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ABSTRACT

We develop Splitting FactorAnalysis (SFA), a novel linear
model selection technique for dimension reduction that seeks
to optimize the discriminative ability of the nearest neigh-
bor classifier for data classification and labeling. We also
discuss methodology for data kernelization that can be used
in conjunction with any model selection technique. Applied
to SFA, it leads to KSFA, a powerful new technique for the
analysis of datasets with essential nonlinearities underlying
their structures. For computational efficiency in the anal-
ysis of large datasets, we combine weak KSFA classifiers
with multi-class boosting techniques. Several applications to
image-based classification are discussed.

Index Terms- Factor analysis, kernel methods, machine
learning, model selection

1. INTRODUCTION

The development of model and feature selection techniques
to address data classification and labeling problems using in-
formation contained in training sets is of fundamental impor-
tance in machine learning and data mining, in particular, to
applications in image processing and analysis. The classifi-
cation performance and generalization ability of a proposed
model are key elements to be assessed and optimized during
a model selection process. The computational feasibility of
both model and selection process are also considerations of
basic importance. In particular, the investigation of dimen-
sion reduction in data representation is a natural companion
problem to effective model selection. For large-scale and real-
time applications, the development of mechanisms for rapid
feature extraction and fast decisions is also essential.

The main goals of this paper are to develop: (i) a novel
linear method, referred to as Splitting Factor Analysis (SFA),
for simultaneous dimension reduction and optimal feature se-
lection for data classification and labeling based on the K-
nearest-neighbor (KNN) classifier; (ii) a general data kernel-
ization strategy designed to be used in conjunction with any
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model selection technique. If the input data is represented by
feature vectors in Rm and k < m, the goal of SFA is to find
a linear transformation A: Rm Rk that optimizes the dis-
criminative ability of the KNN classifier on the transformed
data; in typical applications, k is very small relative to m.
The idea is that the optimal mapping A will reduce dimension
and restructure the data so that it becomes more amenable to
classification. Applied to SFA, the kernelization methodol-
ogy yields Kernel Splitting Factor Analysis (KSFA), which
has the ability to cope with nonlinearity in data structure.

To address scalability issues, we present a discussion on
the use of multi-class boosting techniques [1] to construct
an effective classifier by merging weak SFA or KSFA-based
classifiers constructed by appropriately sampling the train-
ing set so as to sequentially enhance the classification perfor-
mance. Several experiments are carried out with SFA, KSFA,
and Boost-KSFA and classification results are compared with
those obtained using other methods.

2. SPLITTING FACTOR ANALYSIS

We introduce Splitting Factor Analysis (SFA), a linear feature
selection technique whose goal is to find a linear transforma-
tion that reduces the dimension of data representation while
optimizing the predictive ability of the K-nearest neighbor
(KNN) classifier as measured by its performance on given
training data. We assume that a given ensemble of data in Eu-
clidean space Rm is divided into training and cross-validation
sets, each consisting of labeled representatives from P differ-
ent classes of objects. For an integer c, 1 < c < P, we
denote by x,, l, , x,,t and Yc, 1 ..., Yc, , the training and
cross-validation elements, resp., that belong to class c.

If A: Rm Rk is a linear transformation and x, y C Rm,
we let d(x, y; A) = Ax-Ay denote the distance between
the transformed points Ax and Ay. The quantity

(1) P(yci;A)= minc b,j dP(yc, Xb,J;A)minj dP(yc,i ,xc,j;A) + 6E
provides a measurement of how well the nearest-neighbor
classifier applied to the transformed data identifies the cross-
validation element Yc,i as belonging to class c. Here, e > 0 is
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a small number used to prevent vanishing denominators and
p > 0 is an exponent that can be adjusted to regularize p
in different ways. A large value P(Yc,i; A) indicates that, af-
ter the transformation A is applied, Yc,i lies much closer to a
training sample of the class it belongs than to those of other
classes; P(Yc,i; A) - 1 indicates a transition between correct
and incorrect decisions by the nearest neighbor classifier. The
function p was used in the development of OCA with p = 1
[2]. Note that expression (1) can be easily modified to reflect
the performance of the KNN classifier.

The idea is to choose a transformation A that maximizes
the average value of P(Yc,i; A) over the cross-validation set.
To control bias with respect to particular classes, we scale
p(Yc,i; A) with a sigmoid of the form ((x) = 1/(1 + e-x)
before taking the average. We identify linear maps A: R'
Rk with k x m matrices and define a performance function
F: 2kxm - R by

(2) F(A) = E (J(p(yc,i; A) 1)) .

For a given A, the limit value of F(A), as A -) oc andc-e 0,
is the recognition performance of the nearest neighbor classi-
fier applied to the transformed data.

Scaling an entire dataset does not change decisions based
on the nearest neighbor classifier. This is reflected in the fact
that F is (nearly) scale invariant; that is, F(A) - F(rA), for
r > 0. Equality does not hold if c :t 0, but in practice, c
is negligible. Thus, we restrict F to transformations of unit
norm. Let

$ = {A C R kxT: IIA 2 = tr (AAT) 1}

be the unit sphere in RkX m. The goal of splitting factor anal-
ysis is to maximize the performance function F over $; that
is, to find A argmax F(A).

The existence of a maximum of F is guaranteed by the
simple facts that the sphere $ is a compact space and F is
continuous. This is in contrast with Neighborhood Compo-
nent Analysis (NCA), developed in [3], where no such assur-
ance can be provided.

Due to the existence of multiple local maxima of F, the
numerical estimation of A is carried out with a stochastic gra-
dient search. We omit the details since the search strategy is
similar to that employed in OCA [2], but much simpler since
the search is performed over a sphere instead of a Grassmann
manifold.

3. KERNEL METHODS

Kernel methods are commonly used as a strategy to account
for nonlinearity in data structure. For data represented by fea-
ture vectors x1, . .., xM in IR', instead of developing models
and classifiers based directly on the given feature vectors, one

maps the entire ensemble into a Hilbert space HL using a non-
linear map D: RI -) H, and then develops models based on
the kernelized data 1(x1), ..., 1(xjM). The typical assump-
tion is that JD is not known explicitly, only the kernel function

k(x, y) = (@D(x): @D(y)) ,

where denotes the inner product in HL. This means that
explicit knowledge of 1D(x1),..., J (xM) is not assumed, only
the inner products k (xi,x j ) = (xD(xi), b ( j ) )

Kernel methods are frequently studied targeting one spe-
cific model at a time. In this paper, we fully decouple data
kernelization from the model. Let

(3) V = span {(xl),.,i(xM)} C H.

As in [4], we first argue that one can introduce an orthonor-
mal coordinate system in V and calculate the coordinates of
the orthogonal projection onto V of any vector of the form
qD(x), x C R', only using the kernel k. Once such coordi-
nate system is available, the coordinate vectors yield a new
representation of the data as points in Rm, m = dim V, to
which we can apply any model or feature selection technique,
in particular, splitting factor analysis to obtain Kernel Split-
ting Factor Analysis (KSFA).

3.1. A Coordinate System in V

Each a = (a,, . , aM)T C RMxl defines a vector v C V
given by v = 11 ai ( (xi). Form the M x M symmetric
Gram matrix K, whose entries are Kij = k(xi, xj). If a, b C
RM x 1 represent v, w C V, then

(4) Iv, w) = aTKb.

To find the a-coordinates of an orthonormal basis of V, first
diagonalize the Gram matrix K, and let {rtq, , Tm} C R
be an orthonormal set associated with the nonzero eigenval-
ues A1 > ... > Am of K, where m = dimV = rankK.
For each 1 < j < m, write the vector jb/ Aj as qj/Aj
(id,...,**CMj)"T and let Va= 1ij@(Dj i). It follows
from Eqn. 4 that B3 = V,V.. , Vm} is an orthonormal basis
of V.

3.2. Kernel Representation

For x C R', let (Dv (x) C V be the orthogonal projection of
1 (x) onto V. The inner product (Iv (x), vj) = (1.(x), vj)
can be calculated as

M

(4) (C), vj ) = E: aij (4) (X), (1 (xi))\
i=l

M

E ajjk(x: xi).
i=l

Thus, the coordinate vector of (Dv (x) with respect to the or-
thonormal basis 3 is

M -ailk(x, xi) k(x, xl))
[~~v(x)13~=aT[@DV(X)]B = k XM)

i=l CIT0 k(x, xi) k(x, xM)_
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Table 1. Recognition performance of different representa-
tions on the full 40-class ORL dataset

Set Nearest 3-Nearest
Neighbor (%) Neighbor (%)

Original 10,304-D feature space
Cross validation 96.7 71.7

Test 94.2 73.3
KPCA with k = 10
Cross validation 91.7 78.3

Test 95.8 74.2
KSFA with k = 10
Cross validation 100.0 100.0

Test 99.17 98.3
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Thus, the projected and kernelized data set x1, ... X,xm is rep-
resented by their coordinate vectors yi [= v(Xi) I Rme

4. BOOSTING WEAK KSFA CLASSIFIERS

KSFA provides a powerful new dimension reduction and model
selection tool. The results of several data classification exper-
iments in the context of image analysis and comparisons with
other methods are provided in the next section. A drawback
of the general kernelization techniques of Sec. 3 is scalability
- as the training set becomes large, learning optimal features
for classification and labeling might become computationally
very costly. To address this problem, we propose to use a se-
ries of weak KSFA classifiers in conjunction with Stagewise
Additive Modeling using a Multi-class Exponential lossfunc-
tion (SAMME), a multi-class boosting procedure developed
in [1]. This will lead to an effective and computationally effi-
cient classifier, which we refer to as Boost-KSFA, or simply,
Q-KSFA. Using the methodology introduced in Secs. 2 and 3,
a weak learner constructs KSFA classifiers sequentially using
subsets of the training set chosen according to the sampling
techniques of [5, 1], which emphasize "the hard cases" at each
stage of the construction. Details of the SAMME algorithm
can be found in [1].

5. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the algorithms introduced
in this paper on two datasets: (i) the ORL face dataset', which
consists of 40 classes with 10 images in each class; (ii) a
dataset of handwritten digits, which contains ten classes with
an average of 729 training samples per class and a separate
test set with 2009 samples. In the first experiment, we divided
each class in the ORL dataset into training, cross-validation,
and test sets consisting of 4, 3, and 3 images, respectively and

1 http://www.uk.research.att.com/facedatabase.htmI

Fig. 1. Recognition performance of KSFA with a Gaussian
kernel versus the number of iterations on the ORL dataset. In
each panel, solid and dashed lines correspond to performance
on the cross-validation and test sets, respectively. (a) Perfor-
mance with the nearest neighbor classifier. (b) Performance
with the 3-nearest neighbor classifier.

Table 2. Comparison of classification accuracy (%) applying
different methods to the ORL data set.

PCA 97.25 Q-KSFA (Polynomial) 98.5
QR/LDA 98.25 Q-KSFA (Gaussian) 99.0
PCA+LDA 95.00 |3-SFA 98.0

used a Gaussian kernel with k = 10. The results obtained and
comparisons with KPCA are reported in Table 1 and plots of
recognition performance are shown in Fig. 1.

In the second experiment, we divided the ORL dataset
into disjoint training and test sets with 200 images in each.
In the experiments, we use a Gaussian kernel with k = 8.
Fig. 2(a) shows the recognition performance on the entire train-
ing set and on the test set of 25 different weak KSFA clas-
sifiers. As expected, the individual weak classifiers do not
perform well, but the Q-KSFA classifier improves the perfor-
mance on both training and test sets dramatically. Fig. 2(b)
shows the performance of the strong classifier versus the num-
ber of weak classifiers used. To further demonstrate the ef-
fectiveness of the proposed methods, we compare the results
with those obtained with PCA, LDA (linear discriminant anal-
ysis), and QR/LDA [6] used in conjunction with the nearest
neighbor classifier. The results are shown in Table 2. With an
appropriate choice of kernels, the present methods yield the
best performance.

To demonstrate the scalability of Q-KSFA, we apply it to
a handwritten digit recognition dataset. Fig. 3 shows the re-
sults on the training and the test sets using a Gaussian kernel.
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Fig. 2. Recognition performance with a Gaussian kernel on

disjoint ORL training and test sets: (a) performance of var-

ious weak KSFA classifiers labeled 1-25; (b) performance
of a 3-KSFA classifier versus the number of weak classifiers
used. Solid and dashed lines correspond to performance on

the training and test sets, respectively.

A recognition performance of 94.2% was achieved on the test
set. The result is comparable to those obtained with some

other methods [7]. The highest performance reported on this
dataset is 97.5% [7]. Note, however, that the best result is
obtained using a tangent vector distance, which can be incor-
porated to our methods as well.

6. SUMMARY

We developed a new linear feature selection technique termed
Splitting Factor Analysis (SFA) that optimizes the ability of
the K-nearest neighbor classifier to discriminate data while
performing dimension reduction. A general data kerneliza-
tion procedure was adopted that decouples data kernelization
from classifiers. Combined with SFA, the technique yields
KSFA, a kernel analogue of SFA that can cope with nonlinear-
ities in data structure. For scalability and computational effi-
ciency, weak KSFA classifiers were used in conjunction with
multi-class boosting techniques to produce i-KSFA, a novel
model selection method for data classification and labeling.
Results of several experiments were reported and recognition
performance was compared to those obtained using various
different methods.

7. REFERENCES

[1] J. Zhu, S. Rosset, H. Zou, and T. Hastie, "A multi-class
forward stagewise generalization of AdaBoost," Techni-

80
10 15
Number of weaker classifiers

20 25

(b)

Fig. 3. Recognition performance with a Gaussian kernel
on USPS handwritten digit training and test sets: (a) per-

formance of 25 weak KSFA classifiers; (b) performance of
a 3-KSFA classifier versus the number of weak classifiers
used. Solid and dashed lines correspond to performance on

the training and test sets, respectively.

cal report, University of Michigan, Department of Statis-
tics, 2005.

[2] X. Liu, A. Srivastava, and K. Gallivan, "Optimal linear
representations of images for object recognition," IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.
26, pp. 662-666, 2004.

[3] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdi-
nov, "Neighborhood component analysis," in Advances
in Neural Information Processing Systems, L. K. Saul,
Y. Weiss, and L. Bottou, Eds., Cambridge, MA, 2005,
vol. 17, pp. 513-520, MIT Press.

[4] B. Scholkopf, A. Smola, and K. R. Muller, "Nonlin-
ear component analysis as a kernel eigenvalue problem,"
Neural Computation, vol. 10, pp. 1299-1319, 1998.

[5] Y. Freund and R. Schapire, "A decision theoretic general-
ization of online learning and an application to boosting,"
Journal of Computer and System Sciences, vol. 55, no. 1,
pp. 119-139, 1997.

[6] J. Ye and Q. Li, "A two-stage linear discriminant analysis
via QR-decomposition," IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 27, no. 6, pp. 929-941,
2005.

[7] D. Keysers, W. Macherey, H. Ney, and J. Dahmen,
"Adaptation in statistical pattern recognition using tan-
gent vectors," IEEE Trans. on Pattern Analysis and Ma-
chine Intelligence, vol. 26, no. 2, pp. 269-274, 2004.

952

10 15
Weaker classifiers

(a)

20 25

loo


