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ABSTRACT

Spherical harmonics are commonly used in the construc-

tion of multi-resolution representations of complex spherical

shapes such as brain surface meshes. A key step in generat-

ing such representations for a spherical mesh is to construct a

one-to-one map onto a sphere. A parametrization inevitably

introduces local distortions such as stretching and compres-

sion, so that some regions can be severely undersampled or

oversampled. As such, parametrizations with minimal met-

ric distortion are desirable because they yield more accurate

representations. In this paper, we use a spherical parametriza-

tion method that explicitly minimizes the overall distortion

penalizing stretching and compression symmetrically. The

optimization process uses a hierarchical and iterative scheme.

We show numerically that the proposed parametrizations

lead to accurate spherical representations of various brain

structures.

Index Terms— Spherical harmonics, parametrization,

brain mapping, shape representation.

1. INTRODUCTION

Spherical harmonics [1] have been widely used to represent

contours of brain structures (e.g. [2, 3, 4]) and more general

surfaces (e.g. [5]), typically given by triangular meshes. If a

spherical surface is convex or near convex, radial projection

of the vertices relative to its centroid is a simple and effective

way of constructing a parametrization over a standard sphere.

For more complex surfaces with bends and folds such as those

of brain structures, constructing a one-to-one parametrization

is a critical step for creating accurate representations. Several

methods have been proposed in recent years, especially for

applications to medical imaging (e.g. [2, 3, 4]). Parametriza-

tion methods differ in the choice of optimality criterion, as

well as in the optimization process. For a surface presented

as a triangular mesh, the parametrization determines corre-

sponding vertices on the sphere and thus a sampling of the

domain. To obtain an accurate representation, we propose

the construction of parametrizations that minimize the over-

all metric distortion such as those due to stretching or com-

pression. Since metric properties of the mapping are deter-

mined by its action on the first fundamental form [6], the dis-

tortion metrics can be categorized based on this fact. For ex-

ample, conformal parametrizations preserve angles (e.g., [2]).

However, local areas can be stretched and compressed sig-

nificantly due to local scaling [7] and thus the parametriza-

tion can introduce large metric distortions. Thus, a confor-

mal parametrization often requires a much larger number of

fundamental harmonics to produce a reconstruction with er-

ror comparable to one with more controlled distortion [4].

To address this type of problems, several methods have been

proposed for the construction of parametrizations that are as

close as possible to local isometries. For example, [4] em-

ploys a criterion that involves a combination of measures of

area and angle distortion. However, in practice, it can be dif-

ficult to construct an optimal or near-optimal parametrization

with this method.

In this paper, we use a parametrization technique that di-

rectly maps a given spherical mesh to a sphere[7, 8]. For high-

resolution meshes, with sufficiently small triangles, the map-

ping can be well approximated by a piecewise linear mapping.

One each triangle, we use the eigenvalues of the associated

Jacobian matrices to quantify the local metric distortion. To

construct a nearly optimal parametrization, we use an itera-

tive coarse-to-fine process based on a hierarchy of meshes.

We apply the method to brain surfaces and show numerically

that the parametrizations lead to representations with a fairly

small number of spherical harmonics with small reconstruc-

tion error.

The rest of the paper is organized as follows. In section 2,

we describe the optimality criterion for spherical parametriza-

tions [8]. Section 3 offers a brief review of spherical harmon-

ics and Section 4 presents experimental results on spherical

surface representations and reconstructions. Section 5 con-

cludes the paper with a summary and brief discussion.

2. PARAMETRIZATIONS WITH MINIMAL
DISTORTION

Let S
2 denote the unit sphere centered at the origin in R

3 and

φ : S
2 → M a parametrization of the surface M over S

2 (see

Fig. 1). Given a spherical triangulation of the unit sphere, let

ΔSi
denote the ith triangle of S

2 and ΔMi
its image under φ.
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Fig. 1. A parametrization from spherical surface to the unit

sphere, where the correspondences are color coded.

The inverse map is denoted φ−1 : M → S2. Assuming that

the “triangles” ΔMi and ΔSi are sufficiently small, the map-

ping can be approximated as follows. First, we replace the tri-

angles ΔSi
and ΔMi

with the planar triangles with the same

vertices. Second, we approximate φ by a mapping that is lin-

ear on each triangle, so that φ maps each ΔSi
linearly onto

ΔMi . Thus, both S
2 and M are replaced with triangle meshes

and the mapping is piecewise linear. Under this assumption,

the local stretching and compression of the mapping on each

triangle can be characterized by the eigenvalues of the linear

mapping, which is an approximation of the 3 × 2 Jacobian

matrix of φ. Following [7, 8], we compute the eigenvalues γi

and Γi of Jφ−1
i

, where 0 < γi ≤ Γi. If the mapping is a local

isometry, γi = Γi = 1. If there is significant stretching, Γi

will be much larger than 1. Similarly, γi much smaller than 1

reflects a significant compression. The eigenvalues of Jφi
are

1/γi and 1/Γi. The cost function used in [7] is the average

value of
1
γ2

i

+
1
Γ2

i

over M . Clearly, the smaller eigenvalue γi dominates this

expression, especially when γi is small relative to Γi. Conse-

quently, compression caused by φ−1
i is penalized much more

than stretching. Here we use the following cost function, pro-

posed in [8], given by the average value of

log2 γi + log2 Γi

over M . There are several desirable properties satisfied by

this measure of distortion. First, it is symmetric in penalizing

compression and stretching by the same factor1. Second, the

error metric is invariant as to φ and φ−1. Additionally, this

error function is smoother and thus an iterative optimization

is more effective. A potential problem with the above approx-

imation is that γi and Γi can underestimate the stretching and

compression of the spherical triangles especially when their

aspect ratio is large. The problem can be alleviated by either

further subdividing the traingles to improve their aspect ra-

tios [7] or by using the exponential map to estimate the map-

ping and the eigenvalues [8].

1In applications where an asymmetric error metric is preferred, a weight

can be used.

A direct minimization of the cost function can be com-

putationally expensive and even ineffective as the number of

vertices is large. In addition, a valid parametrization must

be given to initialize the process. Following [7, 8], we use

a hierarchical, coarse-to-fine scheme [9]. First the given

mesh is simplified until it becomes a tetrahedron. A spherical

parametrization is constructed and then vertices are inserted

on the sphere based on the barycentric coordinates of the

vertices that already have been mapped. When a vertex is

inserted, a local optimization is performed by exhaustively

evaluating all valid locations at a given resolution. An it-

erative optimization is performed by perturbing all vertices

inserted.

3. SPHERICAL HARMONICS

Given a parametrization of a triangular mesh, computing its

representations and multi-resolution reconstruction via spher-

ical harmonics are routine tasks. Spherical harmonics define

orthonormal basis functions, which are characterized by two

parameters: l ≥ 0 is the band index, and m, −l ≤ m ≤ l,

which is the order of the associated Legendre function P
(m)
l

given by

P
(m)
l (x) =

(−1)m

2ll!
(1 − x2)(m/2) dl+m

dxl+m
(x2 − 1)l.

Note that P
(m)
l (x) is defined on [−1, 1]. The corresponding

spherical harmonic is given by

Y
(m)
l (θ, φ) =

√
(2l + 1)

4π

(l − m)!
(l + m)!

P
(m)
l (cosθ)eimφ.

For a fixed l, there are 2l + 1 spherical harmonics of different

orders. Numerically, Y
(−m)
l (θ, φ), where m > 0, can be

computed using

Y
(−m)
l (θ, φ) = (−1)m Y

(m)
l (θ, φ),

where Y
(m)
l (θ, φ) is the conjugate of Y

(m)
l (θ, φ).

For a mesh M in R
3 with N vertices, given vertex

(xi, yi, zi), its corresponding location on the unit sphere
in spherical coordinate (θi, φi), and a maximum spherical
harmonic degree lmax, let B be the spherical harmonic matrix
at (θi, φi), ordered by l first and within each band ordered by
m. Explicitly, we have

B =

2
664

Y
(0)
0 (θ1, φ1) Y

(−1)
1 (θ1, φ1) · · · Y

(lmax)
lmax

(θ1, φ1)
...

...
. . .

...

Y
(0)
0 (θN , φN ) Y

(−1)
1 (θN , φN ) · · · Y

(lmax)
lmax

(θN , φN )

3
775 .

The size of B is N × (lmax +1)2, where (lmax +1)2 is given

by
∑lmax

l=0 (2×l+1). Given B and the vertices, computing the
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(1, 2.546) (2, 1.923) (4, 0.777) (6, 0.424) (8, 0.314)

(10, 0.245) (15, 0.146) (20, 0.090) (30, 0.047) (50, 0.016)

Fig. 2. Reconstructed putamen with different lmax (the first number) and the corresponding RMS reconstruction error in mm

(the second number).

spherical representation is reduced to a standard least square

problem, given by

C = BT X\BT B,

where X is an N × 3 data matrix, where row i corresponds to

vertex (xi, yi, zi). The reconstructed vertices of the mesh are

given by BC.

4. EXPERIMENTAL RESULTS

We have tested the parametrization and reconstruction method

on the Harvard brain data set2. The full dataset consists of

MRI scans of 18 subjects with a slice of 1.5mm; the pixel

size within each slice varies from 0.837mm × 0.837mm to

1.00mm×1.00mm, depending on the subject. We first convert

the volume data for a selected brain structure to a mesh using

the Marching Cubes Algorithm. Then the resulting triangular

mesh is parametrized using the proposed parametrization.

Figure 2 shows reconstructions of the surface of a puta-

men using the parametrization shown in Fig. 1. The voxel

size is 0.837mm × 0.837mm × 1.50mm and the mesh ex-

tracted has 3, 154 vertices and 6, 304 triangles. We use the L2

stretch efficiency (defined as the root mean of 1
γ2

i
+ 1

Γ2
i

over

the mesh triangles [7]) to measure the effectiveness of the ob-

tained parametrization; L2 stretch efficiency is 0.948, indicat-

ing the parametrization is close to being isometric (whose L2

stretch efficiency is 1). In the experiment, we vary lmax from

1 to 50. Fig, 2 shows the reconstructed meshes along with the

root-mean-square (RMS) errors of the reconstructions com-

pared to the original mesh. For lmax = 10, the reconstruction

2Available at http://www.cma.mgh.harvard.edu/ibsr/.

error is 0.245mm, which is small compared to the voxel size;

when lmax = 20, the reconstruction error is 0.09mm, which

only perturbs vertices slightly. As the number of spherical

harmonics grows to 441, we achieve a compression rate of

7:1 with a very small loss in accuracy.

We applied the parametrization and spherical reconstruc-

tion method to putaminal surfaces of different subjects. Fig-

ure 3 shows several of the original meshes with the corre-

sponding reconstructions. Similar to the example shown in

Fig. 2, the L2 stretch efficiencies for these meshes are also

around 0.95, demonstrating the effectiveness of the method

and the optimization process. As shown by the RMS recon-

struction error, the proposed method consistently provides ac-

curate spherical representations. Compared to the RMS error

from [4], where the smallest is about 1.00mm, the error with

the present method is much smaller. However, the study uses

a different dataset and further experiments need to be done for

a fair comparison.

We have applied the parametrization and spherical recon-

struction to all the brain surfaces in the data set and obtained

similar performance. For example, on a third ventricle surface

and a left caudate surface, with lmax = 30, the reconstruction

error is 0.024mm and 0.053mm respectively. These exam-

ples show the proposed method is effective and applicable in

minimizing the cost function and the parametrizations yield

accurate multi-resolution representations.

5. CONCLUSION

We presented a parametrization method for computing rep-

resentations of genus zero surfaces with complex geometries.
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(30, 0.039) (30, 0.043) (30, 0.044) (30, 0.072) (30, 0.058)

Fig. 3. Selected putamen surfaces (top row) and the corresponding spherical reconstruction surfaces with lmax = 30, where

the RMS reconstruction error (in mm) is shown as the second number. The number of vertices from left to right is 2334, 2900,

2218, 2970, and 3580 respectively.

By using a criterion that symmetrically penalizes both stretch-

ing and compression, we obtain spherical parametrizations

that lead to accurate multi-resolution representations of spher-

ical shapes, as shown numerically in experiments with brain

surfaces.

Clearly, the proposed technique is not limited to brain sur-

faces and can be used to generate effective spherical represen-

tations for other surfaces of genus zero. The coefficients of a

decomposition into spherical harmonics also can be used as

feature vectors that characterize the underlying meshes and

thus applicable to the classification, analysis, and retrieval of

surfaces. These applications will be investigated further.

Acknowledgements. This work is partially funded by

NSF grants CCF-0514743 and DMS-0713012, and the Na-

tional Institutes of Health through the NIH Roadmap for

Medical Research, Grant U54 RR021813. Information on

the National Centers for Biomedical Computing can be

obtained from http://nihroadmap.nih .gov/bioinformatics.

The MR brain data sets and their manual segmentations

were provided by the Center for Morphometric Analy-

sis at Massachusetts General Hospital and is available at

http://www.cma.mgh.harvard.edu/ibsr/.

6. REFERENCES

[1] C. Brechbühler, G. Gerig, and O. Kübler, “Parametriza-
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