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Abstract. Optimal Component Analysis (OCA) is a linear subspace technique
for dimensionality reduction designed to optimize object classification and recog-
nition performance. The linear nature of OCA often limits recognition perfor-
mance, if the underlying data structure is nonlinear or cluster structures are com-
plex. To address these problems, we investigate a kernel analogue of OCA, which
consists of applying OCA techniques to the data after it has been mapped non-
linearly into a new feature space, typically a high (possibly infinite) dimensional
Hilbert space. In this paper, we study both the theoretical and algorithmic aspects
of the problem and report results obtained in several object recognition experi-
ments.

1 Introduction

Modeling nonlinearity in observed data for tasks such as dimensionality reduction in
data representation for efficient classification and recognition of objects and patterns is
a problem that arises in numerous contexts. For example, in image-based object recog-
nition, nonlinearity often arises as a result of varying poses, illumination and other
factors. Kernel methods have been widely used as a general strategy for simplifying
data structure so that it becomes amenable to linear methods. One typically maps a
given dataset in Euclidean space R

n nonlinearly into a very high (possibly infinite)
dimensional Hilbert space H and analyzes the transformed data with more standard
techniques. Such methods have been investigated in the context of support vector ma-
chines [12], principal component analysis [10], independent component analysis [1],
and Fisher discriminant analysis [2]. For practical feasibility, the usual assumption is
that the nonlinear map Φ : R

n → H is not known explicitly, only the relative posi-
tions of the points Φ(x), x ∈ R

n, given by the inner products k(x, y) = Φ(x) · Φ(y),
x, y ∈ R

n. The function k(x, y) is referred to as a kernel function. Thus, dimension
reduction techniques and classifiers should only require knowledge of the kernel k, not
the function Φ.

In this paper, we present a kernel analogue of a linear subspace technique developed
by Liu et al. in [7, 11] that has been termed Optimal Component Analysis (OCA). Given
training data for a specific classification problem, OCA is a technique for finding an
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optimal subspace of feature space for dimensionality reduction for classification and
recognition. Although originally developed in the context of images for the nearest-
neighbor classifier, the method applies to more general data classification based on other
criteria, as well. We address both the theoretical and computational aspects of kernel
OCA. For the methodology to be useful in practice, it is crucial that we develop an
algorithmic approach that leads to effective computational tools. This will be achieved
by exploiting the differential geometric properties of Grassmann manifolds [5, 13], as
discussed in more detail below. Several object recognition experiments will illustrate the
fact that high recognition rates can be achieved with kernel OCA in a computationally
efficient manner. A special case of kernel OCA was studied in [14], where the kernel
function is required to satisfy the additional constraint that Φ preserves orthonormality.
Under this assumption, the problem can be more easily reduced to OCA in Euclidean
space.

The paper is organized as follows. In Sect. 2, we give a brief overview of optimal
component analysis in Euclidean space, which is followed by a formulation of the cor-
responding problem in kernel space in Sect. 3. Sect. 4 shows how an efficient stochastic
gradient search algorithm can be devised by exploiting a special representation of el-
ements of Grassmann manifolds. Sect. 5 contains a systematic set of experiments and
Sect. 6 concludes the paper with a discussion of future research.

2 Optimal Component Analysis

We begin with a brief review of Optimal Component Analysis (OCA) in Euclidean
space R

m. Suppose that a given dataset is divided in training and validation sets, each
consisting of representatives of P different classes of objects. For 1 ≤ c ≤ P , we denote
by xc,1, . . . , xc,tc and yc,1, . . . , yc,vc the elements in the training and validation sets,
resp., that belong to class c. Given an r-dimensional subspace U of R

m and x, y ∈ R
m,

we let d(x, y; U) denote the distance between the orthogonal projections of x and y
onto U . The quantity

ρ(yc,i; U) =
minc �=b,j d2(yc,i, xb,j ; U)
minj d2(yc,i, xc,j ; U) + ε

(1)

measures how well the nearest-neighbor classifier applied to the data projected onto
U identifies the element yc,i as belonging to class c; a large value ρ(yc,i; U) indicates
that, after projection, yc,i is much closer to the class it belongs than to other classes.
Here, ε > 0 is a small number used to prevent vanishing denominators. The function ρ
is a mild variant of that used in [7], with the distance d squared to ensure smoothness.
Note that (1) can be modified to reflect the performance of a more general K-nearest-
neighbor classifier. Define a performance function by

F (U) =
1
P

P∑

c=1

(
1
vc

vc∑

i=1

h (ρ(yc,i : U) − 1)

)
, (2)

where h is a monotonically increasing bounded function. A common choice is

h(x) =
1

1 + e−2βx
,
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for which the limit value of F (U), as β → ∞, is precisely the recognition performance
of the nearest-neighbor classifier after projection to the subspace U . Unlike the actual
recognition performance, F (U) is smooth so that we can approach the search for its
maxima using gradient-type algorithms. The function h is used to control bias with
respect to particular classes in measurements of performance.

Let G(m, r) be the Grassmann manifold [5, 13] of r-planes in R
m. An optimal r-

dimensional subspace for the given classification problem from the viewpoint of the
available data is given by

Û = argmax
U∈Gm,r

F (U).

An algorithmic procedure for estimating Û on G(m, r) using a stochastic gradient
search is described in [7]. Notice that, in practice, for this approach to classification
and recognition to be feasible, the estimation of the gradient of F must be carried out
efficiently.

3 Subspace Representation

In data analysis using kernel methods, one typically maps a given set of data x1, . . . , xM

in R
n to a Hilbert space (H, 〈 , 〉) using a nonlinear map Φ : R

n → H, and then applies
linear subspace techniques to the collection Φ(x1), . . . , Φ(xM ). The typical assumption
is that Φ is not known explicitly, only the kernel function k(x, y) = Φ(x) · Φ(y). The
problem of determining what functions k(x, y) are kernels associated with a mapping
Φ has been studied in [4, 12, 10]. Some of the most commonly used kernel functions are

k(x, y) = (x · y)d ,

which corresponds to mapping R
n into a higher dimensional space using all monomials

of order d in the input variables [9], and the Gaussian kernel

k(x, y) = exp
(

−‖x − y‖2

2σ2

)
.

We shall adapt OCA to this setting, by projecting vectors of the form Φ(x), x ∈ R
n,

onto subspaces of
V = span {Φ(x1), . . . , Φ(xM )} ⊆ H,

where we use the nearest-neighbor (or more generally K-nearest-neighbor) criterion for
classification and recognition. For this purpose, we must be able to measure distances
between projected vectors solely in terms of the kernel function.

Remarks.

(a) Note that OCA, in its original formulation, does not restrict subspaces to the span
of the data points. This is an important difference and philosophically reflects the fact
that, in the kernel approach, cluster structures are expected to be simplified by applying
a non-linear map Φ to the original data, so that high recognition rates can be achieved
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only using projections to low-dimensional subspaces of the span of the kernelized data.
This will lead to significant gains in computational efficiency.

(b) If the need arises, one can allow other subspaces of the Hilbert space H, for example,
by taking a set of vectors {x̄1, . . . , x̄N} ⊂ R

n and replacing V above with

V = span {Φ(x̄1), . . . , Φ(x̄N )} .

Thus, the formulation given here is not limited to the span of the training images. This
raises the problems of learning and selecting {x̄1, . . . , x̄N} either from data or based
on associated physical processes; these issues require further investigation.

Each element a = (a1, . . . , aM )T ∈ R
M×1 defines a vector v ∈ V given by

v =
∑M

i=1 aiΦ(xi). Form the symmetric Gram matrix K ∈ R
M×M , whose entries are

Kij = Φ(xi) · Φ(xj) .

If a, b ∈ R
M×1 represent v, w ∈ V , then

〈v, w〉 = aT Kb. (3)

Our first goal is to find an orthonormal basis of V in the a-representation. For this,
we diagonalize the Gram matrix, and let d∗j = (d∗1j , . . . , d

∗
Mj)

T , 1 ≤ j ≤ m, be an
orthonormal set (with respect to the standard inner product on R

M ) associated with the
nonzero eigenvalues λ1, . . . , λm of K , where m = dimV = rank K . It follows from
(3) that

d1 = d∗1/
√

λ1 , . . . , dm = d∗m/
√

λm (4)

represent an orthonormal basis of V . This fact can be expressed as DT KD = Im,
where D is the M × m matrix whose columns are d1, . . . , dm. Note that D can be
constructed as indicated since the Gram matrix K is positive semi-definite. In addition,
one can choose a subset of the eigenvectors (with nonzero eigenvalues) to further reduce
computational costs if needed.

3.1 Subspaces of V

Subspaces of V of dimension r will be represented by spanning orthonormal r-frames.
For each 1 ≤ j ≤ r, let αj = (α1j , . . . , αMj)T represent a vector vj ∈ V , and let α
be the (M × r)-matrix whose entries are αij ; that is, the columns of α are αj . From
Eqn. 3, it follows that {vj , 1 ≤ j ≤ r} is orthonormal if and only if

αT Kα = Ir , (5)

where Ir is the r × r identity matrix. The collection of all M × r matrices satisfying
Eqn. 5 will be denoted A. Given α ∈ A, let [α] be the r-dimensional subspace of V
associated with α ; i.e.,

[α] = span {vj , 1 ≤ j ≤ r} ,
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with vj =
∑M

i=1 αijΦ(xi). We denote by πα : R
m → [α] be the orthogonal projection

of H onto [α]. For x ∈ R
n, we derive an expression for Φα(x) = πα (Φ(x)). The prod-

uct 〈Φα(x), vj〉 = 〈πα (Φ(x)) , vj〉 = 〈Φ(x), vj〉, for 1 ≤ j ≤ r, can be calculated as

〈Φ(x), vj〉 =
M∑

i=1

αij 〈Φ(x), Φ(xi)〉 =
M∑

i=1

αijk(x, xi) ,

which implies that

Φα(x) =
r∑

j=1

(
M∑

i=1

αijk(x, xi)

)
vj . (6)

3.2 Distance in [α]

In applications using nearest-neighbor classifiers, we will be primarily interested in the
distance between Φα(x) and Φα(y), for x, y ∈ R

n. Since

‖Φα(x) − Φα(y)‖2 = 〈Φα(x), Φα(x)〉 − 2 〈Φα(x), Φα(y)〉
+ 〈Φα(y), Φα(y)〉 ,

(7)

it suffices to derive expressions for inner products of the form 〈Φα(w), Φα(z)〉, w, z ∈
R

n. From Eqn. 6, we obtain

Φα(w) · Φα(z) =
r∑

�=1

(
M∑

i=1

αi�k(w, xi)

) ⎛

⎝
M∑

j=1

αj�k(z, xj)

⎞

⎠

= αT h(w) · αT h(z),

where h(w) denotes the vector (k(w, x1), . . . , k(w, xM ))T ∈ R
M×1, h(z) is defined

similarly, and · is the standard inner product in R
r. In (7), we obtain

‖Φα(x) − Φα(y)‖2 = ‖αT h(x)‖2 − 2αT h(x) · αT h(y)

+ ‖αT h(y)‖2.
(8)

This expresses the distance solely in terms of α and the kernel function k, as desired.

4 Kernel OCA

The results of Sec. 3.1 allow us to define a performance function G for KOCA similar
to the function F given by (2) . If α ∈ A, the definition of G([α]) is identical to that
of the function F (U) in (2), with distances d(yc,i, xd,j; U) between training and cross-
validation points replaced by

d(yc,i, xd,j ; [α]) =
(
‖αT h(x)‖2 − 2αT h(x) · αT h(y) + ‖αT h(y)‖2)1/2

. (9)

To complete the description of kernel OCA, we address the problem of maximizing G
over the Grassmann manifold G(V, r) formed by all r-dimensional subspaces of V . If
v1, . . . , vm is an orthonormal basis of V and e1, . . . , em is the standard basis of R

m, the
correspondence ej 
→ vj induces an identification of G(m, r) with G(V, r). This will
allow us to reduce the question to an optimization problem over G(m, r).
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4.1 Grassmann and Stiefel Manifolds

Let V(m, r) denote the Stiefel manifold of orthonormal r-frames (u1, . . . , ur) in R
m,

which we represent by the m×r matrix U whose jth column is uj , 1 ≤ j ≤ r. A matrix
U ∈ R

m×r represents an element of V(m, r) if and only if UT U = Ir. The Grassmann
manifold G(m, r) may be viewed as the quotient space of V(m, r) under the following
equivalence relation: U1 ∼ U2 if there exists an orthogonal matrix H ∈ O(r) such that
U1 = U2H . This just formalizes the simple fact that if we represent r-planes in R

m

using their orthonormal basis, we have to account for all possible choices. We abuse
notation and use U ∈ R

m×r to denote both an element in the Stiefel manifold and its
equivalence class in the Grassmannian.

Let J be the m × r matrix formed by the first r columns of the identity matrix
Im. The matrix J represents the orthonormal r-frame formed by the first r elements of
the standard basis of R

m. It can be shown that tangent vectors to G(m, r) at J can be
identified uniquely with matrices of the form

[
0 B

−BT 0

]
J ∈ R

m×r,

where B ∈ R
r×(m−r). Let Eij , 1 ≤ i ≤ r and r < j ≤ m, be the m×m matrix whose

(k, l) entry is

Eij(k, l) =

⎧
⎪⎨

⎪⎩

1/
√

2, if k = i and l = j;

−1/
√

2, if k = j and l = i;

0, otherwise,

Then, {EijJ, 1 ≤ i ≤ r, r < j ≤ m} represents an orthonormal basis of the tangent
space TJG(m, r).

Any two orthonormal r-frames in R
m differ by the action of an orthogonal matrix.

Thus, for any U ∈ G(m, r), there is an orthogonal matrix Q ∈ O(n) such that J = QU .
Any such matrix Q has the property that QT = [U, W ], where W is some m× (m− r)
matrix satisfying WT W = Im−r and UT W = 0; the role of V is to complete U to
an m × m orthogonal matrix. Since left multiplication by QT induces an isometry on
G(m, d), it follows that {QT EijJ, 1 ≤ i ≤ r, r < j ≤ m}, represents an orthonormal
basis of the tangent space TUG(m, r). Another important consequence of the fact that
left multiplication by QT is an isometry is that the geodesic γij(t; U) in G(m, r) starting
at U with initial velocity QT EijJ ∈ TUG(m, r) is given by the action of QT on the
geodesic γij(t; J) = etEij J . In other words,

γij(t; U) = QT etEijJ. (10)

4.2 Maximizing G

Let U ∈ G(m, r). The mapping U 
→ [DU ], where D is the M × m matrix whose
column vectors are given by (4) and [DU ] denotes the subspace of V associated with
α = DU , induces an identification G(m, r) ≈ G(V, r). Thus, maximizing the perfor-
mance function G : G(V, r) → R is equivalent to maximizing H : G(m, r) → R, where

H(U) = G([DU ]). (11)
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The Gradient of H . The partial derivatives of H at U ∈ G(m, r) in the direction
QT EijJ , 1 ≤ i ≤ r, r < j ≤ m, can be evaluated as

∂ijH(U) = lim
ε→0

G
(
[DQT eεEij J ] − G ([DU ])

)

ε
. (12)

Note that D is fixed and Q depends only on U . To estimate the partial derivatives at U
using finite differences, we first compute DQT . If we write the m × m identity matrix
as Im = [e1 . . . em], the exponential eεEij can be obtained from Im by the following
column replacements:

ei 
→ cos(ε/
√

2)ei − sin(ε/
√

2)ej and ej 
→ sin(ε/
√

2)ei + cos(ε/
√

2)ej .

Then, the M × r matrix DQT eεEij J can be calculated by first performing the same
column replacements on DQT and then deleting the last m − r columns.

Also, to evaluate the performance function G at [DQT eεEijJ ], we need to com-
pute the distances d(yc,i, xd,j ; [DQT eεEijJ ]) between training and cross-validation
points. Since DQT eεEijJ and DQT differ in a single column, Eqns. 9 and 7 show
that significant gains in computational efficiency can be realized by first calculating
d(yc,i, xd,j ; [DU ]) and storing the intermediate results.

To summarize, given Ut at time t, we first compute Q such that QT = [Ut , Wt],
where the columns of Wt form an orthonormal basis for the null space of Ut. Using
Eqn. 12, we estimate the partial derivatives ∂ijH(Ut) and then add a stochastic com-
ponent to ∂ijH(Ut) to carry out a stochastic gradient optimization of H ; details of the
implementation of the stochastic search can be found in [7].

(a)
                                                                                                                        

(b)

Fig. 1. Part of the ORL dataset: (a) 10 subjects used in the experiments; (b) images of three
selected subjects taken at different facial expression and illumination conditions
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5 Experimental Results

We present the results of several image-based object recognition experiments. By pre-
computing Φ(w, xi), i = 1, . . . , M, for each validation image w, the implementation
of the proposed algorithm is at least as efficient as the OCA algorithm in Euclidean
space. Recall that if n is much larger than the size of the training set M , a substantial
additional computational gain is realized by considering only subspaces in the span of
Φ(xi), 1 ≤ i ≤ M , as remarked in Sect. 3. Compared to a direct implementation in
kernel space [8], on a face recognition data set, the computational time is reduced from
several hours to just a few seconds. Furthermore, the techniques developed provide an
adaptive way of balancing efficiency and accuracy as illustrated in Fig. 5.

As in other gradient-based methods and the original OCA algorithms, the choice
of free parameters may affect results significantly. Additionally, for KOCA, the choice
of kernel functions is also important. Instead of pursuing asymptotic convergence re-
sults, we have conducted numerical simulations to demonstrate the effectiveness of the
proposed algorithm. We varied the subspace dimension, as well as the kernel functions.

Using part of the ORL face database, we have applied the proposed algorithm to
the search for optimal linear basis in the context of face recognition in the kernel space.
The dataset consists of faces of 40 different subjects with 10 images each. The subjects
are shown in Fig. 1(a) and the images of three particular subjects are shown in Fig. 1(b)
to illustrate the variation of facial expression and lighting condition. Here we used 10
subjects for the plots in the Figures 2-8 and 20 subjects for the results shown in Tab. 1.
Figure 2 shows the evolution of the optimization performance using a Gaussian kernel
with a fixed width σ. Fig. 2(a) and (b) show two cases with random initial subspace
while Fig. 2(c) shows the case using the kernel PCA as the initial subspace. In each
case, the plot on the left shows the evolution of the performance function F (Ut) with
β = 0.5; the middle plot shows the corresponding recognition rate. Note that the recog-
nition rate is piecewise constant and does not have a meaningful gradient for stochastic
optimization while F (Ut) is smooth. The right plot shows the distance of Ut from the
initial one (Frobenius norm), indicating that the optimization process is effective. In all
these cases, the optimization is successful in maximizing the recognition performance.

We have also used polynomial kernel of different degrees. Fig. 3 shows three such
examples. As in the previous example, the performance improves significantly with
the number of iterations in all the cases. Compared to the results in Fig. 2, here the
performance function itself is worse than that using the Gaussian kernel, indicating the
importance of the kernel function for performance.

For dimension reduction, the choice of the subspace dimension is an important pa-
rameter. Using the proposed method, we can significantly reduce the required dimen-
sion for a given level of performance. To show this, Fig. 4 shows three examples of
Gaussian kernel for different values of the subspace dimension r. As expected, when r
is larger, it takes fewer iterations to achieve a given performance. With r = 3, the pro-
posed algorithm achieves maximum recognition performance. For applications where
the computational complexity is critical, the proposed method may reduce the required
dimension effectively.

As pointed out earlier, significant computational efficiency can be realized by re-
stricting subspaces to those contained in the span of the kernelized data. To illustrate
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Fig. 2. Plots of the performance function F (left), the corresponding recognition rate (middle),
and the distance from the initial subspace (right) versus the number t of iterations using projec-
tions onto a 4-dimensional subspace. Here Gaussian kernel with proper σ is used. (a) and (b) Two
random initial subspaces. (c) Initial subspace given by KPCA, whose recognition performance
is 80%.

that the gain in efficiency usually does not lead to significant loss in discriminative
power, we show in Fig. 5(a) a plot of the distribution of eigenvalues of K matrix given
by a Gaussian kernel; Fig. 5(b) shows the percentage of energy captured by the first
given number of eigenvectors. Clearly we can reduce the dimension to a much smaller
number and still have most of the information for classification. Fig. 6 shows three ex-
amples with a different number of eigenvectors. As the examples in Fig. 6(b) and (c)
show, one can reduce the dimension of the search space without much loss of perfor-
mance as compared to that given in Fig. 2, where the span of all the training images is
used. It is expected that when the search space is reduced too much, the performance
loss can become significant, as shown in Fig. 6(a). In the extreme case, when m = r,
KOCA is reduced to KPCA or other method, depending how the initial subspace is
generated.

To summarize the experiments and compare the performance using the proposed
algorithm and that of KPCA [10], Tab. 1 shows the performance of both methods using
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Fig. 3. Plots of the performance function F (left), the corresponding recognition rate (middle),
and the distance from the initial subspace (right) versus the number t of iterations using projec-
tions onto a 4-dimensional subspace. Here polynomial kernels k(x, y) = (x · y)d with different
d’s are used. The initial subspace is given randomly. (a) Polynomial kernel of d = 2. (b) Polyno-
mial kernel of d = 3. (c) Polynomial kernel of d = 4.

different kernel functions with different dimension of subspaces (r) using 20 subjects
of the ORL face dataset. It is clear that the proposed algorithm is significantly more
effective than KPCA in all the cases. Additionally, this shows again the importance of
kernel functions and how to learn the kernel functions is an important problem.

While the above experiments demonstrate clearly the effectiveness of the proposed
KOCA technique, for real world applications, one is interested in the generalization
performance, i.e., the performance on images that are not part of the training. To sim-
ulate this situation, we divide the face dataset into a training set, a cross validation set,
and a separate test set, i.e., images in the test set are not used in the optimization per-
formance. To visualize the effectiveness of KOCA, we use five classes here and set
r = 2. Fig. 7 shows the 2-dimensional representation of the training, cross validation,
and test images given by KPCA and KOCA. Here each image is shown at the center
given by its 2-dimensional representation. It is clear that some of images from the same
class do not form good clusters in the space given by KPCA. In comparison, images
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Fig. 4. Plots of the performance function F (left), the corresponding recognition rate (middle),
and the distance from the initial subspace (right) versus the number t of iterations using projec-
tions onto r-dimensional subspaces with different r’s. Here Gaussian kernel with proper σ is used
and the initial subspace is given randomly. (a) r = 2. (b) r = 3. (c) r = 6.
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Fig. 5. Distribution of eigen values (a) and the energy captured by the first given eigen vectors (b)

from each of the five classes form a compact cluster that is away from clusters of other
classes. Here we used a modified version of (2), which is related to a 4-nearest neighbor
performance.
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Fig. 6. Plots of the performance function F (left), the corresponding recognition rate (middle),
and the distance from the initial subspace (right) versus the number t of iterations using projec-
tions onto an 4-dimensional subspace. Here Gaussian kernel with proper σ is used and the initial
subspace is given randomly. (a) m = 8 that captures 98% of the energy. (b) m = 16 that captures
99.25% of the energy. (c) m = 35 that captures 99.99% of the energy.

Table 1. Comparison of recognition performance of KPCA and the proposed algorithm

Kernel function Dimension r KPCA Proposed Kernel function Dimension r KPCA Proposed
Gaussian 2 48% 91% (x, y)2 4 82% 96%
Gaussian 4 82% 99% (x, y)3 4 80% 97%
Gaussian 6 83% 100% (x, y)4 4 82% 95%

To show the significance of KOCA, we computed the nearest neighbor classifier, the
4-nearest neighbor classifier, and F (U) (given by (2)) in the original image space (each
image is 92 × 112 = 10, 304), the 2-dimensional KPCA space, and a 2-dimensional
KOCA space using a Gaussian kernel. Tab. 2 shows the results. Note that while the
nearest neighbor performance is high in all the cases for this small set, the 4-nearest
neighbor performance is significantly different. KOCA achieves a much better 4-nearest
neighbor performance due to the much better clustering structure as shown in Fig. 7(b).
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Fig. 7. 2-dimensional representation of training (blue), cross validation (green), and test (red)
images using (a) KPCA and (b) KOCA. It is clear that clusters are much better organized using
the representation given by KOCA. Here the axes are the projections given the corresponding
2-dimensional projection matrix.

Table 2. Recognition performance of different representations on a five-class subset

Set F Nearest neighbor (%) 4-nearest neighbor(%)
10,304-dimensional original feature

Cross validation 0.542 100.0 86.7
Test 0.545 100.0 86.7

2-dimension KPCA feature
Cross validation 0.719 100.0 80.0

Test 0.715 100.0 80.0
2-dimension KOCA feature

Cross validation 0.994 100.0 100.0
Test 0.955 100.0 100.0

To demonstrate the significance of the proposed technique, we repeated the above
experiments on the full ORL dataset using r = 10. Tab. 3 shows the performance.
Clearly KOCA not only reduces the dimension of the images significantly, but also
increases the performance on both the cross validation set and more importantly on the
test set.

Note that the proposed technique is not limited to images and applies to any recog-
nition problem, where the input can be represented as a vector of a fixed length. As
an example, we have applied our technique on an optical character recognition (OCR)
dataset from the UCI machine learning repository 1. Since there is no cross validation
set in the given setting, (2) was modified to relate to the leave-one-out performance

1 Obtained from http://www.ics.uci.edu/∼mlearn/MLRepository.html.
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Table 3. Recognition performance of different representations on the full 40-class ORL dataset

Set F Nearest neighbor (%) 4-nearest neighbor(%)
10,304-dimensional original feature

Cross validation 0.521 96.7 71.7
Test 0.524 94.2 73.3

10-dimension KPCA feature
Cross validation 0.529 83.3 52.9

Test 0.526 92.5 63.3
10-dimension KOCA feature

Cross validation 0.995 100.0 100.0
Test 0.937 100.0 99.17

Table 4. Recognition performance of different representations on an OCR dataset

Set F Nearest neighbor (%) 11-nearest neighbor(%)
Original 64-dimensional feature

Training (leave-one-out) 0.637 95.2 94.4
Test 0.638 94.7 93.9

10-dimensional KICA feature
Training (leave-one-out) 0.280 22.9 28.0

Test 0.288 24.4 17.8
10-dimensional KOCA feature

Training (leave-one-out) 0.919 98.4 98.0
Test 0.862 96.1 96.1

on the training set. Tab. 4 shows the performance in the original space, the initial 10-
dimensional space given by the FastICA algorithm [6] in the kernel space, and a 10-
dimensional space given by KOCA that uses KICA as the initial condition. As in the
previous example, KOCA not only reduces the dimensionality significantly but also
improves the performance on the test compared to that in the original space.

6 Conclusion and Discussion

In this paper, we presented a kernel analogue of Optimal Component Analysis (OCA),
addressing both theoretical and computational aspects of the problem. The kernel ap-
proach allows one to model nonlinearity in data structure, overcoming a fundamental
limitation of OCA, as proposed in [7]. To achieve computational efficiency, the algo-
rithms developed exploit the geometric structure of Grassmann manifolds. Several ex-
periments were carried out and results compared to those obtained via kernel PCA.

As with other kernel methods, performance is often tied to the choice of the kernel
function. Thus, in applications, the choice of the kernel function for a specific classifi-
cation problem is of critical importance. To illustrate this point, Fig. 8 shows plots of
the performance functions associated with three Gaussian kernels of different widths. In
each column, the top panel shows a contour plot of the matrix K and the bottom panel
shows the performance function with respect to the number t of iterations. Clearly the



598 X. Liu and W. Mio

0 500 1000

0.7

0.8

0.9

1

P
er

fo
rm

an
ce

 fu
nc

tio
n

Iterations
0 500 1000

0.7

0.8

0.9

1
P

er
fo

rm
an

ce
 fu

nc
tio

n

Iterations
0 500 1000

0.5

0.6

0.7

0.8

0.9

1

P
er

fo
rm

an
ce

 fu
nc

tio
n

Iterations

(a) (b) (c)

Fig. 8. The K matrix using Gaussian kernel of different σ’s. subspace is given randomly. In
each panel, the top image shows the K matrix and the bottom plot shows the corresponding
performance function with respect to t. (a) A Gaussian kernel with σ that is too small. (b) A
Gaussian kernel with a proper σ. (c) A Gaussian kernel with σ that is too large.

performance is affected by the choice of kernel function parameters. Note that in the
proposed formulation one can treat the kernel function parameters in the search space
and one can perform optimization in the joint space to obtain optimal subspace and
kernel function parameters. This needs to be investigated further.

The geometric optimization techniques developed in this paper were applied to a
performance function derived from the nearest-neighbor classifier, but they are adapt-
able to performance functions based on other criteria. For example, if the choice of
bases is relevant in addition to the choice of subspaces, the solution space becomes
a Stiefel manifold; one such criterion is to impose both sparseness and recognition
performance [11]. The formulation given here can be used directly to extend the cor-
responding algorithms and techniques to the kernel space. Thus, the methodology de-
veloped yields a general framework and efficient algorithms for learning optimal low-
dimensional representations in the presence of nonlinearity.
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