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Abstract

Registration of 3D surfaces is a critical step for shape
analysis. Recent studies show that spectral representa-
tions based on intrinsic pairwise geodesic distances be-
tween points on surfaces are effective for registration and
alignment due to their invariance under rigid transforma-
tions and articulations. Kernel functions are often applied
to the pairwise geodesic distances to make the registra-
tion process based on spectral embedding robust to elas-
tic deformations. The Gaussian kernel is most commonly
used, but the effect of the choice of the kernel function has
not been studied in the previous works. In this paper, we
compare the results obtained with several different choices
and show empirically that significant improvements can be
achieved in shape registration with appropriate choices.

1. Introduction

Registration of surfaces, that is, establishing meaning-
ful correspondences between their points, is a fundamental
problem in shape analysis [6, 8, 14], texture mapping [10],
and cross parametrization [9]. Since surfaces are often rep-
resented by triangular meshes, a registration is frequently
described by correspondences between vertices of meshes.
As meshes representing similar shapes can differ signifi-
cantly due to deformations (see Fig. 4), sampling and po-
sitioning in space, one seeks representations that capture
the essential geometry of the shapes, are invariant to rigid
transformations and articulations, and are robust to elastic
deformations.

Several studies show that spectral representations based
on pairwise geodesic distances are effective for shape regis-
tration [13, 6, 8]. These intrinsic distances are clearly invari-
ant to rigid transformations and articulations [7]. In order
to make the spectral representation more robust, a kernel
function is typically applied to the pairwise distances [8].
While the choice of kernel function clearly affects the rep-

resentation, this issue has not been investigated in previous
studies. In this paper, we design different kernel functions
and study their effect on registration. We show that ker-
nels that stretch small distances and compress the relatively
large ones are particularly attractive. We demonstrate em-
pirically that appropriate choices lead to registration results
that are significantly more accurate than those obtained with
the Gaussian kernel, which is the most common choice.

The paper is organized as follows. In Section 2, we give
an overview of shape registration based on spectral repre-
sentations. Kernel functions are discussed in Section 3 and
experimental results with three data sets are reported in Sec-
tion 4. Section 5 concludes the paper with a summary and
some discussion.

2. Spectral Representation and Registration

The shape registration problem is often presented as
follows: given two 3D shapes M1 and M2 as triangu-
lar meshes, construct a continuous mapping between the
meshes that match the corresponding geometric features in
the given shapes. Here, we assume that M1 and M2 are
related by some unknown deformation and that a meaning-
ful correspondence exists. For example, given two horses,
we would like to produce a mapping such that the physical
features (such as legs, head and so on) in M1 map to the
corresponding features in M2. Here, we consider a slightly
simpler variant, known as the point-correspondence prob-
lem: the goal is to compute a mapping from the vertex set
V1 of M1 to the vertex set V2 of M2. For i = 1, 2, we
let ni = |Vi|. Without loss of generality, we assume that
n1 ≤ n2.

The point-correspondence problem has been studied for
point clouds in Euclidean space, e.g., [2, 6, 1] with the it-
erative closest point algorithm (ICP) [2] and several of its
variants. In a typical implementation of ICP, an initial cor-
respondence is computed by mapping each point on the first
shape to the closest point on the second. The second shape
is then warped to best align it with the first with respect
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to the estimated correspondences. This process is iterated
until some matching criterion is satisfied. If points that are
expected to correspond are initially close enough, ICP often
performs well. Otherwise, the process may fail to converge
to a meaningful correspondence (see [8] for an example).
One of the ways to improve the performance of ICP is to
replace the original point clouds with representations that
retain geometric information that is meaningful for registra-
tion and are invariant to rigid transformations and articula-
tions. Given a surface, the geodesic distance (i.e., the length
of the shortest path on the surface) between two points has
the desired invariance properties [7]. This observation leads
to shape registration methods that use representations de-
rived from geodesic distances. One of the most commonly
used methods is based on spectral embeddings [13, 8] ob-
tained from all pairwise geodesic distances between vertices
of the mesh, as described next.

Order the vertices of M1 arbitrarily and let P1 be the
symmetric n1×n1 matrix of pairwise geodesic distances for
the vertices of M1. The (i, j)-entry of P1 is the geodesic
distance between the ith and jth vertices. Similarly, con-
struct P2 for M2. The goal is to derive new k-dimensional
Euclidean representations (k small) for M1 and M2 with
corresponding vertices lying relatively close to each other
so that ICP-type algorithms with respect to the Euclidean
distance can be applied effectively for registration. We can
view the jth column of P1 as a new high-dimensional rep-
resentation of the jth vertex of M1 and similarly for M2.
A common approach is to use principal component analy-
sis to reduce the dimension of this representation using the
coordinates of the orthogonal projections onto the eigen-
vectors associated with the k largest eigenvalues. Note that
even under the assumption that all eigenvalues are distinct
(this holds generically), the directions of the principal com-
ponents are inherently ambiguous, as we can change the
sign of the eigenvectors arbitrarily. Thus, there are several
possible choices of spectral representations and the optimal
choice of signs needs to be determined [8]. Also, due to
other deformations – such as local stretching and compres-
sion – that are not accounted for by the model, the princi-
pal axes may not naturally correspond so that further rigid
alignment may be necessary [11]. In this paper, we first use
ICP with rigid transformations to align the surfaces in the
low-dimensional representation obtained for each choice of
signs and select the representation that yields the best align-
ment. Subsequently, the full shape alignment is done in the
chosen spectral representation using ICP with non-linear
warps estimated with thin-plate splines (TPS) [3, 6]. For
computational efficiency, we work at two different resolu-
tions. We first register the surfaces and compute the TPS
transformation at a lower resolution. Then, we apply the es-
timated warp to the original mesh and use ICP again at full
resolution to establish the correspondences.

3. Kernel Spectral Representation

For typical meshes representing well sampled surfaces,
local pairwise geodesic distances are rather small so that
distances to nearby vertices tend to have little effect on
spectral representations. This makes the matching algo-
rithm somewhat insensitive to local geometry. Thus, we
seek to improve the matching accuracy with a representa-
tion more sensitive to small distances. The goal is to stretch
the small distances and relatively compress the large ones,
an objective that can be achieved with appropriately chosen
kernel functions. To produce such kernels, we first normal-
ize the geodesic distances and the distances in the embed-
ding space to make the largest distance unitary. To attain the
desired relative stretching and compression in the normal-
ized representation, we first design first derivatives that gen-
erate the targeted effects and then integrate them to obtain
suitable kernel functions. Fig. 1 shows several examples.
To illustrate the effect of such kernels, we plot the distri-
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Figure 1. Kernel functions with their first
derivatives shown on the 2nd row.

bution of geodesic distances in the original mesh versus the
corresponding Euclidean distances in a 3-dimensional spec-
tral representation for a mesh representing the first horse of
Fig. 4. Fig. 2(a) shows a Shepard diagram [4] for a spec-
tral embedding generated with a Gaussian kernel applied to
the pairwise distances (e.g. [12, 13, 5]). Fig. 2(b) shows

Original distances

E
m

be
dd

ed
 d

is
ta

nc
es

Original distances

E
m

be
dd

ed
 d

is
ta

nc
es

(a) (b)

Figure 2. Shepard diagrams for (a) a Gaus-
sian kernel and (b) the square-root function.

the Shepard diagram for the square-root kernel. Clearly, the



small distances are stretched by this kernel and thus play a
more significant role in the spectral representation.

4. Experimental Results

We used the spectral embedding method with the pro-
posed kernel functions to register shapes in 3 families of
surfaces consisting of 6 horses, 4 octopuses and 3 repre-
sentations of the word “Happy”. In each case, we started
with a single mesh from the AIM@SHAPE Shape Reposi-
tory and “manually” deformed it in different ways with the
graphics software Blender to produce sizable bending and
stretching deformations, as shown in Fig. 4. Thus, ground
truth was available for these data sets (i.e., the underlying
correspondences were known) to evaluate the performance
of the registration algorithm.

In our experiments, we applied several kernel functions
to obtain different spectral representations. Table 1 shows
a comparison of the results for the Gaussian kernel and the
square-root function for a pair of horses at two different res-
olutions: 200 and 1,000 vertices. A match for a vertex is
considered correct with tolerance k if it falls within the k-
ring of the correct vertex; in other words, there is a path
formed by at most k edges joining the point to the correct
match. Thus, tolerance 0 means that the matching is perfect.
As explained above, in all experiments, non-linear warps
were estimated with thin-plate splines at a low resolution.
Consistent with the fact that the square-root is more sensi-
tive to small distances and also compresses larger distances,
the results show a significant improvement in matching ac-
curacy over the Gaussian kernel at low resolution. High
accuracy at a low resolution is very important to improve
the overall computational efficiency of the algorithm in a
multi-resolution approach to registration, as proposed.

Table 1. Comparison of matching accuracy
(%) for the Gaussian and square-root kernels.

Tolerance Gaussian Square root
Low res. Full res. Low res. Full res.

0 82.0 80.8 100.0 99.9
1 82.5 87.3 100.0 99.9
2 94.5 96.7 100.0 100.0
3 99.0 99.4 100.0 100.0
4 99.5 99.8 100.0 100.0
5 100.0 100.0 100.0 100.0

Figure 3 shows the average matching accuracy with tol-
erance zero for 11 pairs of horses with ten different ker-
nel functions in the following order: the Gaussian kernel,
the identity map, three piecewise linear functions with dif-
ferent slopes, f(x) = 2x − x2,
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solid (blue) curve shows the matching accuracy on the low
resolution meshes (with 200 vertices) and the dashed (red)
curve on the high resolution meshes (with 1000 vertices).
The kernel functions that stretch small distances the most
while compressing the larger ones give higher matching ac-
curacy. The square-root function gives the highest average
on the low resolution meshes and the cubic-root function
yields the highest average on the high resolution ones. An
improvement of as much as 9% over the Gaussian kernel
has been observed.
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Figure 3. Average matching accuracy on 11
pairs of horses with ten kernel functions.

Figure 4 shows the results of several experiments with
the square-root kernel. Each shape was registered with the
one on the leftmost position. The alignment of the horses
was calculated as described above, with no-linear warps es-
timated at a lower resolution. The mesh representing the
octopuses and Happy have 386 and 706 vertices, respec-
tively. Since the original meshes already are rather sparse,
all computations were performed with the full meshes.

5. Discussion and Conclusion

Due to the invariance of spectral representations to rigid
transformations and articulations, shape registration based
on spectral methods using intrinsic geodesic distances on
surfaces is robust and can achieve high accuracy. In this
paper, we showed that the choice of kernel functions for
spectral embedding has a significant effect on the match-
ing accuracy. We showed experimentally that an appro-
priate choice of kernel function can lead to significant im-
provements over the most commonly used Gaussian ker-
nel. While the proposed kernels noticeably improve per-
formance, they may not be optimal. Thus, techniques to
optimize the choices as well as variants of the registration
method are being further studied.

The shape matching method used in this paper does not
impose continuity or smoothness on the mapping induced
on the underlying triangular meshes. One way of enforcing
some degree of smoothness is to add a regularization term to
prevent large jumps from occurring in the vertex correspon-



Figure 4. Examples of automatic shape registration: each shape is matched with the leftmost one.

dences. With this additional element, the proposed method
may lead to an automated procedure to achieve accurate
shape matchings that are better suited to the computational
analysis of shapes of surfaces, as needed in applications to
problems in medical image analysis and computer vision.
These problems are being considered in our ongoing inves-
tigations.
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