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Abstract

We propose a new transductive learning algorithm for
learning optimal linear representations that utilizes unla­
beled data. We pose the problem of learning linear repre­
sentations as an optimization one on the underlying non­
linear manifold. An additional term is used to prefer rep­
resentations with large "margins" when classifying unla­
beled data in the nearest class(fier sense, a generalization
of transductive support vector machines to learning repre­
sentations. Experimental results ofthe proposed algorithm
on face recognition data sets show the potential significant
improvementfor class(fication accuracy on test sets.

1. Introduction

In recent years, due to dramatic increase in availability of
(unlabeled) data, semi-supervised learning methods, such
as EM with generative mixture models [6], self-training [7],
co-training [5], transductive support vector machines [8],
etc., have been proposed to utilize unlabeled data during
training to improve the generalization performance of the
resulting classifiers. These methods are attractive for many
real-world applications as labeling examples is often expen­
sive while unlabeled data are readily available. A particular
example among those methods is transductive support vec­
tor machine (TSVM) [8]. Transductive learning can be ef­
fective in that the learning algorithm can estimate probabil­
ity distributions of the unlabeled examples in the testing set
and can potentially exploit the structure for better general­
ization performance. For example, TSVM seeks the largest
separation between labeled and unlabeled data through reg­
ularization by imposing large margins for both labeled and
unlabeled data. TSVM has been used widely in classifica­
tion, such as in [2, 9]

Optimal component analysis (OCA) [4] is a stochastic
gradient algorithm that poses the problem of learning opti­
mal linear representations for a particular recognition task
as an optimization one. A recognition performance function
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is specified based on the nearest neighbor classifier. The
search for an optimal representation is to maximize a spec­
ified performance function over all subspaces of a Grass­
mann manifold. The solution is obtained by conducting
a stochastic searching algorithm utilizing intrinsic geome­
try structure of the underlying manifolds. OCA provides
a computational framework for finding optimal linear rep­
resentations for particular applications and its effectiveness
has been demonstrated in many applications.

In this paper we propose a transductive version of DCA
by generalizing the idea of transductive SVM. In DCA, for
the labeled training data, the specified performance mea­
sure function, which will be referred as objective perfor­
mance function in the following sections, remains the same
as in [4]. However, we add an additional term for unlabeled
test data. Since the labels of the test samples are not known,
we will enforce a large margin by forcing the test sample to
be close to the class of the closest samples and at the same
time to be far away from other classes. This corresponds to
transductive SVM, where unlabeled test samples are forced
to be away from the decision boundaries.

The rest of the paper is organized as follows. Section 2
gives a brief description on the optimal component analysis
and Section 3 shows the formulation ofTDCA. Experiment
results are presented in Section 4 and Section 5 concludes
the paper.

2. Overview of Optimal Component Analysis

Compared to PCA, ICA and LDA, DCA has shown its
advantages in solving object recognition problems on com­
monly used datasets. More specifically, let U E ~n x d be
an orthonormal basis of a d-dimensional subspace of ~n ,

where n is the size ofthe input image and d is the desired di­
mension ofthe resulting subspace (generally n »d). For an
image I, considered as a column vector of size n, the vec­
tor of coefficients is given by Q (I, U) == UT I E ~d. The
performance function F is defined in the following way:
let there be C classes to be recognized from the images,
where each class has ktrain training images (denoted by



I mine'#e,j D(I~,i' Ie' ,j; U)
P(Ic,i' U) = '. D(I' I .' U) , (2)

mIn] e,i' e,]' + E

1 C kcross
F(U) =~L L h(p(I~,i' U) - 1). (1)

eross e=l i=l

Ie,l, ... ,Ie,ktrain) and keross cross validation images (de­
noted by I~,1, ... , I~,kcross)' we define a performance func­
tion by

where h(·), a monotonically increasing bounded function,
is used to control bias with respect to particular classes in
measurements of performance; in our implementation, we
use h(x) = 1/(1 + exp( -2f3x)), where (3 controls the de­
gree of smoothness of F(U). In Eq. (1), p is given by

3. Transductive Optimal Component Analysis

The key problem in transductive learning is how to make
use of unlabeled data effectively. Transductive SVM, for
examples, attempts to maximize the margin by forcing the
linear decision boundary away from not only labeled data
but also unlabeled data. In a loose sense, TSVM attempts to
improve the classification accuracy of the test set by impos­
ing a larger margin from the decision boundary. Compared
to TSVM DCA algorithm, as described in the previous sec­
tion, while attempting to learn better representations, can
also be interpreted as maximizing the "margin" in the near­
est classifier sense. As shown Eq. (1), F(U) attempts to
maximize the ratio between the minimum distance to all
other classes and the minimum distance within the same
class. The larger the ratio, the better confidence for clas­
sification and therefore a larger margin for classification.

With this observation, we propose to generalize the DCA
algorithm for transductive learning similar to transductive
SVM. To illustrate the potential benefit for transductive
DCA, Fig. 1 shows a simple example with two classes,
where + and x are labeled data of two different categories
and EB represents unlabeled data. If we apply PCA or FDA
analysis on the training data, the resulting I-dimensional
basis is shown in Fig. l(a), which gives the worst clas­
sification performance using nearest or other classifiers as
two classes will be mixed together. If we apply the original
DCA algorithm, both the I-dimensional bases in Fig. I(b)
and (c) will work well, resulting large separations between
two classes. However, ifwe include the unlabeled data, Fig.
1(c) is a better choice since unlabeled data will have a larger
"margin" in that sense they will be much closer to the '+'
class than to the 'x' class in the one dimensional represen­
tation.

To be more specific, in the proposed transductive opti­
mal component analysis algorithm, we make use of both
training set and unlabeled testing set. For the labeled train
set, the objective performance function uses the leave-one­
out version of the function given in Eq.(I). In other words,

Since the Grassmann manifold g(n, d) is a curved space,
as opposed to being a (flat) vector-space, the gradient pro­
cess has to account for its intrinsic geometry. In [4], an
optimization algorithm utilizing the geometric properties of
the manifold is presented. A Monte Carlo version of a sim­
ulated annealing type stochastic gradient-based algorithm is
used to find an optimal subspace (;.

Note that a key advantage of the optimal component
analysis compared to principal component analysis and
Fisher discriminant analysis is that it allows incorporation
of additional constraints on the resulting representation. In
this paper we use an additional constraint for utilizing unla­
beled data.

(4)(; = arg max Feross (U)
UEQn,d

which measures the ratio between the smallest distance be­
tween I~ i and all the training images in other classes and
the smallest between I~ i and the ones in the same class.
Here D(·,·;·) is given by

D(I1 , 12 ; U) = 110:(11 , U) - 0:(12 , U) II, (3)

where II . II denotes the 2-norm. In Eq. (2), E > 0 is a small
number to avoid division by zero. Here p measures the sep­
aration between clusters given by different classes; note that
P(I~,i' U) > 1 means that Ie,i is closest to a training image
in the same class and when we let f3 ---+ 00, F is precisely
the recognition performance of the nearest neighbor classi­
fier after projection to the subspace given by U [4], Note
that while Eq. (1) is defined using a separate cross valida­
tion set, it can be modified to be defined on the training set
only in the leave-one-set sense.

Under this formulation, F(U) = F(UH) for any d x
d orthogonal matrix H as the distance D (11 , 12 ; U) =

D(I1 , 12 ; UH); the choice of2-norm in D(I1 , 12 ; U) allows
for this equality. In other words, F depends on the subspace
spanned by U but not on the specific basis chosen to repre­
sent that subspace. Therefore, our search for optimal repre­
sentation is on the space of d-dimensional subspace rather
than the basis.

The Grassmann manifold, Q(n, d), is the set of all d­
dimensional subspaces ofRn [1]. It is a compact, connected
manifold of dimension d(n - d), which can be represented
either by a basis (non-uniquely) or by a projection matrix
(uniquely). Choosing the former, let U be an n x d matrix
whose columns are an orthonormal basis for the given sub­
space of Rn and let [U] denote the set ofall the orthonormal
bases of span(U), i.e., [U] = {UHIH E Rdxd, H T H =
Id} E g(n, d). Unlike the actual recognition performance,
F(U) is smooth and thus allows us to use gradient-type al­
gorithm to solve the optimization problem. An optimal d­
dimensional subspace for the given classification problem
from the viewpoint of the available data is given by



1 C ktest

Ftest(U) =~L L h(p(I~~i' U) - 1). (5)
test c=l i=l

each labeled training example is left one once as the "cross
validation" image and this will be done for all the images.
In order to utilize the unlabeled data, we introduce an addi­
tional constraint term based on the unlabeled test set. This
term is given by

Figure 1. Different 1-dimensional repre­
sentation for a two-class dataset. (a)
1-dimensional representation by principal
component analysis and Fisher discriminant
analysis. (b) A potential solution for OCA but
not for TOCA. (c) A solution for TOCA

which is very similar to Eq.(1) except that image I~' 1 here
belongs to test set. Now the problem is how to calculate
p in Eq. (2). Here, p measures the "margin" in the near­
est neighbor sense. As their true labels are unknown, for
each test sample, we first find the closest labeled training
example and use the dominant label as if it were a true la­
bel. To control the relative contribution of the transductive
term, the performance functions on the training and test set
are combined using

variations within the class are very large due to sunglasses,
scarf, view, and light changes. The difficulty is also evi­
dent that the principal component analysis with the nearest
neighbor classifier gives only 67% recognition performance
on the test set as shown in Fig. 3(a), where the initial basis
is given by principal component analysis. J':

In the first experiment, we use a subset of 5 classes in
AR dataset, where the dimension is reduced from 165 to
5 and transductive weight w is set to 0.2. As shown in
Fig. 3(a), the stochastic search process is effective in find­
ing better representations according to F(U). The learn­
ing process improves both the performance on the training
and unlabeled set as well as the recognition on the test set.
The highest F(U) is achieved at iteration 381, with 98%
classification accuracy on the training set (in the leave-one­
out sense) and 93.3% classification accuracy on the test set.
Compared to the initial classification, the improvement is
over 25%. Note that the transductive learning only relies
on the labeled training set and unlabeled test set. This ex­
ample shows clearly that the transductive learning improves
the generalization performance ofthe nearest neighbor clas­
sifier by learning better and more robust linear representa­
tions.

We also have applied the transductive learning on the en­
tire ORL dataset. In this case, 30% of the images are used
as traning, the number ofwhich is significantly smaller than
that for test. As on the AR dataset, the transductive learning
improves significantly the performance on the training (in
the leave-one-out sense) and the performance on the test.
The classification accuracy on the test is improved from ini­
tially 62% to 85% after 500 iterations, an improvement of
over 20%. These two examples show clearly the effective­
ness of transductive learning.
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5. Conclusion

which gives the criterion for transductive OCA. The value
oftransductive weight w must fall in [0,1). Eq.(6) is equal
to Eq.(l), when w is assigned value O.

4. Experimental Results

We have applied the transductive OCA algorithm to the
search for optimal linear basis on several datasets. Due to
the limitation of space, we report the experiments on AR
face dataset l and ORL face recognition data set2 .

The AR face dataset is a difficult dataset as the images
contain significant variations in each class. Fig. 2 shows
selected images of a particular subject. It is clear that the

In this paper we have proposed a new transductive algo­
rithm that utilizes unlabeled data when learning optimal lin­
ear representations for recognition and classification. The
experimental results on face datasets show the significant
improvements. As unlabeled data are more readily avail­
able, the proposed methods can be potentially significant
in improving performances ofcontent-based image retrieval
and other related applications.

One of the limitations of the proposed algorithm is that
it is formulated for linear representations. However, non­
linearity can be modeled efficiently by using kernel meth­
ods [3]. This will be further investigated for transductive
learning of linear representations.

1Available from www.cobweb.ccn.purdue.edu/""aleix/
aleix_face-DB.html

2Available from www.cl.cam.ac.uk/research/dtg/attarchive/
facesataglance.html.

Acknowledgments
This research was supported in part by the National Sci­

ence Foundation grants CCF-0514743. The authors like to



Figure 2. Selected images of a particular subject in the AR dataset, showing the significant variations
within the class.
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Figure 3. Evolution of performance F(U) and recognition accuracy on (a) AR dataset; (b) ORL
dataset. In each column, the top one shows the F(U) with respect to the number of iterations and
the bottom the nearest neighbor classifier accuracy. In each panel, the red solid curve shows that
for F(U) and classification accuracy on the training set and the green dashed curve shows that on
the test set.
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