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ABSTRACT
We develop computational strategies to calculate geodesics

and geodesic distances between plane shapes represented by
mixture of Gaussians centered at landmark points with a fixed
variance with respect to the information-theoretic Fisher-Rao
metric. This representation and metric have been investigated
recently by Peter and Rangarajan, but a feasible computa-
tional approach was not provided. The algorithms developed
are applied to shape clustering and the results are compared
to those obtained with other methods.

Index Terms- Shapes, shapes of curves, Fisher informa-
tion, shape geodesic, Fisher-Rao geometry

1. INTRODUCTION

The shape of contours of objects is one of the fundamental
features that determine the information content of an image.
The main goal of this paper is to develop effective computa-
tional strategies for the calculation of geodesics in the space
of plane shapes represented by a mixture of isotropic Gaus-
sians centered at a collection of ordered landmark points with
respect to the Fisher-Rao metric. This information-theoretic
approach to the quantification of divergence and similarity
of plane shapes has been investigated recently by Peter and
Rangarajan [1]; however, the computational feasibility of the
model was not established in that paper.

The study of shapes dates back to D'Arcy Thompson [2],
but the first more systematic algorithmic treatment of shape
representations and metrics is due Bookstein [3] and Kendall
[4]. In their work, a shape is represented by a collection of or-
dered landmark points and a geodesic metric is used to quan-
tify shape divergence. An important feature of such geomet-
ric models is that shapes are naturally morphable as geodesics
yield natural shape interpolators. In practice, the selection and
observation of landmarks are contextual and noisy processes,
so it is desirable to incorporate elements of uncertainty into
representations and metrics. In [1], this was done by repre-
senting the plane shape associated with a collection of land-
marks with a mixture of uniform Gaussians of fixed variance
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(j2 centered at the landmark points. A question arises: What is
the natural geometry to adopt in such probabilistic represen-
tation of shapes? From a statistical standpoint, monotonicity
properties and the invariance of the Fisher-Rao metric under
sufficient statistics [5] make this Riemannian structure a nat-
ural choice.

Our approach to the calculation of geodesics in the para-
metric space of uniform mixtures of isotropic Gaussians with
fixed variance is numerical. The gradient descent approach of
[1] based on the differential equation that governs geodesics is
computationally very costly, so we develop techniques to esti-
mate the gradient in a more efficient manner. To demonstrate
the usefulness and computational feasibility of the methods
introduced in this paper, we apply the algorithm for calculat-
ing geodesics and geodesic distances to clustering of plane
shapes.

The paper is organized as follows. In Sec. 2, we introduce
the probabilistic representation of shapes and the Fisher-Rao
metric. Sec. 3 is devoted to numerical aspects of the calcu-
lation of geodesics. Examples of geodesics are presented in
Sec. 4 and applications to clustering are discussed in Sec. 5.

2. SHAPE REPRESENTATION

We study plane shapes represented by k ordered landmark
points P1 = (01, 02), Pk = (02k-1, 02k) C 22, which
will be treated as a single vector 0 = (01,... 02k) e 22k.
To each 0 C 22k, associate the 2D mixture of k isotropic
Gaussians

(1) P(X; 0) 1-- e 2,2
/k-2t=l

with a fixed variance a2. The Fisher information matrix g(0)
is the 2k x 2k symmetric matrix whose (i, j)-entry is

(2)
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This last integrand is computed explicitly in Appendix A.

For each 0, the matrix g(0) defines an inner product (, )
on the parameter space iR2k by

(3) (v,w)o = vTg(0) w.
The Riemannian manifold (R2k, (, 0) is known as the Fisher-
Rao information manifold associated with the parametric mix-
ture family. If t ) 0(t), 0 < t < 1, is a smooth path in R2,
its energy is defined as

(4) E = (0(t),0(t)) dt.
2 jO\/ (t)

Geodesics in the Fisher information manifold are critical points
of the energy functional E. Thus, for numerical calculations
of geodesics using gradient descent, we need to develop a sta-
ble algorithm to estimate the gradient of E.

3. THE GRADIENT OF E

computational efficiency, but also yields a stable estimation
of the gradient, which is done as follows. Since the end points
of the path are to remain fixed, the gradient vanishes at these
points. For I < i < n and I < j < p, let Vij C IR2nk denote
the unit vector (0, ... ,0, v,o.. ., 0) C R2kxn. Then,

(7) 9ijE X(O+5Vj) E(0)

The gradient is estimated as

(8) VE(0) 1 E (ijpE) Vij.
l<i<n,l<j<p

Remark. Note that in the estimation of partial derivatives,
the energy of each perturbed path has only two terms that
differ from those of the original path. This observation has
significant implications in computations.

4. GEODESICS

We discretize a path 0(t) as a sequence 0(1), . .. , 0 (n) of n
points in R2k. In this representation, the energy E can be
viewed as a function on iR2kn and expressed as

(5)
n

E 0(i)Tg(0(i)) 0(i) .
i=l

Our experiments indicate that the estimation of the gradient
of E based on the partial derivatives of E in the canonical ba-
sis of iR2kn is numerically very unstable. Thus, at each stage
0(i) of the path, we first identify orthogonal directions that are
likely to contribute to the energy most significantly and use
the partial derivatives along these directions to approximate
the gradient. The experiments in Sec. 4 demonstrate that gra-
dient descent using this approach leads to a stable calculation
of geodesics.

For 0 C IR2k, diagonalize the symmetric matrix g(0) to
obtain an orthonormal basis {vI(0),.. ., v2k(j0)o}'f2k with
respect to the standard Euclidean metric, formed by eigenvec-
tors of g(0). We assume that the basis elements are ordered
so that the associated eigenvalues A1, . . , A2k > 0 form a de-
creasing sequence. Note that, by (3), this basis is also an or-
thogonal basis of iR2k with respect to the inner product (, )0.

At a point 0(i) of a path, denote the eigenvectors by vij,
1 <j < 2k and the corresponding eigenvalues by Aij. The
magnitude of an eigenvalue Aij determines the potential con-
tribution of the associated eigendirection vij to the energy
of the path. We truncate this basis to an orthonormal set
{vi1,... , vip}, p < 2k, to capture a preset percentage of the
energy

(6) E, = 0(i)Tg(0(i)) 0(i)

of the path at that point. The number p may vary as we tra-
verse the path, but we assume that it is constant just to sim-
plify notation. The truncation of the basis not only leads to

For shapes represented by 0a, Ob e iR2k , a geodesic between
0,a and Ob with respect to the Fisher-Rao metric is calculated
using gradient descent to minimize the functional E over paths
in iR2k connecting 0,a to Ob. The gradient search is initialized
with the linear path 0: [0, 1] IR2k parameterized with con-
stant speed.

Fig. 1 shows two examples of Fisher-Rao shape geodesics
calculated with 99 landmark points. Plots of the energy E
versus the number of iterations during the gradient search are
shown in Fig. 2. The choice and correspondence of landmarks
were done with an alignment algorithm that utilizes dynamic
programming, as discussed in [6]. This is a variant that uses
velocity fields of the alignment procedure studied in [7]; simi-
lar shape alignment techniques have been studied by other au-
thors. Additional examples of geodesics are shown in Fig. 3.

(a)

(b)
Fig. 1. Examples of geodesics in the Fisher-Rao metric com-
puted with 99 landmark points.

5. SHAPE CLUSTERING

To illustrate the usefulness of the methods in shape analy-
sis, we apply the algorithm for computing Fisher-Rao shape
geodesics to shape clustering. Fig. 4 shows 25 shapes from
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Shape 1
Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 Shape 7 Shape 8 Shape 9

Shape 11 Shape 12 Shape 13 Shape 14 Shape 15 Shape 16 Shape 17 Shape 18

Shape 19 Shape 20 Shape 21 Shape 22 Shape 23 Shape 24 Shape 25

Fig. 4. 25 shapes from the LEMS database.
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(b)

Fig. 5. Dendrograms associated with (a) the Fisher-Rao metric and (b) the geodesic metric of [8].

(a) (b)

Fig. 2. Energy versus the number of iterations during the gra-

dient search for the geodesics shown in Figs. 1(a) and 1(b).

the LEMS database that, intuitively, can be naturally grouped
into 6 clusters. To cluster the shapes, we first compute all
pairwise geodesic distances and then use a hierarchical clus-
tering procedure. We start with 25 clusters, each consisting
of a single shape, and merge them sequentially using minimal
cluster distance as merging criterion until 6 clusters remain.
For comparison purposes, we carry out the same experiment
with the geodesic metric of [8]. The dendrogram associated
with these geodesic metrics are shown in Figs. 5(a) and 5(b),

Fig. 3. Shape geodesics in the Fisher-Rao metric.

respectively. The six clusters obtained with the Fisher-Rao
metric are shown in Fig. 6; all six clusters are intuitively cor-

rect and are compact and well separated as seen from the den-
drogram. Hierarchical clustering with the metric developed in
[8] does not lead to good results. For example, shape 14 forms

2115

Shape 10



a one-element cluster and it does not get grouped with shapes
9 and 23. Moreover, the clusters obtained are not well sep-
arated, as indicated in the dendrogram. To circumvent some
of these problems, a variant of the K-Means Algorithm was
investigated in [9] for the geodesic metric of [8]. However,
the computational costs associated with the K-Means Algo-
rithm of [9] is high, so that a metric such as Fisher-Rao that
produces good results with a hierarchical procedure is very
desirable.

Shape 12 Shape24 Shape 8 Shape 21 Shape 2

Shape 9 Shape23 Shape 14

Shape 4 Shape 7 Shape 15 Shape 17

Shape 1 Shape 10 Shape 19

Shape 5 Shape 13 Shape 16 Shape20 Shape22

Shape 3 Shape 11 Shape 6 Shape 18 Shape25

Fig. 6. Clusters obtained with the Fisher-Rao metric.

6. SUMMARY AND COMMENTS

We developed a novel geometric algorithm to calculate shape
geodesics and geodesic distances using a probabilistic repre-
sentation of shapes and the information theoretic Fisher-Rao
metric. Several examples of shape geodesics were provided
and a hierarchical shape clustering experiment was used to il-
lustrate the usefulness of the methodology introduced. Larger
clustering experiments have been carried out, but results are
not reported due to limitation of space.

Since the emphasis of the paper is on computational feasi-
bility, we did not present the details of the problem of choos-
ing landmarks and establishing correspondences in an auto-
mated manner. This was only briefly discussed in Sec. 4 and
will be further explained elsewhere.
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A. CALCULATION OF PARTIAL DERIVATIVES

Write the coordinates of a point x C R2 as x = (XI, X2). For
1 < i K k,

0902i-1I
and

Thus,
02, (X; 0)

X -02i-
2kwu4

X2 -02i
2kwo74 e

&2 (X; 0) 1P (X; 0) =02i-1I 02j-1I
(XI- 02i-1)(XI -02j- 1) e-

4k2w2u78

02 (XO) A0p ( )Ap2 1302j(x)

11_ -wll_ 2

11x w2,

11_ -P, 11 2+ x_-Pj 11 2
2,2

(X2 -02i) (X2 -02j) p_1 112 +2 _j 112
4k2w 8 e 282

(X; 0) ~(X;0)=
0902i- 1 )02j

(X1 -02i-1)(X2 -02j) pIIxil12+I-j 12
4k2w2 e 2
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