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ABSTRACT

We develop a Riemannian model of shape of solids in 3D

space to map and compare localized hippocampal atrophy in

normal aging, conversion to Alzheimer’s disease (AD), and

progression of the disorder over a 1-year period. The study is

based on magnetic resonance scans of 428 subjects acquired

12 months apart by the Alzheimer’s Disease Neuroimaging

Initiative. Shape geodesics are used to model the spatiotem-

poral evolution of the anatomy of the hippocampus of each

subject and to uncover regional differences in shape that are

characteristic of the three dynamical processes. We identify

regions where changes in shape due to neurodegeneration in

conversion to AD differs significantly from normal aging sug-

gesting potential morphological markers of incipient AD.

Index Terms— Shape space, Alzheimer’s disease, hip-

pocampus, ADNI.

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive disorder that cur-

rently afflicts millions of elderly individuals worldwide, with

symptoms that evolve from an initial mild memory loss to a

decline in all cognitive functions. As the hippocampus (HC)

is one of the first parts of the brain to degenerate in AD, many

brain imaging studies have focused on quantifying global and

regional hippocampal volume loss and analyzing correlations

with other measures of cognitive impairment; cf. [1, 2, 3] and

references therein. Although global hippocampal volume loss

in AD is well documented (cf. [3]), it is important to map the

local atrophic patterns and model the dynamics of neurode-

generation in order to uncover morphological signatures that

are specific to AD and can help in the early detection of the

disorder, as well as to differentiate AD from other types of

dementia.

In this paper, we develop a Riemannian model of spa-

tiotemporal evolution of hippocampal shape over a 1-year

time in normal aging, conversion to AD, and progression
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of the disease with the goal of finding morphological char-

acteristics that can help to track the disease with imaging

methods. This study is based on longitudinal data collected

by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

[4] and uses the shape of the full volume of the hippocam-

pus extracted from magnetic resonance (MR) scans of 428

subjects acquired at two points in time, twelve months apart

(see Table 1). In large scale studies such as the ADNI, the

acquisition of multiple scans of all subjects over one year to

accurately model the time evolution is not feasible, so the

problems of interpolating a sparse set of observations and

quantifying shape differences in a principled manner are of

primary importance.

The shape model of spherical surfaces in 3D space of [5]

could be used for the analysis of the contour surfaces of the

hippocampus. A study along these lines was carried out in

[6] with a different model of shape of surfaces. However, the

study of the full hippocampal volume can potentially reveal

shape features that are more sensitive to the structural dif-

ferences in normal and AD brains, as well as more specific

to AD. Thus, we propose a new model that extends that of

[5] to shape of solids in 3D space and apply it to the study

of the entire volume of the hippocampus. We use this Rie-

mannian model to construct statistical maps of regional hip-

pocampal atrophy in subjects with mild cognitive impairment

(MCI), AD subjects, and healthy normal (NL) age-matched

controls. Although MCI does not always evolve to AD, it is

regarded as a transitional stage since, as a group, MCI sub-

jects exhibit a 5-fold increased risk of conversion. Following

a common practice, we first fix the hippocampus of a nor-

mal control as a reference and register the contour surfaces

of the HC of all subjects with it using the techniques of [7].

We then use a thin-plate-spline interpolant [8] to extend the

registration of the contour surfaces to the entire hippocampal

volumes. Next, we use a subset of 50 normal controls to con-

struct a hippocampal atlas as the mean shape of this subgroup.

By construction, the HC of all subjects are already registered

with the atlas, which is now used as the reference anatomy.

We use the voxels of the atlas to obtain a (regular) cubical

mesh representing its shape and transfer this mesh structure to
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# of Subjects Baseline Follow-up Group Label Index Range Index Set

134 NL NL 1 1–134 Λ1

169 MCI MCI 2 135–303 Λ2

42 MCI AD 3 304–345 Λ3

83 AD AD 4 346–428 Λ4

Table 1. Breakdown of ADNI subjects included in this study according to diagnoses at baseline and follow-up scans. The total

number of subjects is N = 428.

all other shapes via the volume registration. Hence, all shapes

have a common underlying (abstract) mesh structure K in-

herited from the atlas. For each subject, we interpolate the

meshes Mb and Mf extracted from the baseline and the 12-

month follow-up scans, respectively, using volumetric shape

geodesics.

We are interested in quantifying the dynamical behavior

of the hippocampal volumes, particularly, the regional mor-

phological changes over the 1-year period. The geodesic dis-

tance between the baseline and follow-up shapes gives a pre-

liminary quantifier. However, this is a global measurement of

shape change and does not reveal particular regions of inter-

est. To achieve this, the key observation is that the square of

the geodesic distance between two shapes has a natural inter-

pretation as the (minimal) energy needed to morph a shape

into another and this energy is an integration of local con-

tributions. As such, the model provides a richer profile of

local energies that we refer to as the energy profile function
(EPF) associated with the geodesic. The quantification and

comparison of group differences will be based on a statistical

analysis of these EPFs. As all shapes are already registered

with the atlas, we can pull back the EPF of each subject to

the atlas, which gives a common domain for the comparison

of different individuals and groups. We carry out a voxel-by-

voxel analysis of the energy profile functions to identify the

regions where shape changes in normal aging over a 1-year

period differs significantly from those observed in the MCI-

MCI, MCI-AD and AD-AD groups.

The paper is organized as follows. The geodesic model

of shape used to estimate and quantify shape evolution is dis-

cussed in Section 2. Energy profile functions are introduced

in Section 3 as a localization tool to quantify regional mor-

phological changes. Section 4 presents a comparison of nor-

mal aging with the 1-year dynamics of MCI-MCI, MCI-AD

and AD-AD, including statistical maps of group differences.

2. SHAPE OF SOLIDS IN 3D SPACE

Motivated by the shape data that we propose to analyze, we

fix a reference cubical complex K and consider paramet-

ric shapes α : K → R
3, where R

3 denotes 3-dimensional

Euclidean space. As we are interested in the hippocampus,

we assume that the topology underlying K is that of a solid

bounded by a spherical surface. We also assume that α is

an affine map on each cube of the complex K. Our Rie-

mannian model uses a shape representation derived from

the discrete exterior derivative of α. A representation based

on the derivative is appealing because it is more sensitive

to local non-linear deformations of shape such as regional

shrinkage due to tissue loss. The usual derivative measures

infinitesimal variations of a mapping, so the natural discrete

analogue is the variation of α as we traverse an edge. Thus,

the exterior derivative dα is defined on the oriented edges of

K. Fix an arbitrary orientation for each edge of K and let

E = {e1, . . . , em} be the resulting oriented edge set. If we

denote the initial and terminal vertices of ei by e−i and e+
i ,

respectively, then

dα(ei) = α(e+
i )− α(e−i ) . (1)

It suffices to consider a fixed orientation for each edge be-

cause reversal of orientation simply changes the sign of

dα(ei). Using a log-polar representation, we express the

modular and directional components of dα(ei) as

ri = log ‖dα(ei)‖ and vi = dα(ei)/‖dα(ei)‖ , (2)

so that dα(ei) = erivi. If we write vT
i = [ vi1 vi2 vi3 ], where

T denotes transposition, the shape α is represented by the pair

(r, v) with

r =

⎡
⎢⎣

r1

...

rm

⎤
⎥⎦ and v =

⎡
⎢⎣

v11 v12 v13

...
...

...

vm1 vm2 vm3

⎤
⎥⎦ . (3)

Not every pair (r, v) represents a discrete derivative, so we

discuss the constraints they should satisfy. For each oriented

cycle C in K, let ni be the net number of times that the ori-

ented edge ei is traversed by C, where a negative sign indi-

cates reversal of orientation. Then, pairs (r, v) that represent

shapes are exactly those for which
∑m

i=1 nie
rivi = 0. Intu-

itively, this simply means that (r, v) represents the derivative

of some α if and only if its integral vanish along any cycle.

Because of the simple topological type of K, one can show

that it suffices to check these vanishing conditions along the
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cycles of length 4 arising as the boundaries of the oriented

faces of the cubes of K. Even among those, there is a high

amount of redundancy. To obtain a minimal set of essential 4-

cycles, we proceed as follows. Orient each face arbitrarily and

denote them f1, . . . , fk. Form the m × k (boundary) matrix

B, whose (i, j)-entry is ±1 if the edge ei is on the boundary

of fj , with the sign determined by the orientation. The entry

is set to 0, otherwise. The pivot columns of B give a min-

imal set of independent 4-cycles. More precisely, if the jth

column of B is a pivot column, we select the oriented 4-cycle

representing the boundary of fj .

We develop a shape model that is sensitive to scale be-

cause, among other things, we are interested in relative size

changes associated with neurodegeneration. The fundamental

ingredient of a Riemannian model is the quantification of the

energy cost of an infinitesimal deformation (h, w) of a pair

(r, v) because globalization of this measure of energy expen-

diture can be done via integration. In the model we propose,

this energy cost is given by

‖(h, w)‖2(r,v) =
m∑

i=1

h2
i e

ri +
m∑

i=1

‖wi‖2eri . (4)

Note that (4) is the sum of Euclidean contributions of individ-

ual edges weighted by their lengths eri . Let the pairs (r, v)
and (r∗, v∗) represent parametric shapes α and α∗, respec-

tively. Given a path γ(t) = (r(t), v(t)), 0 � t � 1, connect-

ing (r, v) to (r∗, v∗), the energy of the path is defined as

E(γ) =
∫ 1

0

‖(∂tr(t), ∂tv(t))‖2γ(t) dt . (5)

Paths of minimal energy correspond to minimal length

geodesics. We use constrained energy minimization to con-

struct geodesics and calculate geodesic distances. We denote

the distance δ((r, v), (r∗, v∗)). Integrating each (r(t), v(t))
to a parametric mesh αt : K → R

3, one obtains a 1-parameter

family of meshes representing the geodesic from (r, v) to

(r∗, v∗). As the integral is only defined up to an additive

constant, we center each αt to standardize the choice.

Since the (r, v)-representation of a shape is invariant un-

der translations, to make the model invariant to general rigid

transformations, it remains to account for the effect of orthog-

onal mappings. If s and s∗ are the shapes represented by (r, v)
and (r∗, v∗), the (parametric) shape distance is defined as

d(s, s∗) = min
U,V ∈O(3)

δ((r, vV T ), (r∗, v∗UT ))

= min
U∈O(3)

δ((r, v), (r∗, v∗UT )) ,
(6)

where O(3) is the group of 3×3 orthogonal matrices. Clearly,

rigid transformations only affect the directional component of

(r, v), as indicated in (6). The second equality in (6) follows

from the fact that orthogonal transformations preserve shape

distance.

3. ENERGY PROFILE FUNCTIONS

A (parametric) geodesic γ(t) = (r(t), v(t)), 0 � t � 1, is

traversed with constant speed ω, where ω is the length of γ.

Thus, the energy of γ is

E(γ) =
∫ 1

0

‖∂tγ(t)‖2γ(t) dt = ω2 . (7)

On the other hand, we may write the energy as

E(γ) =
m∑

i=1

∫ 1

0

(
|∂tri(t)|2eri(t) + ‖∂tvi(t)‖2eri(t)

)
dt ,

(8)

which expresses E(γ) as a sum of the contributions of the

individual edges. Thus, the energy profile function (EPF) de-

fined as

ψ(ei) =
∫ 1

0

(
|∂tri(t)|2eri(t) + ‖∂tvi(t)‖2eri(t)

)
dt (9)

quantifies the contribution of each edge to the total geodesic

deformation energy. Although geodesic distance is a global

quantifier of shape difference, the EPF provides a means

to measure local shape differences and identify the regions

where shape similarity and divergence are most pronounced.

One may modify ψ to a function defined on the vertex set by

letting the value on a vertex be the average value of ψ on the

edges incident with that vertex. This is the variant we adopt.

4. COMPARISON WITH NORMAL AGING

In this section, we carry out a statistical comparison of the en-

ergy profile functions for the normal controls and the subjects

in the MCI-MCI, MCI-AD and AD-AD groups. For each

voxel x of the atlas, let ψ�(x) represents the value of the EPF

of the geodesic that interpolates the baseline and follow-up

observations for subject �. Here, we use the fact that all shapes

are registered with the atlas. For each x, we compare the dis-

tribution of the value of the EPFs at x in the normal aging

group with the corresponding distributions for the MCI-MCI,

MCI-AD, and AD-AD groups. In other words, we compare

the distribution of {ψ�(x), � ∈ Λ1} with the distributions of

{ψ�(x), � ∈ Λi}, 2 � i � 4. (The index sets Λi are explained

in Table 1.) Since one of the main objectives is to character-

ize the regions where shape changes over one year in these

groups differ significantly from normal aging, we use a direc-

tional permutation t-test to compare NL-NL with each of the

other groups. The percentage of voxels on the left hippocam-

pus where the p-value is � 0.05 for the MCI-MCI, MCI-AD,

and AD-AD groups are 1.6%, 0.1% and 23.5%, respectively.

For the right hippocampus, 6.2%, 1.7% and 7.7%. To visu-

alize the regions of significance, we sectioned the volumetric

atlases along 3 planes. Figure 1 shows the maps of p-values

along these sections.
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plane 1 plane 2 plane 3 plane 1 plane 2 plane 3

MCI-MCI

MCI-AD

AD-AD

Right HC Left HC

Fig. 1. Maps of p-values along 3 sections of the hippocampus.

5. SUMMARY AND DISCUSSION

We developed a Riemannian model of shape of solids in 3D

space and applied it to the analysis of spatiotemporal evolu-

tion of hippocampal shape using longitudinal data comprising

MR scans of the brain of 428 subjects collected by the ADNI

at two points in time, one year apart. The analysis is based

on geodesic interpolation of registered hippocampal volumes

extracted from the baseline and follow-up scans of each sub-

ject. Analysis of regional morphological changes allowed us

to identify specific regions of the hippocampus where shape

changes due to neurodegeneration in conversion and progres-

sion of AD differs most significantly from normal aging over

a 1-year period.
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