
3D Feature Extraction from Uncalibrated Video Clips

Arturo Donate
Department of Computer Science

Florida State University
Tallahassee, FL 32306
donate@cs.fsu.edu

Xiuwen Liu
Department of Computer Science

Florida State University
Tallahassee, FL 32306

liux@cs.fsu.edu

ABSTRACT
This paper explores the idea of extracting a dense 3D point
cloud corresponding to salient features in a video. The goal
is to generate the dense point cloud efficiently, in order to
use the information in various other video processing tasks.
We present a method that is capable of extracting 3D infor-
mation of videos with no previous knowledge of the scene,
while keeping computational costs low. Our method exploits
the movement of the camera while robustly tracking features
over time, in order to obtain multiple views of a scene and
perform 3D reconstruction. Additionally, our system is able
to cope with individually moving people seen in the videos,
and can estimate each person’s pose and fit a 3D model to
it. This 3D model is inserted into the dense point cloud
in order to visualize the reconstructed scenes, and does not
affect the tracking of the rest of the scene.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—tracking,motion, object recognition, depth cues

General Terms
Algorithms, Design, Performance

Keywords
3d reconstruction, computer vision, mapping, structure from
motion, tracking, video processing

1. INTRODUCTION
In recent years, the use of 3D in videos has shown a

steady incline. Due to the inherent difficult in working with
three dimensions, the use of 3D reconstructions and 3D fea-
tures was not very prominent in the literature until recently.
Nowadays, with the rise in computational power of most per-
sonal computers, as well as the increased interest in various
3D video applications, the use of three dimensional infor-
mation is quickly becoming very prominent. The ultimate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
3DVP’10, October 29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-4503-0159-6/10/10 ...$10.00.

goal of this research is to extract meaningful 3D representa-
tions of a scene in order to improve the performance of var-
ious other video processing tasks (e.g., object detection and
modeling, video retrieval, shot-boundary detection, etc).

In this paper, we concentrate on the problem of extract-
ing meaningful 3D representations of scenes observed by a
single camera. This problem presents many inherent diffi-
culties since we are dealing with a single view (as opposed
to a stereo view). Additionally, we assume no knowledge of
the underlying camera system or observed scene. In order
to achieve an accurate 3D representation, we must track fea-
tures across frames and perform a temporal matching. In
order for this to work correctly, most methods in the liter-
ature assume a static scene. In our system, we are able to
cope with humans moving across the video by detecting their
relative pose and incorporating this into our measurements.

The rest of the paper is organized as follows. In section 2,
we will provide a review of recent works in the literature.
In section 3, we give an analysis of the various feature ex-
traction methods used. We describe the tracking and recon-
struction algorithm in detail in sections 4. The human pose
estimation is illustrated in section 5. We illustrate several
results in section 6, and conclude the paper in section 7.

2. BACKGROUND
Extracting 3D information from 2D images and videos is

one of the classic problems of computer vision. As such,
we do not have the space to perform a complete litera-
ture review, and thus will concentrate on recently published
methods related to the problem being addressed in this pa-
per. Most of the works reviewed here fall into one of three
categories: simultaneous localization and mapping (SLAM),
structure from motion (SFM), and 3D from 2D. All of these
problems have similar or related goals, and thus face many
of the same problems and limitations.

In [12, 13], the authors describe a real-time structure from
motion approach that is capable of reconstructing an ob-
served scene in 3D using only a single camera as input.
The method extracts Harris corners from the image and
matches them across frames using normalized cross correla-
tion. The authors use Grunert’s pose estimation algorithm
to retrieve the camera location at each frame in real-time.
The 3D structure of the scene is estimated via triangulation.
The method is capable of very accurate localization when
mounted on a car, as described by their experiments [12].

In [9], the authors present a framework for augmented
reality using a single monocular camera. The authors run
two separate threads, one for tracking and one for mapping.

31

The tracking process receives new frames from the camera,
projects existing features onto the image according to a prior
pose estimate, searches the image for the features using a
coarse-to-fine approach, then computes an updated camera
pose estimate. The mapping process is responsible for gen-
erating the 3D map and maintaining it. Initially, the 3D
points are calculated using the 5-point algorithm [15]. Ad-
ditionally, the system estimates the location of a flat surface
in order to perform several augmented reality tasks using
the 3D map.

In [4], the authors present the MonoSLAM framework, a
system capable of localization and mapping using a single
calibrated camera as input. This method finds salient fea-
tures in the image and stores them in a probabilistic map
that keeps track of the covariance between all features. In
order to achieve real-time performance, the set of features is
kept relatively sparse. The system uses Kalman filtering to
estimate the camera and scene locations over time.

In [23], the authors introduce their VideoTrace system.
This software package allows users to extract meaningful
3D models of objects from 2D videos. The method uses
the Voodoo [21] software package to track the camera, then
allows users to outline simple 3D shapes on the video frames.
By tracking these shapes over time, the method uses a Levenberg-
Marquardt optimization technique to minimize the distance
between points and the estimated surfaces, in order to ex-
tract NURBS surfaces and generate 3D models of objects
present in the scene.

3. FEATURE EXTRACTION AND MATCH-
ING

The feature extraction step is one of the vital parts of our
algorithm. Not only do they provide the necessary informa-
tion to achieve robust tracking, matching and reconstruc-
tion, but they must also be descriptive enough so that each
individual feature can be easily found in subsequent frames.
This requirement can become challenging for many existing
feature detectors/descriptors in the literature when dealing
with image regions with repetitive textures, or videos with
low-quality frames. One of the most powerful feature detec-
tors available today is the SIFT detector [10]. This method
calculates oriented histograms of features and extracts 128-
dimensional histograms which are rotation and scale invari-
ant. The only real downside to the SIFT detector is its
computational time. Since we aim to keep computational
cost down as much as possible, we decided to use SURF [1]
features instead. They behave much like SIFT features, but
make use of box filtering and integral images to keep compu-
tational costs down. Additionally, we use the 64-dimensional
descriptor for performance reasons.

As is their nature, these SURF features tend to extract
image patches in high gradient regions. In order to counter
this, we also extract features using maximally stable ex-
tremal regions (MSER) [11]. These features tend to have
more of a blob-like structure, providing different but com-
plementary features to the SURF. We use the 64-element
SURF descriptor to describe each MSER patch.

These two features combined provide excellent data for
tracking, but alone would not provide a dense reconstruc-
tion of the scene. Hence, we also apply the FAST [17] cor-
ner detector on the frames. This feature detector is able
to extract salient corners in images that are excellent can-

Figure 1: Detected features on sample frames.

didates for matching. The computational cost of extracting
these features is very low, making them excellent candidates
for real-time applications. Figure 1 shows two sample video
frames with all three feature types extracted.

For efficiency, we do not consider every frame of the video
a key frame. During the initialization step, which will be dis-
cussed in more detail in section 4.1, we consider the two user-
selected frames to be key frames and store these in the map.
After this point, we only insert new key frames into the map
if the number of tracked features falls below some threshold
(in our experiments, our threshold was set to 1000 in order
to generate a dense map). Matching each of these features
must also be done in an efficient manner, since we will be
keeping track of a large number of features across frames (for
a 640x480 video, the total number of features may range be-
tween 2,000 to 10,000). For the SURF and MSER features,
matching is done as described in [1]. For each feature, we
find the 2 nearest neighbors of the same type and match the
given feature to its closest neighbor if the distance between
the two is at least 60 % closer than the distance between it
and the second-closest neighbor. Otherwise, we discard the
feature. Nearest neighbors are located quickly using the Fast
Library for Approximate Nearest Neighbors (FLANN) [14].

For matching FAST features, we use normalized cross cor-
relation (NCC) measurement to determine similarities. This
NCC measurement is defined as:

NCC(f, g) =
1

n

X
x,y

`
f(x, y) − f̄

´
× (g(x, y) − ḡ)

σfσg
, (1)

where f, g are the two image regions containing the corners
to be compared, f̄ , ḡ their respective means, and σf , σg their
standard deviations.

4. TRACKING AND TRIANGULATION
This section provides an in-depth description of our al-

gorithm. We will first describe the initialization and self-
calibration steps performed at the beginning of each video.
Afterwards, we will discuss the tracking and reconstruction
steps, as well as human detection in the videos.

4.1 Initialization
The initialization of our system requires some human in-

teraction. In order for our tracking to work properly, we
need to establish an initial correspondence between two frames
near the beginning of the video to estimate the initial struc-
ture of the scene as well as the extrinsic camera parameters.
While the initialization can also be done automatically, this
step is more error-prone and we chose to initialize semi-
automatically.

32

To achieve this, we allow the user to manually select two
frames from the video. Ideally, the user will select frames
where there is a small translation of the camera. When the
user selects the first frame, the system runs all three feature
detectors on this initial frame. For the subsequent frames,
the system runs all three feature detectors and attempts to
match as many features across frames as possible. When
the user specifies the second frame, the system first refines
the match locally and uses the refined match points between
frames to compute an estimate of the fundamental matrix
using least squares as described in [8]. From the fundamental
matrix, we can extract the camera position (relative to the
initial position) and estimate the 3D location of each feature
by using triangulation.

4.2 Self-calibration and Outlier Removal
Before the triangulation step occurs, the system deter-

mines the intrinsic camera parameters and removes incor-
rect correspondences caused by tracking errors. This self-
calibration is done using the method proposed in [20]. Recall
that a typical calibration matrix is defined in terms of focal
length f , principal points (u0, v0), and aspect ratio γ. The
method assumes that the focal length is the only unknown,
so we assign approximate values to the other parameters.
Afterwards, we compute the semi-calibrated matrix G using
our previously calculated fundamental matrix F and esti-
mations of camera parameters as:

G =

0@ γ′ 0 0
0 1 0
u′0 v′0 1

1AF

0@ γ 0 u0

0 1 v0
0 0 1

1A . (2)

From the decomposition of this matrix G, we end up with
two linear and one quadratic equations. For most cases,
simply solving for the focal length in the quadratic equation
provides us with the necessary calibration parameter. For
further details on this method, including proofs, we refer
the readers to [20]. This process yields an estimate for the
intrinsic camera matrix that, although may not be exact,
provide a solution that works well with our tracker.

Before the initial 3D reconstruction takes place, we at-
tempt to remove any incorrect matches from our initial track-
ing estimate. To do so, recall that for any pair of non-
normalized image coordinates, we have

(p′)TFp = 0, (3)

where p, p′ are the image coordinates of the two image frames
corresponding to the same feature. The system iterates
through all features, computing this value for each matched
pair. For any features where the value is not close to zero (in
our experiments, we used a threshold of 0.001), the system
will remove them from the set.

Afterwards, the system uses triangulation from the two
camera locations (corresponding to the two video frames
chosen by the user) to calculate the initial 3D location of
each feature. These features are stored in our 3D map, and
will be used for tracking the camera location at each frame.

4.3 Camera Pose Estimation and Tracking
Once the user has selected the initial frames and the sys-

tem is initialized, the main tracking process can begin. The
basic idea behind the tracking is simple: at each frame,
project each of the 3D features stored in the map back onto
the newly acquired image frame, then match the projected

features with the newly detected features. Any of the previ-
ously detected features which fail to match are removed from
the map. If at any point the number of features falls below a
certain threshold, we insert a new keyframe into the system
and find new features to add by matching new unmatched
features from the latest frame with features detected from
previous frames, and performing triangulation.

The system also updates the pose of the camera at each
iteration. This is done by implementing Grunert’s pose esti-
mation algorithm [7]. This is a very popular algorithm used
by several tracking and SLAM methods, capable of very ac-
curate results [12, 13]. In order to remove ambiguities in the
solutions, we incorporate the use of RANSAC [6] to find the
estimated pose with the minimum number of outliers.

4.4 Optimizing Feature Locations
As new image frames are observed, the algorithm re-estimates

the camera pose at each frame. If the number of features
currently being tracked is above a certain threshold, no new
keyframes need to be inserted into the system. In this case,
we make use of bundle adjustment to refine the estimated 3D
feature locations and camera-pose estimations across previ-
ous frames. This process uses a Levenberg-Marquardt opti-
mization to obtain the optimal least-squares solution for the
system.

Recall that this method is intended to work with video
clips corresponding to a single shot of a scene. Typically,
most shots in full-length movies tend to be relatively short.
In this case we can safely perform bundle adjustment across
all frames in the shot. However, we have observed that the
majority of personal video clips available on online public
databases (such as YouTube) can sometimes be quite long
in duration, while still being composed of only one single
shot. Since bundle adjustment can be a computationally
expensive operation, we have decided to use a local bundle
adjustment scheme that only takes the most recent 20 video
frames into account. Our experiments show that reducing
this number further yields a negative effect on the quality
of the reconstructions, and thus not worth the reduction in
computation time.

Let αi be our cost function at frame i to be minimized by
the local bundle adjustment. Let Ci be the set of camera
locations for the most recent N positions, and let Fi be the
set of feature locations visible at each of the N previous
camera locations. We can now define our cost function as

αi =
X
Ci

X
fk∈Fi

d (fk, Pifk) , (4)

where fk is a feature in the set Fi, Pi is the projection ma-
trix for the camera position at the current Ci, and the term
d (fk, Pifk) defines the Euclidean distance between the pre-
viously observed feature fi, and the the projected feature
Pifk using the current projection matrix. In other words,
we are using a least-squares optimization to minimize the
re-projection error of feature and camera locations across
the N most recently observed video frames.

5. HUMAN POSE DETECTION
One of the largest limitations of the majority of SLAM

and SFM approaches are their inabilities to correctly handle
independently moving objects in the scene. As such, most
methods assume a completely static scene with the only mo-
tion present corresponding to the camera motion. Our aim

33

is to allow the system to observe a moving person in the
video, while successfully tracking and mapping the rest of
the scene. Additionally, we place a generic 3D model of the
human in the 3D scene in the same pose and relative loca-
tion as the person being observed in the video. We divide
this process into two steps; first we find persons in the videos
and estimate their 2D pose, then we apply the 2D pose to
our 3D human model and place the model in the 3D scene.

5.1 Detection and 2D Pose Estimation
The first step is to determine if a person is present in the

scene. We can do this efficiently by running a face detector
on selected frames. If a frontal or profile face is found, we
assume there is a person in the scene. Next, we employ the
use of the 2D human pose estimator proposed in [15, 16] to
estimate the pose of the detected person.

In [15, 16], the authors present a framework for estimating
the relative 2D pose of a person across a video sequence; they
use a simple 2D model of a human composed of a head,
torso, upper and lower arms, as well as upper and lower
legs. The system first builds an appearance-based model
of each person, then tracks each person by detecting the
model in subsequent frames. In order to build the model,
candidate parts (for each part of the model) are first found
using an edge-based part detector. These candidate parts
are then clustered via the mean-shift algorithm in order to
find patches with similar appearances across time.

Afterwards, the authors enforce a predefined motion model
on the resulting candidate parts. Clusters that are smaller
than a certain size, or that never move, are removed (effec-
tively rendering the method useless for tracking people who
stand still across the entire video sequence). Each torso
cluster is considered a unique person. Once the torso is
estimated, the rest of the limbs are inferred according to
their model. For further details on this method, we refer
the reader to [15, 16]. Figure 2 illustrates a pose estimate
calculated using this method. Once complete, we generate a
bounding box around the pose estimate, and any previously-
observed feature whose 2D projection falls within this box
is omitted from the camera pose calculations and bundle
adjustment optimizations. Additionally, any new features
detected within this bounding box are discarded right away.
This prevents the system from using points on a moving
person during the camera tracking.

5.2 3D Pose Estimation
At this point in the algorithm, the system has successfully

detected the human(s) in the videos and estimated their
pose in 2D. The next step is to extend this pose to 3D, then
place a model of the person in our 3D reconstruction. We
employ the use of a simplified 3D human model with similar
characteristics to the previously obtained 2D output.

This 3D model consists of several block segments, each
one matching a segment of the 2D model. It has a segment
for the head, torso, upper and lower arms, as well as upper
and lower legs. Now the problem becomes extending the
2D pose onto the 3D model. Note that this is an ill-posed
problem, as there may exists more than one 3D pose that
project onto the same 2D pose, making the job of going
from 2D to 3D inherently more difficult. As such, we apply
several constraints to our 3D model.

First, the overall model can only be rotated about the
Y axis, changing the direction the model is facing. Each

Figure 2: Left: Estimated 2D pose. Right: Our 3D
model in various poses.

upper arm section has an almost free range of motion, but
cannot bend backwards towards the rear of the body, or be
rotated so that it collides with the torso or the head. The
lower arm is more restricted, only allowing 90 degrees of
freedom to bend at the elbow joint. The upper leg segments
can be rotated up to 45 degrees forwards, backwards, or
away from each other. The legs are not allowed to bend
inwards (making it impossible for our model to cross its
legs correctly). The lower leg segments have 135 degrees of
freedom at the knee. Both the knee and elbow joints are
also constrained so that the bending occurs in one direction
only (i.e., if the arm is hanging straight down, the elbow
can only be bent in such a way so that the lower arm is
rotated towards the direction that the model is facing, and
not towards the rear; similar constraints are applied to the
knee to simulate typical human limitations). Figure 2 shows
our 3D model in two possible poses.

First, we must estimate the relative direction of the 3D
model, which will be refined later. Since we are limited to
a rotation about the Y axis, we need to figure out which
direction the model is facing. To do this, we look at the
position of the 2D model over time. We assume that the
person is always facing the direction in which they are walk-
ing. Therefore, if the 2D pose estimation retrieves a person
moving in the negative X direction, our initial 3D model
orientation is to rotate the model so that it is facing this
same direction. This implies that the system is not able to
accurately model people walking backwards, which is not
common anyways. Note that since this orientation is based
on 2D image measurements, the initial orientation of the
model will most likely be perpendicular to the optical axis
of the camera if the person is moving. If the person is stand-
ing still and the 2D pose was able to extract two arms and
two legs side by side, we assume the person is facing the
camera.

Next, we need to align the sections of our 3D model with
the 2D pose estimation. The first step is to calculate the
relative angle of the torso (in relation to the image’s Y axis).
This angle will give us the amount of rotation to be applied
to our 3D model’s torso. From this, we calculate the relative
angle between the torso and each upper arm segment in the
2D pose estimate, and apply them to the 3D model. Next,
we calculate the angle between the upper and lower arm
segments, and rotate the 3D model’s lower arm accordingly.
A similar process is repeated for the upper and lower leg
segments.

At this point we have aligned our 3D model with the 2D
pose estimation calculated from the video frames. The fi-
nal step is to find the correct placement of the 3D model in

34

Figure 3: Reconstruction from various viewpoints.

the reconstructed 3D scene. Recall from Section 2 that our
3D reconstruction is only able to triangulate static points
in the scene. Because of this, the 3D reconstruction can-
not accurately recover any points on the moving person to
determine their location. Instead, we attempt to place the
feet of our 3D model in the 3D scene. We begin with the
2D pose estimation, and attempt to find the image feature
with the shortest euclidean distance to the bottom of one
of the lower leg segments. When this point has been found,
we place our 3D model in the reconstructed scene so that
the lower leg segment has the same 3D coordinate as the
image feature selected. If more than one feature is found
to have the overall shortest distance, the feature is selected
arbitrarily.

The final step is to refine the orientation of our 3D model.
Recall that the initial orientation is based on the direction
of the 2D pose estimate. After obtaining an estimated 3D
location for our model across video frames, we refine the
orientation by adjusting it to be equal to the direction of
the path the 3D model is traveling in (equivalent to the
direction between the features closest to our model’s feet
over time).

6. RESULTS
Here we illustrate various reconstruction results generated

from major motion pictures, as well as personal hand-held
cameras. The videos contain several compression artifacts.
The average performance of our algorithm ranged between 5
and 8 frames per second when processing these videos in res-
olution of 640x480 on a 3.0 GHz quad core processors using
two threads to handle the workload, as long as there is no
human present in the scene. When a human is located, the
pose estimation slows down the system to several seconds
per frame; as quad-core processors are commonly available,
this performance can be improved substantially using addi-
tional threads.

The first set of results in Figure 3 shows the 3D recon-
struction of the sample frame from the left image of Fig-
ure 1. This reconstruction, obtained from the feature film
“Run Lola, Run” shows our method’s ability to extract ex-
cellent 3D structure from the video. The building in the
background is clearly visible from all angles, and the depth
difference between the foreground trees and the background
building is clearly visible.

The second set of results in Figure 4 correspond to the
video frame in the right image of Figure 1. This reconstruc-
tion was successful in obtaining a relatively dense amount
of points on each building, and even extracting the struc-

Figure 4: Tracked 2D features and 3D reconstruc-
tion.

Figure 5: Reconstruction with 3D human model.

ture of the skyscrapers on the right hand side of the frame.
The structure of the buildings in the middle of the frame
is not completely visible in the reconstruction since it was
not clearly visible in the video, and hence no features were
found in this area.

This third set of results in Figure 5 show the 3D recon-
struction of the video frame illustrated in the left image of
Figure 2. Notice that not only was the system capable of
tracking and reconstructing the scene, but it was also capa-
ble of tracking and fitting a 3D model of the human, while
not losing the ability to continue tracking the background
features.

7. CONCLUSION
As video databases become more prevalent, the need for

powerful video analysis and mining techniques increases.
Many tasks such as shot-boundary detection, video sum-
marization, and content-based video retrieval rely on mea-
surements and techniques based on two-dimensional image
features. Although some of these tools can be very pow-
erful, they are not capable of capturing the inherent three
dimensional structure of a scene. The goal of our research
presented is to estimate the three dimensional structure of
a scene, in the hopes of facilitating and improving various
video analysis tasks.

As discussed in section 2, there have been several works
published recently which deal with the estimation of 3D
structure of a scene observed from a monocular camera,
while assuming no previous knowledge of the scene or cam-
era. We show that under camera motion, it is possible to es-
timate the location of the camera in the world, and from this
estimate the 3D structure of the scene. We employ the use
of accurate and efficient feature detectors to build a dense

35

3D reconstruction of a scene, while keeping computational
time low.

We also show that although most of the related methods
require observation of a static scene, it is possible for our
system to continuously track scenes containing people. We
first detect the people and estimate their relative pose in 2D.
This pose is then applied to a 3D human model, which is
then inserted into the 3D scene. In order to perform accurate
tracking with the person in the video, we place a bounding
box around the person and do not use any points within the
bounding box in the tracking measurements.

Our experiments show that this method has great promise,
but much work remains to be done before the technique can
be truly useful. We are currently working on improving the
human pose estimation, which is clearly the bottleneck of
our system. Additionally, we are experimenting with vari-
ous approaches to speed up the feature detection and match-
ing, in order to further reduce computation time on videos.
Our future research involves applying several techniques to
speed up the computation (especially the human pose esti-
mation), as well as incorporating this technique into various
video analysis tasks.

Acknowledgements
We would like to extend our gratitude to the authors of
the Parallel Tracking and Mapping framework [9], as well as
the authors of the MonoSLAM framework [4] for providing
their source code online for other researchers. Their fan-
tastic work on these methods has proved invaluable to the
development of our own algorithms.

8. REFERENCES
[1] H. Bay, T. Tuytelaars, and L. J. V. Gool. Surf:

Speeded up robust features. In European Conference
on Computer Vision, pages 404–417, 2006.

[2] R. O. Castle, D. J. Gawley, G. Klein, and D. W.
Murray. Towards simultaneous recognition,
localization and mapping for hand-held and wearable
cameras. In Proc. International Conference on
Robotics and Automation, Rome, Italy, April 10-14,
2007, pages 4102–4107, 2007.

[3] J. Civera, A. J. Davison, and J. Montiel. Inverse depth
to depth conversion for monocular slam. In IEEE
International Conference on Robotics and Automation,
April 2007.

[4] A. J. Davison, I. D. Reid, N. D. Molton, and
O. Stasse. MonoSLAM: Real-time single camera
SLAM. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(6):1052–1067, 2007.

[5] A. Donate and X. Liu. 3d structure estimation from
monocular video clips. In First International
Workshop on Three Dimensional Information
Extraction for Video Analysis and Mining, 2010.

[6] M. A. Fischler and R. C. Bolles. Random sample
consensus: A paradigm for model fitting with
applications to image analysis and automated
cartography. Communications of the ACM,
24(6):381–395, 1981.

[7] R. Haralick, C. nan Lee, K. Ottenberg, and M. Nolle.
Analysis and solutions of the three point perspective
pose estimation problem. International Journal of
Computer Vision, pages 592–598, 1991.

[8] R. Hartley and A. Zisserman. Multiple View
Geometry. Cambridge Press, 2003.

[9] G. Klein and D. W. Murray. Parallel tracking and
mapping for small ar workspaces. In International
Symposium on Mixed Augmented Reality, 2007.

[10] D. G. Lowe. Object recognition from local
scale-invariant features. In International Conference
on Computer Vision, pages 1150–1157, 1999.

[11] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust
wide baseline stereo from maximally stable extremal
regions. In British Machine Vision Conference, pages
384–393, 2002.

[12] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser,
and P. Sayd. Real time localization and 3d
reconstruction. In Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition, pages 363–370, Washington,
DC, USA, 2006. IEEE Computer Society.

[13] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser,
and P. Sayd. Generic and real-time structure from
motion using local bundle adjustment. Image and
Vision Computing, 2008.

[14] M. Muja and D. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
International Conference on Computer Vision Theory
and Applications, pages 331–340, 2009.

[15] D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike
a pose: Tracking people by finding stylized poses. In
IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 271–278, 2005.

[16] D. Ramanan, D. A. Forsyth, and A. Zisserman.
Tracking people by learning their appearance. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 29(1):65–81, January 2007.

[17] E. Rosten and T. Drummond. Machine learning for
high-speed corner detection. In European Conference
on Computer Vision, pages 430–443, 2006.

[18] M. Schwarzkopf and C. Richardt. Proteus -
semi-automatic interactive structure from motion. In
Vision, Modeling, and Visualization Workshop, 2009.

[19] J. Sivic and A. Zisserman. Video google: Efficient
visual search of videos. In J. Ponce, M. Hebert,
C. Schmid, and A. Zisserman, editors, Toward
Category-Level Object Recognition, volume 4170 of
LNCS, pages 127–144. Springer, 2006.

[20] P. Sturm. On focal length calibration from two views.
In International Conference on Computer Vision and
Pattern Recognition, pages 145–150, 2001.

[21] T. Thormahlen. Zuverlassige Schatzung der
Kamerabewegung aus einer Bildfolge. PhD thesis,
University of Hannover, 2006.

[22] P. Torr, A. Fitzgibbon, and A. Zisserman. Maintaining
multiple motion model hypotheses over many views to
recover matching and structure. In International
Conference on Computer Vision, pages 485–491, 1998.

[23] A. van den Hengel, A. Dick, T. Thormahlen, B. Ward,
and P. Torr. Videotrace: Rapid interactive scene
modelling from video. ACM Transactions on Graphics,
26(3):86, 2007.

36

