
Our method was at least able to calculate relative object dis-
tances by exploiting the subpixel accuracy measurements calcu-
lated from the image. Sun’s method even contains what appears
to be a sinusoidal-like pattern across the image, presumably
caused by errors in the correlations leading to incorrect shortest
path calculations.
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Fig. 5. Disparity maps for stereo pairs. The first column shows one of the original images, the second column shows the ground truth, the third column shows
the results using the method by Sun [8], and the fourth column shows the results using the proposed method. (a) Top corner of a lampshade. (b) Part of a hat and
textured fabric. (c) Protruding object against a partially textured background. (d) Aloe plant.

TABLE I
ERROR VALUES FOR FIGS. 4 AND 5 DATA

The third example in Fig. 5(c) shows a post coming from
the right side of the window, against a partially textured back-
ground. Although our disparity map appears visually closer to
the ground truth, Sun’s method achieved a smaller error value
using the RMS metric. Our method achieved a smaller error
according to the BMP error, however. In the final example
illustrated in Fig. 5(d), Sun’s method provided results that are
closer to the ground truth according to both error measure-

ments. This example shows that subpixel accuracy does not
improve the results 100% of the time. This may be caused by
either suboptimal segmentation of regions in the subregioning
step or noise in the images. Either of these cases may introduce
errors in the correlation process, which, when large enough,
may cause the path-based algorithm to calculate an incorrect
disparity value. However, from our experiments, we observe
that such errors are not a common occurrence.

C. Drawbacks and Limitations

Although our proposed method is capable of obtaining excel-
lent results efficiently, it does not always obtain perfect or ac-
ceptable matching. Analyzing the images visually, our method
successfully provides smaller errors than Sun’s algorithm, as
well as better boundaries between the objects in the scene.
Our disparity images also have a smoother appearance along
surfaces, reducing noise in sections of the disparity images
caused by incorrect matches. Our method, however, sometimes
sacrifices the smaller visual details of the scene.

At times, textureless regions may cause the path-based
matching step to generate errors in the matching. Such an
error is illustrated in Fig. 4(b). In our disparity image, near the
top of the bowling ball (near the right border of the image),
one can see errors in the disparity. It does not always occur,
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Fig. 6. Error graphs for the data in Figs. 4 and 5. (a) RMS error. (b) BMP
error.

but at certain times, the path-based approach will get lost in
textureless regions. Notice that Sun’s result contains the same
error. The error is more prominent in ours due to the subpixel
accuracy.

Another drawback of this method is the fact that the path-
based algorithm introduces artifacts to the left column of the
images due to the indexing going out of bounds in this region.
This is a minor drawback, however, that is easily overcome by
adding each side of the images, as discussed by Sun [8].

Currently, the method only achieves an accurate disparity
map if the objects in each subregion of the scene have a
maximum disparity of no more than ten pixels. Note that this
limitation is for the maximum disparity within a subregion only,
not the entire image. For example, if one subregion contains a
region with a disparity range between 1 and 10, and another
subregion contains a disparity range from 55 to 65, this will not
present a problem for our method since the size of the range
within each subregion is no larger than 10 pixels. At times,
however, the subregioning step will combine several areas with
very different disparities, giving the subregion a very large
disparity range. In this case, the algorithm may produce errors
in the final disparity images.

Although beyond the scope of this paper, this problem may
be overcome by incorporating a more accurate method of
calculating the initial subregions. Leung et al. [27] address this
problem by replacing Sun’s original rectangular subregioning
method with one based on quad-tree decomposition. Their
method should provide better subregioning results that are able
to handle large depth discontinuities, as regions are not limited
to rectangular ones. It is done by splitting the image into four
regions (by employing the use of quad trees) and repeatedly re-

cursing on regions containing large depth discontinuities. Note
that these depth discontinuities must be estimated before the
algorithm may begin. Combining the quad-tree decomposition
with our subpixel correlation metric should provide a powerful
and efficient stereo-matching algorithm. Several other methods
address the problem using adaptive window sizes on the stereo
images (e.g., [19], [24], and [37]).

D. Time Complexity

Our experiments clearly show the advantages of our ap-
proach. By using subpixel measurements during the cross-
correlation measurements, we are able to achieve accurate
matching closer to the ground truth. Compared with the algo-
rithm by Sun [8], our algorithm provides smoother and more
accurate disparity maps, with sharper and more refined bound-
aries. The extra calculations cost roughly twice the amount
of work than that of the original algorithm, but the time
complexity remains linear. As explained by Sun [8], the time
complexity of the algorithm is O(WHD), where W and H
are the image dimensions, and D describes the disparity range
(essentially, W × H × D is the size of the 3-D correlation
coefficient volume). Because of the rectangular subregioning
process, the disparity range for each subregion can be reduced,
thereby reducing the time complexity of the algorithm to
O(Wi Hi Di), where Wi ≤ W , and so on. Since the integral
images can be computed from one pass of the image and need
only to be calculated once for every stereo pair, the increased
computational cost does not affect computation time in any
significant way.

VI. CONCLUSION

The use of stereo images in computer vision is very popular
for applications where the depth among objects in a scene
must be estimated. As previously mentioned, one of the key
problems in stereo vision is to find accurate point corre-
spondences between the objects in the image pair. We have
presented an efficient subpixel accuracy path-based matching
algorithm. Our algorithm is based on the previous work by
Sun [8]. In order to improve the accuracy of the results while
maintaining an efficient computational cost, we propose several
major improvements to Sun’s original method, including the
incorporation of subpixel measurements into the correlation
coefficient computation, as well as the use of integral images
in order to perform the calculations efficiently.

Our approach incorporates the use of bilinear interpolation
between pixel locations combined with an NCC measurement
in order to provide correlation coefficients accurate down to the
subpixel level. In contrast to Sun’s method, which incorporates
subpixel accuracy by fitting a quadratic function after the
correlation values are computed, our method provides a clear
improvement on the final disparity maps.

In order to keep computational costs at a minimum, the
correlation measurements employ the use of integral images in
order to reduce correlation measurement costs. Since integral
images are only required to be computed once for a given stereo
pair, the increased amount of work does not have any effect on
the time complexity of the algorithm, which remains linear in
terms of W , H , and D.
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Our experiments illustrate the improvements of our proposed
method. We measure the errors using common error metrics,
each of which consistently shows that our method is more
accurate than the previously proposed approach. Our method
achieves smoother disparity regions, with improved boundaries
between objects in the scene and more exact distances between
objects. Although we limit ourselves to applying our proposed
improvement to the path-based matching approach, other meth-
ods based on NCC calculations (many of which were discussed
in Section II) may benefit from the work presented here.
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