
Optimal Factor Analysis and Applications to
Content-Based Image Retrieval

Yuhua Zhu1, Washington Mio2, and Xiuwen Liu1

1 Dept. of Computer Science, Florida State University, Tallahassee FL 32306, U.S.A.
2 Dept. of Mathematics, Florida State University, Tallahassee FL 32306, U.S.A.

Abstract. We formulate and develop computational strategies for Optimal Factor
Analysis (OFA), a linear dimension reduction technique designed to learn
low-dimensional representations that optimize discrimination based on the nearest-
neighbor classifier. The methods are applied to content-based image categorization
and retrieval using a representation of images by histograms of their spectral com-
ponents. Various experiments are carried out and the results are compared to those
that have been previously reported for some other image retrieval systems.
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1 Introduction

We develop Optimal Factor Analysis (OFA), a linear dimension-reduction technique
that optimizes the discriminative ability of the nearest-neighbor classifier for a given
data classification problem. We apply the technique to content-based categorization
and retrieval of images using a representation based on the statistics of their spectral
components. This investigation is motivated by the need to develop intelligent and scal-
able systems capable of indexing and retrieving images from large and complex image
libraries in an automated manner. Classical approaches based on “expert” annotations
are not viable for large data sets.

For the image categorization problem, we shall assume that a training database of
labeled images representing various different classes of objects is available and the goal
is to learn optimal low-dimensional features or “signatures” to assign a query image to
the correct class. In content-based image retrieval, one of the objectives is to find the
top � matches in a database to a query image, where the number � is prescribed by the
user. In the proposed approach, categorization and retrieval are closed related. We use
a categorization algorithm to organize an entire database according to features learned
from a training set. Given a query image I , we first rank the classes using the nearest
neighbor classifier applied to the learned low-dimensional features and then retrieve
images sequentially starting from the top ranked class.

The problem of classifying images in a database into semantic categories arises in
many different levels of generality. For example, the problem can be as broad as separat-
ing images that depict an indoor or outdoor scene, or it may involve much more specific
categorization into classes such as cars, people, and flowers. As the breadth of the se-
mantic categories may vary considerably, the development of general strategies poses
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significant challenges. This motivated us to approach the problem in two stages. First,
we extract “stable” features that are able to capture information about the structure and
semantic content of an image. Subsequently, we employ learning techniques to iden-
tify the factors that have the highest discriminating power for a particular classification
problem.

The histogram of an image is useful, however, it tends to have limited discriminating
power because it contains little information about the finer structure of an image. To
remedy the situation, we use histograms of multiple spectral components, as they retain
a significant amount of information about texture patterns and edges. The statistics of
spectral components have been studied in the past primarily in the context of texture
analysis and synthesis. In [11], it is demonstrated that marginal distributions of spec-
tral components suffice to characterize homogeneous textures; other studies include [5]
and [9]. To provide some preliminary evidence of the suitability of spectral histogram
(SH) features, in Section 3, we report the results of a retrieval experiment on a database
of 1,000 images representing 10 different semantic categories. The relevance of an im-
age is determined by the nearest-neighbor criterion applied to a number of SH-features
combined into a single feature vector. Even without a learning component, we already
observe a performance comparable to those exhibited by some existing retrieval systems.

Optimal Factor Analysis will be employed with a twofold purpose: (a) to identify
and split off the most discriminating factors of the SH-features; (b) to lower the dimen-
sion of the representation to reduce complexity and improve computational efficiency.
A preliminary form of OFA was introduced in [3] as Splitting Factor Analysis. Given a
(small) positive integer k, the goal of OFA is to find an “optimal” k-dimensional linear
reduction of the original image features for a particular categorization or indexing prob-
lem. Image categorization and retrieval will be based on the nearest neighbor classifier
applied to the reduced features, as explained in more detail below. We employ OFA in
the context of SH-features, but it will be presented in a more general feature learning
framework.

Image retrieval strategies employing a variety of methods have been investigated in
[8], [1], [6], [7], [10], [2]. Further references can be found in these papers. Some of
these proposals employ a relevance feedback mechanism in an attempt to progressively
improve the quality of retrieval. Although not discussed in this paper, a feedback com-
ponent can be incorporated to the proposed strategy by gradually adding to the training
set images for which the quality of retrieval was low.

The paper is organized as follows. In Section 2, we describe the histogram features
that will be used to characterize image content. Preliminary retrieval experiments using
these features are described in Section 3. Section 4 contains a discussion of Optimal
Factor Analysis, and Sections 6 and 7 are devoted to applications of the machine learn-
ing methodology to image categorization and retrieval. Section 8 closes the discussion
with a summary and a few remarks on refinements of the proposed methods.

2 Spectral Histogram Features

Let I be a gray-scale image and F a convolution filter. The spectral component IF of I
associated with F is the image IF obtained through the convolution of I and F , which
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is given at pixel location p by

IF (p) = F ∗ I(p) =
∑

q

F (q) I(p − q), (1)

where the summation is taken over the pixels of F . For a color image, we apply the filter
to its R,G,B channels. For a given set of bins, which will be assumed fixed throughout
the paper, we let h(I, F ) denote the corresponding histogram of IF . We refer to h(I, F )
as the spectral histogram (SH) feature of the image I associated with the filter F . If the
number of bins is b, the SH-feature h(I, F ) can be viewed as a vector in R

b. Figure 1
illustrates the process of obtaining SH-features. Frames (a) and (b) show a color image
and its red channel response to a Laplacian filter, respectively. The last panel shows the
11-bin histogram of the filtered image.

(a) (b) (c)

Fig. 1. (a) An image; (b) the red-channel response to a Laplacian filter; (c) the associated 11-bin
histogram

If F = {F1, . . . , Fr} is a bank of filters, the SH-features associated with the family
F is the collection h(I, Fi), 1 � i � r, combined into the single m-dimensional vector

h(I, F) = (h(I, F1), . . . , h(I, Fr)), (2)

where m = rb. For a color image, m = 3rb. Banks of filters used in this paper consist
of Gabor filters of different widths and orientations, gradient filters, and Laplacian of
Gaussians.

3 SH-Features for Image Retrieval

To offer some preliminary evidence that image representation by SH-features may be
attractive for retrieval, we perform a simple retrieval experiment using the Euclidean
distance between histograms. Even without a learning component, the results are al-
ready comparable to those obtained with some existing systems. To compare the results
objectively with those reported in [8] for SIMPLIcity and color histograms, we use
the same subset of the Corel data set consisting of 10 semantic categories, each with
100 images. We refer to this data set as Corel-1000. The categories are as follows: (1)
African people and villages; (2) beach scenes; (3) buildings; (4) buses; (5) dinosaurs;
(6) elephants; (7) flowers; (8) horses; (9) mountains and glaciers; (10) food. Three sam-
ples from each category are shown in Figure 2. The examples are emblematic of the
large variations observed even within a semantic category.
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Fig. 2. Samples from Corel-1000: three images from 10 classes, each consisting of 100 images

We utilize a bank of 5 filters and apply each filter to the R, G, and B channels of the
images to obtain a total of 15 histograms per image. Each histogram consists of 11 bins
so that the SH-feature vector h(I, F) has dimension 165. For a query image I from the
database, we calculate the Euclidean distances between h(I, F) and h(J, F), for every J
in the database, and rank the images according to increasing distances. For comparison
purposes, as in [8], we calculate the weighted precision and the average rank, which are
defined as follows. The retrieval precision for the top � returns, is n�/�, where n� is the
number of correct matches. The weighted precision for a query image I is

p(I) =
1

100

100∑

�=1

n�

�
. (3)

For a query image I , rank order all 1,000 images in the database, as described above.
The average rank r(I) is the mean value of the ranks of all images that belong to the
same class as I . Figures 3(a) and 3(b) show the mean values

p̄i =
1

100

∑

I∈Ci

p(I) and r̄i =
1

100

∑

I∈Ci

r(I), (4)

of the weighted precision and average rank within each class Ci, 1 � i � 10. High mean
precision and low mean rank reflect high retrieval performance. The results obtained
with SH-features are compared to those reported in [8] for SIMPLIcity and for color
histograms with the earth mover’s distance (EMD) investigated in [6]. In Figure 3, color
histograms 1 and 2 refer to EMD applied to histograms with a different number of bins.

4 Optimal Factor Analysis

We develop Optimal Factor Analysis (OFA), a linear feature learning technique whose
goal is to find a linear mapping that reduces the dimension of data representation while
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Fig. 3. (a) Plots of p̄i and r̄i, 1 � i � 10. The methods are labeled as: (�) spectral histogram; (∗)
SIMPLIcity; (◦) color histogram 1; (+) color histogram 2.

optimizing the discriminative ability of the nearest neighbor classifier, as measured by
its performance on training data. We assume that the training set is formed by feature
vectors in Euclidean space R

m and consists of labeled representatives from P different
classes of objects. For each integer c, 1 ≤ c ≤ P , we denote the vectors in class c by
xc,1, . . . , xc,tc .

If A : R
m → R

k is a linear transformation, the quantity

ρ(xc,i; A) =
minc �=b,j ‖Axc,i − Axb,j‖p

minj �=i ‖Axc,i − Axc,j‖p + ε
(5)

provides a measurement of how well the nearest-neighbor classifier applied to the re-
duced data identifies the element represented by xc,i as belonging to class c. Here, ε > 0
is a small number used to prevent vanishing denominators and p > 0 is an exponent that
can be adjusted to regularize ρ in different ways. In this paper, we set p = 2. A large
value of ρ(xc,i; A) indicates that, after the transformation A is applied, xc,i lies much
closer to its own class than to other classes. A value ρ(xc,i; A) ≈ 1 indicates a transition
between correct and incorrect decisions by the nearest neighbor classifier. The function
ρ is similar to that used in the development of Optimal Component Analysis (OCA)
[4]. Note that expression (5) can be easily modified to reflect the performance of the
K-nearest neighbor classifier.

The idea is to choose a transformation A that maximizes the average value of
ρ(xc,i; A) over the training set. To control bias with respect to particular classes, we
scale ρ(xc,i; A) with a sigmoid of the form

σ(x) =
1

1 + e−βx
(6)

before taking the average. We identify linear maps A : R
m → R

k with k × m matrices,
in the usual way, and define a performance function F : R

k×m → R by

F (A) =
1
P

P∑

c=1

(
1
tc

tc∑

i=1

σ (ρ(xc,i; A) − 1)

)
. (7)
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Scaling an entire dataset does not change decisions based on the nearest-neighbor
classifier. This is reflected in the fact that F is (nearly) scale invariant; that is, F (A) ≈
F (rA), for r > 0. Equality does not hold exactly because ε > 0, but in practice, ε is
negligible. Thus, we fix the scale and optimize F over matrices A of unit Frobenius
norm. Let

S =
{
A ∈ R

k×m : ‖A‖2 = tr (AAT ) = 1
}

(8)

be the unit sphere in R
k×m. The goal of OFA is to maximize the performance function

F over S; that is, to find
Â = argmax

A∈S

F (A). (9)

Due to the existence of multiple local maxima of F , the numerical estimation of Â is
carried out with a stochastic gradient search. We remark that this optimization problem
is simpler than the corresponding problem for OCA because the OFA search is per-
formed over a sphere instead of a Grassmann manifold. While OCA only considers di-
mension reduction via orthogonal projections to k-dimensional subspaces of R

m, OFA
allows more general linear mappings. Thus, OFA may produce k-dimensional features
more effective for classification with significant computational gains.

5 Estimating Â

Our computational approach to the estimation of Â is based on simulated annealing and
is similar to the strategy adopted by Liu et al. for OCA [4]. We begin with the details of
a deterministic gradient search for maxima of F over the unit sphere S and then outline
the routine changes needed to carry out a stochastic search using simulated annealing
with a Metropolis-Hastings acceptance-rejection criterion.

5.1 Deterministic Gradient

Given A ∈ S, to estimate the gradient vector field ∇SF on S associated with the per-
formance function F , we first calculate ∇F (A), the gradient of F viewed as a function
on R

k×m. Since F is nearly scale invariant,

∇F (A) ≈ ∇SF (A), (10)

as the component of ∇F (A) normal to the sphere is almost negligible. The numerical
estimation of the left-hand side of (10) only involves standard procedures. For 1 � i �
k, 1 � j � m, let Eij be the k × m matrix whose (i, j) entry is 1 and all others vanish.
The partial derivative of F in the direction Eij is estimated as

∂ijF (A) ≈ F (A + δEij) − F (A)
δ

,

with δ > 0 small. Then, ∇F (A) can be approximated by

∇̄F (A) =
∑

i,j

∂ijF (A)Eij . (11)
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The vector ∇̄F (A) is nearly tangential to S at A. We enforce full tangentiality and
obtain a more accurate estimation of ∇SF (A) by subtracting the component normal to
the sphere S, as follows. For any A ∈ S, the outer unit normal vector to S at A in R

k×m

is A itself. Thus, we adopt the estimate

∇SF (A) ≈ ∇̄F (A) −
〈
∇̄F (A), A

〉
A. (12)

A deterministic gradient search for (local) maxima of F on S can be carried out with
the following algorithm.

Algorithm: Deterministic Gradient Search

1. Choose a threshold value ε > 0 and a step size δ > 0.
2. Initialize the search with some A ∈ S.
3. Calculate ∇SF (A) using Eqns. 11 and 12.
4. If ‖∇SF (A)‖ < ε, set Â = A and stop. Else, update A according to

A = A cos (δ ‖∇SF (A)‖) +
∇SF (A)

‖∇SF (A)‖ sin (δ ‖∇SF (A)‖) .

5. Go to Step 3.

Remarks:

(a) The update of A described in Step 4 of the algorithm has the effect of displacing A
by δ ‖∇SF (A)‖ units of length along the great circle of S through A in the direction
∇SF (A).

(b) We often initialize the search with a linear mapping obtained from classical dimen-
sion reduction techniques such as principal component analysis or linear discrimi-
nant analysis.

5.2 Stochastic Search

Our next goal is to add a stochastic component to the deterministic gradient field ∇SF
on S. To simplify the calculation, instead of considering stochastic processes on the
sphere, we first add a random component to ∇SF (A) as a vector in R

k×m and then
project it to the tangent space to S at A. We adopt the notation ΠA : R

m×k → TA S for
the orthogonal projection of R

m×k onto the tangent space of S at A, which is given by
ΠA(X) = X − 〈X, A〉A.

Algorithm: Stochastic Gradient Search

1. Choose A ∈ S, a cooling ratio γ > 1, an initial temperature T0 > 0, a step size
δ > 0, and a positive integer N to control the number of iterations.

2. Set t = 0 and initialize the search with At = A ∈ S.
3. Calculate ∇SF (At) using Eqns. 11 and 12.
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4. Generate samples wij(t) ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ k, from the standard normal
distribution and construct the tangent vector

f(t) = δ ∇SF (At) +
√

2δTt ΠAt

⎛

⎝
∑

i,j

wij(t)Eij

⎞

⎠ .

5. Moving along an arc of length ‖f(t)‖ on the great circle through At in the direction
of f(t), define a candidate B ∈ S for update by

B = At cos(‖f(t)‖) +
f(t)

‖f(t)‖ sin(‖f(t)‖) .

6. Calculate F (B), F (At), and the increment dF = F (B) − F (At).
7. Accept B with probability min{edF/Tt , 1}. If B is accepted, set At+1 = B. Else,

set At+1 = At.
8. If t < N , set Tt+1 = Tt/γ and t = t + 1, and go to Step 3. Else, let Â = At and

stop.

5.3 An Alternative Interpretation of OFA

Unlike linear dimension-reduction methods that rely only on orthogonal projection onto
a subspace of the original feature space, OFA allows general linear mappings to a k-
dimensional feature space. In this section, we show that if we are willing to consider
metrics other than the Euclidean metric, then dimension reduction and subsequent data
classification with OFA may be viewed as obtained from an orthogonal projection onto
a subspace of the original feature space. If A is a rank r matrix, take a singular value
decomposition

A = UΣV T , (13)

where U and V are orthogonal matrices of dimensions k and m, respectively, and Σ is
a k × m matrix whose r × r northwest quadrant is diagonal with positive eigenvalues
and whose remaining entries are all zero. Let H be the r-dimensional subspace of R

m

spanned by the first r columns of V and denote the orthogonal projection of a vector
x ∈ R

m onto H by xH . Then,

Ax · Ay = yT (AT A)x = yT Kx = yT
HKxH , (14)

for any x, y ∈ R
m, where K = AT A is a positive semi-definite symmetric matrix. In

particular,
‖Ax − Ay‖2 = (xH − yH)T K(xH − yH). (15)

This means that the Euclidean distance between feature vectors in the reduced space
R

k can be interpreted as the distance between the projected vectors xH and yH in the
original feature space with respect to the new metric

d(xH , yH) =
√

(xH − yH)T K(xH − yH) . (16)
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Note that the subspace H is spanned by the eigenvectors of K associated with its non-
zero eigenvalues, so that (16) does define a metric on H . Thus, OFA may be viewed
as a technique to learn a subspace H of R

m for orthogonal dimension reduction and a
positive definite quadratic form on H that are optimal for categorization based on the
nearest-neighbor classifier.

6 Image Categorization

We report the results of several image categorization experiments with the Corel-1000
data set described in Section 3. In each experiment, we placed an equal number of
images from each class in the training set and used the remaining ones as query images
to be indexed by the nearest-neighbor classifier applied to a reduced feature learned with
OFA. Initially, an image is represented by an SH-feature vector h(I, F) of dimension
165 obtained from the 11-bin histograms associated with 5 filters applied to the R, G,
and B channels. OFA was used to reduce the dimension to k = 9. Table 1 shows the
categorization performance: T denotes the total number of images in the training set and
categorization performance refers to the rate of correct indexing using all 1, 000 − T
images outside the training set as queries.

Table 1. Results of categorization experiments with the Corel-1000 data set. T is the number of
training images and the dimension of the reduced feature space is 9.

T Categorization Performance
600 85.5%
400 84.5%
200 71.7%

7 Image Retrieval

We now use the reduced features learned with OFA to retrieve images from the database.
We begin with the remark that the reduced representation was optimized to categorize
query images with the nearest neighbor classifier, but not necessarily to rank matches to
a query image correctly according to distances in feature space. Thus, in contrast with
the retrieval strategy based solely on distances adopted, for example, in [8] and [2], we
propose to exploit the strengths of the image categorization method in a more essential
way.

Let A : R
m → R

k be the optimal linear dimension-reduction map learned with OFA.
If I is an image and h(I, F) ∈ R

m is the associated SH-feature vector, we let x denote
its projection to R

k; that is,
x = Ah(I, F). (17)

If there are P classes of images, for each 1 � i � P , let xi be the reduced feature
vector of the training image in class i closest to x and let

di(I) = ‖x − xi‖ (18)

be the distance from I to class i in reduced feature space.
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Given a query image I and a positive integer �, the goal is to retrieve a ranked list
of � images from the database. We assume that all images in the database have been
indexed using the representation learned with OFA. Given I , rank the classes according
to increasing values of the distances di(I). We retrieve images as follows: select as
many images as possible from the first class; once that class is exhausted, we proceed to
the second and iterate the procedure until � images are obtained. Within each class, the
images are retrieved and ranked according to their Euclidean distances to I as measured
in the reduced feature space.

7.1 Experimental Results

We report the results of retrieval experiments with the Corel-1000 dataset. To make
objective comparisons with other systems, we only use query images that are part of
the database. Since each class contains 100 images, the maximum possible number of
matches to a query image is 100, where a match is an image that belongs to the same
class. We first compare retrieval results using OFA learning with those obtained with
SIMPLIcity and spectral histograms, as described in Section 3. We calculated the mean
values p̄i and r̄I of the weighted precision and rank as defined in (4). The plots shown
in Figure 4 show a significant improvement in retrieval performance with a learning
component. OFA was used with 400 training images (OFA-400).
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Fig. 4. (a) Plots of p̄i and r̄i, 1 � i � 10. The methods are labeled as: (�) spectral histogram; (∗)
SIMPLIcity; (�) OFA-400.

We further quantify retrieval performance, as follows. For an image I and a positive
integer �, let m� be the number of matching images among the top � returns. Let

p�(I) =
m�(I)

�
and r�(I) =

m�(I)
100

(19)

be the precision and recall rates for � returns for image I . The average precision and
average recall for the top � returns are defined as

p� =
∑

I p�(I)
1000

and r� =
∑

I r�(I)
1000

, (20)
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Fig. 5. Corel-1000: average-precision × average-recall plots for 200, 400 and 600 training
images

Table 2. Retrieval results for OFA with T training images. Average retrieval precision (p�) and
average recall (r�) for the top � matches.

T = 600

� 10 20 40 70 100 200 500

p� 0.925 0.921 0.916 0.909 0.883 0.461 0.192

r� 0.093 0.184 0.366 0.636 0.883 0.922 0.962

T = 400

� 10 20 40 70 100 200 500

p� 0.889 0.882 0.875 0.861 0.825 0.437 0.188

r� 0.089 0.176 0.345 0.603 0.825 0.876 0.938

T = 200

� 10 20 40 70 100 200 500

p� 0.731 0.690 0.660 0.649 0.620 0.361 0.176

r� 0.073 0.138 0.264 0.454 0.620 0.722 0.881

respectively. Here, the sum is taken over all 1,000 images in the database. Note that, for
a perfect retrieval system, p� = 1, for 1 � � � 100, gradually decaying to p1000 = 0.1
as � increases. Similarly, r� = 1, for � ≥ 100, and decays with � to r1 = 0.01.

Table 2 shows several values of the average precision and the average recall based
on a 9-dimensional representation learned with T training images. The full average-
precision × average-recall plots are shown in Figure 5. Figure 6 shows the top 10 returns
for a few images in the database in an experiment with 400 training images. In each
group, the first image is the query image, which is also the top return.

8 Summary and Discussion

We employed a representation of images by the histograms of their spectral components
for content-based image categorization and retrieval. A feature learning technique, re-
ferred to as Optimal Factor Analysis, was developed to reduce the dimension of the
representation and optimize the discriminative ability of the nearest-neighbor classifier.
Several experiments were carried out and the results demonstrate a significant improve-
ment in retrieval performance over a number of existing retrieval systems. Refinements
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(a)

(b)

(c)

(d)

(e)

Fig. 6. Examples of top-10 returns. In each group, the first image is the query, which is also the
top return.

of the methods will be investigated in future work to obtain sparse representations and
to incorporate kernel techniques to cope with nonlinearity in data geometry. Compu-
tational strategies for faster retrieval as well as a modified version of the OFA cost
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function that allows a more efficient estimation of the gradient also will be investigated
in future work.
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