
3D Structure Estimation from Monocular Video Clips

Arturo Donate and Xiuwen Liu
Florida State University

Department of Computer Science
Tallahassee, FL 32306

{donate,liux}@cs.fsu.edu

Abstract

This paper explores the idea of extracting three dimen-
sional features from a previously recorded video, in an at-
tempt to provide three dimensional information about a
video clip in order to improve the performance of various
video analysis tasks. Although video analysis is a very
prevalent area of research, the use of 3D features is scarce
in the literature due to the inherent difficulties associated
with extracting accurate 3D representations of videos in
cases where no previous knowledge of the scene or camera
is known.

In this paper, we present a framework that attempts
to compute a dense three dimensional representation of a
scene using only the available video sequence. Our pro-
posed system exploits the motion of the camera in order to
estimate the relative 3D positions of salient features located
in the video frames. Additionally, we incorporate the use of
appearance-based models to estimate their relative poses
and fit a 3D human model into the reconstructed scenes.
We test our method using various video clips obtained from
online databases in order to show the feasibility of this ap-
proach.

1. Introduction

With all the current and ever-increasing uses for video
databases, the need for fast and accurate mining systems
grows every day. On account of this, video analysis is
quickly becoming a prominent field of active research. This
field can be broken down into several smaller areas [21].
Some of these include multimodal analysis, video represen-
tation, video summarization, browsing, as well as video re-
trieval.

Many of these video analysis areas share similar meth-
ods for extracting relevant details from videos. Some of
these methods include using low level measurements such
as color histograms, while others use more common image

descriptors such as SIFT [12] and SURF [1] features. While
many of these tools have been proven to be successful in
solving various video analysis tasks, none of them capture
the inherent three dimensional structure of real world ob-
jects. As such, their descriptive powers will always be lim-
ited to some degree.

The aim of this work is to extract a dense 3D reconstruc-
tion of a video sequence. We assume no prior knowledge of
the system as we attempt to not only provide a dense recon-
struction of the static elements in the observed scene, but
also provide 3D models of the humans present in the scene,
in their relative poses.

Several recent publications have attempted to solve sim-
ilar problems related to mapping scenes in 3D from a single
camera. In [3], the authors present a system to perform si-
multaneous localization and mapping using a single monoc-
ular camera. The system can track several points in real-
time and perform accurate localization of the camera. The
world is modeled as a probabilistic 3D map that is contin-
uously updated via an Extended Kalman Filter [18]. Since
the primary focus of the system is to achieve high local-
ization accuracy, the features of the probabilistic map are
modeled using a densely populated covariance matrix. In
order to achieve real-time performance, the number of fea-
tures cannot be very large. Because of this, the framework is
able to generate accurate locations for a set of 3D features,
but the number of features is relatively sparse.

In [14], the authors attempt to perform camera localiza-
tion and 3D reconstruction of the scene in real time using
only a single video camera as input. Although this system
was not designed to work with video sequences, using a sin-
gle monocular video camera as input presents many of the
same problems as we are dealing with. The authors first
use salient corners and normalized cross correlation to find
matching features across images. Then, the normalized 5-
point algorithm [15] is used to determine the relative 3D
camera pose across the initial set of frames. The 3D points
are then computed via triangulation, and the camera and
feature positions are updated via local bundle adjustment.

17978-1-4244-7030-3/10/$26.00 ©2010 IEEE

In [10], the authors present a framework for augmented
reality using a single monocular camera. The authors run
two separate threads, one for tracking and one for mapping.
The tracking process receives new frames from the cam-
era, projects existing features onto the image according to
a prior pose estimate, searches the image for the features
using a coarse-to-fine approach, then computes an updated
camera pose estimate. The mapping process is responsible
for generating the 3D map and maintaining it. Initially, the
3D points are calculated using the 5-point algorithm [15].
As the camera moves, this process searches for new features
in the images and calculates their 3D positions via triangu-
lation. The relative 3D positions of the camera and features
are optimized using local bundle adjustment. Additionally,
the system uses RANSAC on the 3D points stored in the
map to estimate the location of a flat surface. Once a suit-
able surface is found, the system is able to perform several
augmented reality tasks using the 3D map. Some of these
tasks may include projection of various 3D objects onto the
estimated flat surface.

The literature on 3D human tracking is extensive, and
thus we will only review selected works. Several of these
methods use either multiple cameras in order to obtain ac-
curate depth information, or a single stationary monocular
camera.

In [11], the authors attempt to perform real-time human
body tracking in 3D. This proposed system uses color and
depth information to track several parts of the human body
in real time. In order to compute the depth of each tracked
feature, the authors use several cameras and employ the use
of multi-baseline stereo algorithms. Additionally, the cam-
eras are assumed to be stationary, so subjects can be seg-
mented using background subtraction.

In [13], the authors propose a method for robust tracking
of a person’s upper body and 3D pose estimate in real time
using a single monocular camera. People are first detected
using a probabilistic framework for head, torso and hand
detection using adaboost. The relative pose of the person
is then estimated using previously learned mixture models
along with RANSAC. Afterwards, the detected person is
matched to a 3D model using edge and silhouette matching
criteria incorporating background subtraction (like the pre-
vious work, the camera is assumed to be static in this case).

In [20], the authors present a framework that uses tempo-
ral motion models along with principal component analysis
in order to track a human body. Data is obtained from a sta-
tionary stereo camera. The authors argue that by posing the
tracking problem as one of minimizing differentiable ob-
jective functions, they are able to use standard deterministic
optimization methods, as opposed to probabilistic methods.
In doing so, they show that tracking of a human body can
be done at a much lower computational cost than traditional
probabilistic methods.

The rest of the paper is organized as follows. Section 2
describes our approach for estimating the 3D structure of
the background scene in a video. Section 3 explains how
our framework estimates the relative pose and positions of
people in the scene, and from this how we can insert a 3D
model of a human into the previously-generated reconstruc-
tion. We show several examples on various video sequences
in Section 4, and conclude our paper in Section 5.

2. 3D Scene Reconstruction

The task of reconstructing a scene in 3D from a single
video input is very difficult due to the many inherent limi-
tations of such a system. By being only a single view (as
opposed to a stereo view), the system must rely on tempo-
ral information to provide enough information to accurately
calculate the three dimensional structure of a scene. The
problem becomes even more complex when dealing with
dynamic scenes involving multiple independently moving
objects. Since there is only one view of the scene, we rely
on image frames at different points in time in order to obtain
different views of the scene, but objects may not be located
in the same place at different points in time, causing prob-
lems for the reconstruction step.

Our method takes advantage of available camera motion
in video clips to obtain views of the same scene from dif-
ferent angles, in order to estimate the relative 3D geometry.
In doing so, we make use of many fundamental concepts
proposed in [14, 10].

The basic idea behind our approach is to first generate
an initial 3D reconstruction of the scene using video frames
obtained at different points in time. As new frames are ob-
served by the system, the estimated 3D points are projected
back onto the image and compared with the corresponding
image feature locations. Bundle adjustment [9, 5] is used to
optimize the estimated camera and feature locations in the
3D world.

2.1. Initialization

The system begins by generating an initial reconstruction
from a pair of images. This step requires user interaction to
obtain a pair of images with some camera translation in or-
der to generate the initial reconstruction. Ideally, the user
will select two frames where the camera is observing the
same scene, but with only a translation of the camera po-
sition. Once the two frames are selected, the system finds
corresponding points in the two images via optical flow and
the eight point algorithm is used in order to estimate the
scene geometry and relative camera position between the
two frames. Afterwards, we use triangulation to estimate
the relative 3D location of each point. These point locations
are stored in our 3D map along with the camera location.
To find these salient image points in each image, we use

18

Figure 1. Sample reconstruction: left image shows the features,
right image shows the reconstruction.

the Harris feature detector [8] already implemented into the
OpenCV library [2]. Harris features were chosen for their
ability to efficiently extract a substantial amount of corner
features in image frames.

At this point, we have an initial 3D reconstruction of the
scene as observed by the camera. Note that if the translation
between the chosen frames is insufficient, this will result in
a reconstruction where all the 3D points are coplanar (due to
the lack of disparity between corresponding features). The
system will continue without error, but the reconstructions
will prove to be inaccurate.

2.2. Camera pose estimation

In order for our method to work correctly, we must up-
date our camera location estimate for each frame in the
video. To do this, we adopt the process initially proposed
in [14]. Each time a new video frame is obtained, we first
project the features currently stored in the 3D map onto the
new frame.

Next, we find the salient features in the new frame us-
ing the Harris feature detector. The goal is to find the cor-
responding salient feature in the new frame that matches
with the projected features (from our 3D map). To do this,
we perform a search within a fixed distance from each pro-
jected feature, looking for the new salient feature with the
lowest zero-mean SSD score. If this score is below a certain
threshold value, we consider the salient feature and the 3D
feature to be a match.

In order to correctly project the features onto the image,
it is necessary to estimate the intrinsic camera parameters.
For the results presented in this paper, we estimated these
parameters manually by observing the calibration parame-
ters of several cameras, and finding the set of values that
yielded reasonable results. This process may be automated
by using some of the automatic camera calibration methods
available in the literature [4, 19, 6].

Once the relative positions of all the features are found,
we use them to calculate an initial estimate of the camera
location using Grunert’s method [7, 14]. This provides an
initial estimate for the camera pose, which will be refined
later.

2.3. Updating the map

As new video frames are analyzed by the system, the 3D
map is updated accordingly. Similar to previous works [14,
10, 3], we observe that not every frame of the video needs
to be used for reconstruction. For example, if the camera is
stationary and is observing a static scene, there is no point in
re-calculating the 3D reconstruction every time a new frame
is observed. This is computationally expensive and does not
provide any useful information. Instead, we only insert new
features into our 3D map if the current number of visible
features falls below a threshold. Setting this value to a large
number will generate very dense reconstructions, but will
have an adverse effect on computational costs.

In our experiments, we found that a value of approxi-
mately 500 features provides a good balance between com-
putational requirements and reconstruction quality. When
the number of observed features in a given frame falls be-
low this threshold, the system selects new features in the
image and uses triangulation to estimate the 3D location of
these points. Afterwards, these points are added into the 3D
map. This threshold value will also depend on the scene be-
ing observed however, since the Harris detector is unable to
extract salient features from textureless regions.

Since we are estimating 3D feature locations by ex-
ploiting camera motion, we can only accurately reconstruct
static scenes to ensure that features are in the same location
when observed at different points in time. Most video clips
are dynamic in nature however, sometimes containing mul-
tiple moving objects, each with unique motions. At times,
our method will attempt to match features across frames that
belong to objects in motion. Since our camera location es-
timates rely on the 3D map features, we must remove any
feature from the map that can potentially corrupt our cam-
era location estimates. If a feature in the 3D map fails to be
found in subsequent frames, we assume that this feature be-
longs to a moving object, and is thus deleted from the map
after a certain number of failed matching attempts.

2.4. Optimizing camera and feature locations

As new features are added to the map, we update the
camera position and feature positions using bundle adjust-
ment. This process uses a Levenberg-Marquardt optimiza-
tion to obtain the optimal least-squares solution for the sys-
tem (with respect to camera and feature locations). As dis-
cussed in [14, 10], this bundle adjustment step can be very
computationally expensive, so both of these previous works
employ the use of local bundle adjustment. Instead of opti-
mizing over all the previous frames, local bundle adjustment
only takes into consideration the last N frames. Let αi be
our cost function at time i to be minimized by the local bun-
dle adjustment. Let Ci be the set of camera locations for the
most recent N positions, and let Fi be the set of feature lo-

19

cations (in 3D world coordinates) measured at each of the
N previous camera locations. We can now define our cost
function as

αi (Ci, Fi) =
∑
Ci

∑
fj∈Fi

d (fj , Pifj) (1)

where d (fj , Pifj) is the distance between the previously
recorded feature location fj and the re-projection of the fea-
ture with the computed projection matrix P (incorporating
the new camera location parameters). In other words, we
are using a least-squares optimization to minimize the re-
projection error of camera and feature locations for each
point in time.

Taking all previous frames into account when perform-
ing the optimization yields the best reconstruction results,
but can become computationally expensive, especially since
our goal is to generate dense reconstructions. In our exper-
iments, we noticed that using local bundle adjustment and
taking into consideration the most recent N = 10 frames in
the system yields reasonable 3D reconstructions while still
keeping computational costs relatively low.

Figure 1 shows a sample run of this process. The left im-
age shows a video frame with the Harris features detected
(illustrated with green boxes). The right image shows a
sample reconstruction of the points. Although difficult to
visualize in the image, the reconstruction successfully esti-
mates the relative geometry of the scene. We can see correct
localization for the features on the adjacent and far building
walls, the foreground tree, as well as a few features on the
ground plane.

3. Human Model Fitting
At this point we are able to take a video and generate

a 3D reconstruction of the static elements in the observed
scene. Moving objects present a much greater challenge to
reconstruct since their location may differ by an unknown
factor between consecutive video frames. This problem be-
comes even more challenging when the objects are nonrigid
or articulate, such as people. In order to successfully solve
this problem, we employ the use of 2D human pose estima-
tion techniques, as well as our own 3D model of the human
body. The basic idea is to estimate the relative 2D pose of
the person, then fit a 3D model to the resulting 2D pose.

3.1. 2D pose estimation

The first step is to determine if a person is present in the
scene. We can do this efficiently by running a face detec-
tor on selected frames. If a face is found (either frontal or
profile), we assume there is a person in the scene. Next, we
employ the use of the 2D human pose estimator proposed by
Ramanan et al. [16, 17] to estimate the pose of the detected
person.

Figure 2. Sample pose estimate from the movie “Run Lola Run.”

In [16, 17], the authors present a framework for estimat-
ing the relative 2D pose of a person across a video sequence.
Here, the authors use a simple 2D model of a human com-
posed of a head, torso, upper and lower arms, as well as up-
per and lower legs. The system first builds an appearance-
based model of each person, then tracks each person by de-
tecting the model in subsequent frames. In order to build
the model, candidate parts (for each part of the model) are
first found using an edge-based part detector. These candi-
date parts are then clustered via the mean-shift algorithm in
order to find patches with similar appearances across time.

Afterwards, the authors enforce a predefined motion
model on the resulting candidate parts. Clusters that are
smaller than a certain size, or that never move, are removed
(effectively rendering the method useless for tracking peo-
ple who stand still across the entire video sequence). Each
torso cluster is considered a unique person. Once the torso
is estimated, the rest of the limbs are inferred according to
their model. For further details on this method, we refer
the reader to [16, 17]. Figure 2 illustrates a pose estimate
calculated using this method.

3.2. 3D pose estimation

At this point, we have accurately estimated the 2D pose
of each person in the video. The next step is to infer a 3D
model of a person from the already calculated 2D model.
To do this, we use a simplified 3D model of a human with
the same basic sections as the 2D model proposed by Ra-
manan et al. [16, 17].

Our 3D model is composed of block structures, each cor-
responding to one of the following body sections: head,
torso, upper and lower arms, upper and lower legs. This
model will be used to represent the person in the recon-
structed 3D scene. Given such a mapping between a 2D
model and a 3D model, there may exist several different 3D
poses that correspond to a given 2D pose (i.e., more than

20

Figure 3. Two sample 3D model poses showing joint articulation.

one 3D pose may share the same projection in 2D space).
For this reason, we chose to use a simplified 3D model with
several constraints.

First of all, the overall model can only be rotated freely
about the Y axis. Each upper arm section has an almost
free range of motion, but cannot bend backwards towards
the rear of the body, or be rotated so that it collides with the
torso or the head. The lower arm is more restricted, only
allowing 90 degrees of freedom to bend at the elbow joint.
The upper leg segments can be rotated up to 45 degrees for-
wards, backwards, or away from each other. The legs are
not allowed to bend inwards (making it impossible for our
model to cross its legs). The lower leg segments have 135
degrees of freedom at the knee. Both the knee and elbow
joints are also constrained so that the bending occurs in one
direction only (i.e., if the arm is hanging straight down, the
elbow can only be bent in such a way so that the lower arm
is rotated towards the direction that the model is facing, and
not towards the rear; similar constraints are applied to the
knee to simulate typical human limitations). Figure 3 shows
our 3D model in two possible poses.

The first step is to determine the relative orientation of
the 3D model, which will be refined later. Since we are
limited to a rotation about the Y axis, we need to figure
out in which direction the model is facing. To do this, we
look at the position of the 2D model over time. We assume
that the person is always facing in the direction that they
are walking. Therefore, if the 2D pose estimation retrieves
a 2D model moving in the negative X direction, out initial
3D model orientation is to rotate the model so that it is fac-
ing this same direction. Because of this, we are not able to
accurately model people walking backwards.

Next, we need to align the sections of our 3D model with
the 2D pose estimation. The first thing we do is to calcu-
late the relative angle of the torso (in relation to the image’s
Y axis). This angle will give us the amount of rotation to
be applied to our 3D model’s torso. From this, we calcu-
late the relative angle between the torso and each upper arm

segment in the 2D pose estimate, and apply them to the 3D
model. Next, we calculate the angle between the upper and
lower arm segments, and rotate the 3D model’s lower arm
accordingly. A similar process is repeated for the upper and
lower leg segments.

At this point we have aligned our 3D model with the 2D
pose estimation calculated from the video frames. The fi-
nal step is to find the correct placement of the 3D model in
the reconstructed 3D scene. Recall from Section 2 that our
3D reconstruction is only able to triangulate static points in
the scene. Because of this, the 3D reconstruction cannot ac-
curately recover any points on the moving person. Instead,
we attempt to place our 3D model’s feet in the 3D scene.
We begin with the 2D pose estimation, and attempt to find
the image feature with the shortest euclidean distance to the
bottom of one of the lower leg segments. When this point
has been found, we place our 3D model in the reconstructed
scene so that the lower leg segment has the same 3D coordi-
nate as the image feature selected. If more than one feature
is found to have the overall shortest distance, the feature is
chosen at random.

The final step is to refine the orientation of our 3D model.
Recall that we initially set the orientation based on the di-
rection of the 2D pose estimate. Now, since we have an
estimated 3D location for our model across several video
frames, we can refine this orientation by setting it equal to
the direction that the 3D model is traveling in (equivalent
to the direction between the features closest to our model’s
feet over time).

4. Experiments
We present several of our current results in this section.

We use various video clips obtained from Youtube as input
to our algorithm. As such, the videos are of reasonably low
resolution and contain several compression artifacts. Since
the method presented here cannot handle shot boundaries
within video clips, we manually broke the videos into series
of shots and present some of our experimental results here.

It is important to note that since our results are sim-
ply dense point clouds, they are difficult to illustrate in
images. Therefore, a bit of imagination may be re-
quired when interpreting the sample reconstructions il-
lustrated in this paper. To better illustrate our results,
we have placed videos of sample reconstructions online
at http://www.youtube.com/view_play_list?
p=5410456BCC285FE1.

The first experiment is from the music video “Here I
Am” by Bryan Adams, illustrated in Figure 4. In this clip,
the camera is translating from left to right. The scene con-
tains a man sitting on the ground leaning against a rock,
while the background contains several rock formations.
Here, the camera motion is not sufficient to accurately mea-
sure the curvature of the man’s body, but it is sufficient to

21

Figure 4. Bryan Adams music video and corresponding 3D recon-
struction.

Figure 5. Shakira music video and corresponding 3D reconstruc-
tion.

Figure 6. Sample frame from the motion picture “Run Lola Run.”

successfully place the man and the rock on the foreground
of the reconstruction, while clearly separating them from
the background rocks.

The second experiment is from the music video “When-
ever, Wherever” by Shakira. In this clip, we see several rock
formations in the foreground, with a woman dancing on top
of one of them. Here, our method successfully separates the
two rocks and is even able to recover the smooth inclined
surface shape of the visible rocks. Again, the method local-
izes the woman on the rocks correctly in the reconstruction,
but the video quality is too poor to be able to generate an
accurate reconstruction of her body curvature. Still, the rel-
ative geometry of the scene, as well as the locations of the
objects, was recovered successfully.

The next set of experiments were computed from scenes
from the film “Run Lola Run.” In the first clip, illustrated
in Figure 6, the camera motion corresponds to a translation
in the negative Y direction. Here we see a building in the
background, with trees on the sides of the foreground and
a fountain near the center of the ground plane. Although
the system successfully detected the woman’s face at the

Figure 7. Sample frame from the motion picture “Run Lola Run.”

Figure 8. Sample frame from the motion picture “Run Lola Run.”

end of the video clip, the 3D pose estimation was unable to
estimate her pose.

Figure 7 shows yet another experiment using a clip from
“Run Lola Run.” The scene contains a woman running
along a sidewalk, while the camera moves from left to right
in order to follow her. Our reconstruction is able to recover
the structure of the wall clearly, including a dense repre-
sentation of high-texture areas. Unfortunately the Harris
feature detector used finds very few points around the ve-
hicles on the right side of the screen, so we were unable to
recover any 3D representation of this part of the scene. This
is likely due to the lack of salient textures and gradients in
the region. As in the previous experiment, the face detec-
tion returns a positive detection at this point in the clip, but
the 2D pose estimator fails to accurately locate the woman’s
body due to changes in lighting and scale.

Figure 8 shows results from the same scene as in the pre-
vious example, but obtained a few seconds later in the clip.
Here, not only are we able to recover the 3D structure of the
scene, but we are also able to accurately locate the woman
using the method described in Section 3. The corresponding
image frame is shown in Figure 2.

22

5. Conclusion

As video databases become more prevalent, the need for
powerful video analysis and mining techniques increases.
Many tasks such as shot-boundary detection, video summa-
rization, and content-based video retrieval rely on measure-
ments and techniques based on two-dimensional image fea-
tures. Although some of these tools can be very powerful,
they are not capable of capturing the inherent three dimen-
sional structure of a scene. The goal of the research pre-
sented in this paper is to provide additional tools capable of
capturing the three dimensional structure of a scene, in the
hopes of facilitating and improving various video analysis
tasks.

Several works have been published in recent years deal-
ing with 3D estimation of scenes observed from monocular
video cameras. In this paper, we borrow many of the pro-
posed ideas to develop a framework capable of generating a
dense 3D reconstruction of an observed scene with no pre-
vious knowledge of any scene parameters. By making use
of the available camera motion within a video clip, we are
able to generate a 3D reconstruction of the static objects in
the scene by tracking salient features in the image frames,
and measuring their relative changes in image coordinates
as the camera moves about the world.

Our proposed system is also capable of locating peo-
ple, estimating their relative pose, and inserting a 3D hu-
man model within the reconstructed scene. Ramanan et al.’s
method is used for human pose estimation [16, 17] in the in-
dividual image frames of the clip. In order to extend these
results to three dimensions, we make use of our simplistic
3D human model and align it with the results obtained from
the 2D pose estimation. Once the 3D model is accurately fit
to the 2D model, we place the 3D model into the previously
constructed 3D scene by finding the point with the shortest
distance to the person’s feet.

Although the results presented here show great promise,
much work remains to be done before this technique can be
truly useful to other researchers. We are currently extending
the proposed method to reconstruct low-textured regions of
the videos, since the Harris detector fails to obtain features
at these locations, in order to increase the density of the
reconstructed point clouds. Additionally, we are currently
working on improving the performance of the human pose
estimation in order to increase robustness and better esti-
mate human poses, while attempting to perform all calcula-
tions efficiently.

Acknowledgements

This work is partially funded by NSF grants CCF-
0514743 and DMS-0713012, and the National Institutes
of Health through the NIH Roadmap for Medical Re-
search, Grant U54 RR021813. Information on the National

Centers for Biomedical Computing can be obtained from
http://nihroadmap.nih.gov/bioinformatics.

References
[1] H. Bay, T. Tuytelaars, and L. J. V. Gool. Surf: Speeded

up robust features. In European Conference on Computer
Vision, pages 404–417, 2006.

[2] G. Bradski. The opencv library. Dr. Dobb’s Journal of Soft-
ware Tools, pages 120–126, November 2000.

[3] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
26(6):1052–1067, 2007.

[4] J. Deutscher, M. Isard, and J. Maccormick. Automatic cam-
era calibration from a single manhattan image. In European
Conference on Computer Vision, pages 175–205, 2002.

[5] D. A. Forsyth and J. Ponce. Computer Vision: A Modern
Approach. Prentice Hall, August 2002.

[6] L. Grammatikopoulos, G. Karras, E. Petsa, and I. Kalisper-
akis. A unified approach for automatic camera calibration
from vanishing points. In Image Engineering and Vision
Metrology, 2006.

[7] R. Haralick, C. nan Lee, K. Ottenberg, and M. Nolle. Anal-
ysis and solutions of the three point perspective pose esti-
mation problem. International Journal of Computer Vision,
pages 592–598, 1991.

[8] C. Harris and M. Stephens. A combined corner and edge
detection. In Proceedings of The Fourth Alvey Vision Con-
ference, pages 147–151, 1988.

[9] R. Hartley and A. Zisserman. Multiple View Geometry. Cam-
bridge Press, 2003.

[10] G. Klein and D. W. Murray. Parallel tracking and mapping
for small ar workspaces. In International Symposium on
Mixed Augmented Reality, 2007.

[11] J.-F. Li, Y. Xu, Y. Chen, and Y. Jia. A real-time 3d human
body tracking and modeling system. In International Con-
ference on Image Processing, pages 2809–2812, 2006.

[12] D. G. Lowe. Object recognition from local scale-invariant
features. In International Conference on Computer Vision,
pages 1150–1157, 1999.

[13] A. S. Micilotta, E. jon Ong, and R. Bowden. Real-time up-
per body detection and 3d pose estimation in monoscopic
images. In European Conference on Computer Vision, pages
139–150, 2006.

[14] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and
P. Sayd. Generic and real-time structure from motion using
local bundle adjustment. Image and Vision Computing, 2008.

[15] D. Nister. An efficient solution to the five-point relative pose
problem. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 26(6):756–777, 2004.

[16] D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike a pose:
Tracking people by finding stylized poses. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, volume 1,
pages 271–278, 2005.

[17] D. Ramanan, D. A. Forsyth, and A. Zisserman. Tracking
people by learning their appearance. IEEE Transactions

23

on Pattern Analysis and Machine Intelligence, 29(1):65–81,
January 2007.

[18] M. I. Ribeiro. Kalman and extended kalman filters: Concept,
derivation and properties, February 2004.

[19] T. Tamaki, T. Yamamura, and N. Ohnishi. An automatic
camera calibration method with image registration tech-
nique. In Proceedings of the 4th World Multiconference
on Systemics, Cybernetics and Informatics, pages 317–322,
2000.

[20] R. Urtasun and P. Fua. 3d human body tracking using deter-
ministic temporal motion models. In European Conference
on Computer Vision, pages 92–106, 2004.

[21] Z. Xiong, R. Radharkishnan, A. Divakaran, Y. Rui, and T. S.
Huang. A Unified Framework for Video Summarization,
Browsing and Retrieval. Elsevier, 2006.

24

