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Natasha Leporé2, Franco Leporé4, Madeleine Fortin4, Patrice Voss4, Maryse

Lassonde4, and Paul M. Thompson2

1 Department of Mathematics, Florida State University, Tallahassee, FL 32306
2 Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA 90095
3 Department of Computer Science, Florida State University, Tallahassee, FL 32306

4 Departement de Psychologie, Université de Montréal, Montréal, QC, Canada

Abstract. We develop a model of continuous spherical shapes and use it
to analyze the anatomy of the hippocampus. To account for the geometry
of bends and folds, the model relies on a geodesic metric that is sensitive
to first-order deformations. We construct an atlas of the hippocampus as
a mean shape and develop statistical models to characterize quantitative
and qualitative normal shape variation. We also develop a localization
tool to identify local contrasts in the anatomy of different populations.
The tool is applied to the detection, characterization and visualization
of anatomical differences such as local enlargement and gains in volume
on the right hippocampus of blind subjects.

1 Introduction

The construction of anatomical atlases is of primary interest in computational
anatomy. An atlas provides a reference geometry that can aid in the development
of models of normal anatomical variation and in the detection and characteriza-
tion of differences between populations and abnormal changes associated with
diseases. Structural and functional brain data of an individual are recorded on
a geometry that is specific to the individual, but upon registration with an
atlas, data for a population can be pooled over a common domain for compar-
ison and analysis. Thus, the geometry of an atlas should reflect the anatomical
characteristics shared by the members of a population. This suggests that it be
constructed as a “mean” shape and estimated from samples of a representative
cross-section. From a modeling standpoint, this poses the problems of defining
mean shapes and developing a framework for algorithmic shape representation
and analysis. This brings us to shape spaces.

The first formal treatment of shapes, due to Kendall [1], is based on a land-
mark representation of shapes and on a metric based solely on the coordinates
of the landmark points. Since typical meshes employed in brain mapping are
! This research was supported in part by NSF grant DMS-0713012 and NIH Roadmap

for Medical Research grant U54 RR021813.



rather dense, in neuro-imaging, it is more natural to construct spaces of con-
tinuous shapes and use discrete approximations in computations. Moreover, to
effectively encode differences in bending and folding patterns, we employ a mea-
sure of shape dissimilarity that explicitly accounts for first-order differences with
the use of Sobolev-type metrics. In this setting, we propose a fast algorithm for
the computation of mean shapes, which is a variant of an algorithm of Hucke-
mann and Ziezold, which was developed for the study of planar shapes in classical
landmark theory [2]. This framework allows us to use tangent-space statistics at
the mean shape [3] to develop models of shape variation from samples. Another
important facet of the analysis of biomedical shapes is the need to identify the
regions where the most significant anatomical differences occur, for example, to
characterize the statistically significant group differences. Although shape dis-
tance is a global measure of shape divergence, it is related to the minimum
energy required to deform shapes. As this energy is an integration of local con-
tributions, we can define an energy density function and use it as a localization
tool that lends the desired local-global character to the shape model.

As an application, we construct an atlas of the surface of the right hippocam-
pus based on a control group of 28 subjects. The mean-shape algorithm is used
in conjunction with the direct mapping techniques of [4] to register the various
surfaces and the methods of [5, 6] to obtain parametric representations. We con-
struct a “Gaussian” model using tangent-space principal component analysis,
which allows us to quantify normal anatomical variation and visualize the main
modes of variation. We also generate random samples from the model as sup-
porting evidence of its validity. We employ the localization tool to characterize
and visualize the statistically significant differences between the control group
and a group of 22 blind subjects, as detected by the model. This type of study is
motivated by evidence that blind individuals exhibit above-normal spatial and
auditory abilities (cf. [7]). In consonance with this evidence, our model indicates
local enlargement in specific areas of the hippocampus. Other morphological
studies of the brain with different techniques include [8–11].

2 Spaces of Spherical Shapes

We develop a model of “continuous” spherical shapes in k-dimensional Euclidean
space Rk. The unit sphere S2 in 3D space centered at the origin will be used
as the reference domain. A spherical shape will be represented by a mapping
α : S2 → Rk. If α and β are two such mappings, the parameter p ∈ S2 indexes
a correspondence between the shapes, where we think of (p, α(p)) and (p, β(p))
as corresponding points. Thus, built-in to this representation is the assumption
that shape correspondences have been established.

To define a shape metric that accounts for first-order differences, we look
at the differential of α. If TpS2 is the tangent space (plane) to S2 at p, the
differential of α at p is the linear mapping dαp : TpS2 → Rk such that dαp(v) is
the directional derivative of α along v. If A, B : TpS2 → Rk are linear mappings,
define the inner product 〈A, B〉 = trace (B∗A), where B∗ : Rk → TpS2 is the



adjoint of B. If {e1, e2} is an orthonormal basis of TpS2, the inner product can be
calculated as 〈A, B〉 = A(e1)·B(e1)+A(e2)·B(e2). The quantity ‖A‖ =

√
〈A, A〉

is the Frobenius norm of A. We say that α : S2 → Rk has square-integrable
derivative if dαp is defined for almost every p and the function p &→ ‖dαp‖2 is
integrable over the 2-sphere.

Our construction of a shape space begins with the vector space Hk
1 of all

mappings α : S2 → Rk with square-integrable derivative, which we equip with
a Sobolev-type metric. Since the case k = 1 is technically useful, for k = 1,
we often drop the superscript and write H1 = H1

1 . To control the sensitivity of
the metric to changes in dα due to small variations or noise, or to emphasize a
specific range of frequencies or particular scales, we introduce a bounded linear
operator L : H1 → H1, which can be a smoothing operator or a band-pass filter
among other alternatives. If α = (α1, . . . , αk), we let Lα = (Lα1, . . . , Lαk).
Given weights a, b > 0, with a + b = 1, define the inner product

〈α, β〉k1 = a

∫

S2
α(p) · β(p) dσ(p) + b

∫

S2
〈d(Lα)p, d(Lβ)p〉 dσ(p) , (1)

where dσ denotes the area element of S2. The associated norm is denoted ‖ · ‖k
1 .

For k = 1, we simplify the notation to 〈 , 〉1 and ‖ · ‖1.
In analogy with the landmark theory of shapes, to obtain a representa-

tion that is invariant under translations and scale, we place the centroid of
α at 0 and normalize the norm to be unitary. In other words, we require that∫

S2 α(p) dσ(p) = 0 and ‖α‖k
1 = 1. Mappings α satisfying these conditions will

be referred to as pre-shapes. The first condition restricts α to a linear subspace
of Hk

1 and the second places α on the unit sphere S of that subspace, which
we call the pre-shape space of spherical surfaces. The geodesic distance between
the pre-shapes α, β ∈ S is the length of the shortest arc of great circle in S
connecting α and β and is given by h(α, β) = arccos 〈α, β〉k1 .

Next, we look at the action of an orthogonal transformation U ∈ O(k) on pre-
shapes, which is given by α &→ U ◦α, where ◦ denotes composition of mappings.
The orbit Oα = {U ◦ α : U ∈ O(k)} consists of all pre-shapes that differ from α
by a rigid motion and therefore have the same shape as α. Thus, the shape space
Σ is defined as the quotient space of S under the action of the orthogonal group;
that is, Σ = S/O(k). If sα, sβ ∈ Σ are the shapes of α and β, the shape distance is
defined as d(sα, sβ) = minU,V ∈O(k) h(V ◦α,U◦β). As orthogonal maps act on S as
distance-preserving transformations, one may fix the pre-shape α and calculate
the distance as d(sα, sβ) = min

U∈O(k)
h(α,U ◦ β) = min

U∈O(k)
arccos 〈α,U ◦ β〉k1 . The

classical Procrustes alignment of configurations of landmarks can be extended
to this setting to find the optimal orthogonal transformation Û that realizes
the shape distance. Recall that if the k×n matrices P,Q represent two centered
configurations of n landmarks in Rk, the optimal rotational alignment is obtained
from a singular value decomposition (SVD) of PQT , whose (i, j)-entry is the
inner product of the ith row of P and the jth row of Q [1]. This interpretation
extends to pre-shapes in Hk

1 . If we write the components of a pre-shape as
α = (α1, . . . , αk), a natural analogue of PQT is the k×k matrix A, whose (i, j)-



entry is aij = 〈αi, βj〉1. One can show that if A = V1ΣV T
2 is an SVD of A, then

Û = V1V T
2 and the shape distance can be calculated as d(sα, sβ) = ω, where

ω = arccos(tr Σ). Letting β̂ = Û ◦ β, if β̂ )= α, then the geodesic deformation is
realized by the the path in the pre-shape sphere given by

Λ(t) = cos(ωt) α + sin(ωt) A(α, β) , (2)

where 0 ! t ! 1 and A(α, β) = (β̂ − (trΣ) α)/‖β̂ − (trΣ)α‖k
1 . If β̂ = α, then Λ

is just a constant path. The path may be expressed in terms of the exponential
map of the pre-shape sphere at α as Λ(t) = expα(ωtA(α, β)). In particular,
β̂ = expα(ωA(α, β)).

3 The Discrete Model

We just need to describe how the parametric shape representation α and the
inner product 〈α, β〉k1 are discretized since the calculation of shape geodesics and
shape distances are expressed in terms of these elements. Let M be a triangle
mesh in R3 with the topological type of the 2-sphere. A discrete spherical shape
will be represented by a map α : M → Rk, which is linear on each triangle, so that
α is completely determined by its values on the vertex set V = {v1, . . . , vn} of M .
Hence, α may be viewed as a k×n matrix, whose jth column is α(vj) ∈ Rk. Since
the “smoothing” operator L is applied to each component of α independently,
in the discrete formulation, it becomes a linear transformation L : Rn → Rn,
which acts on each row of the matrix α. We adopt the classical discrete exterior
derivative to represent the derivative of α, which is defined as follows. Fix an
orientation for each edge of M and let E = {e1, . . . , em} be the oriented edge
set. Then, dα : E → Rk is defined by dα(ej) = α(e+

j )− α(e−j ), where e+
j and e−j

are the terminal and initial vertices of ej , respectively. We can fix an orientation
for each edge because reversal of orientation of ej simply changes the sign of
dα(ej). Hence, the exterior derivative of α can be viewed as a k × m matrix,
whose jth column is dα(ej) ∈ Rk.

For each vertex vj , let Aj be the area of of the star neighborhood of vj in
the first barycentric subdivision of M . Similarly, for each edge ej , we let Bj be
the sum of the areas of the two triangles formed by ej and the barycenter of the
triangles in M having ej as an edge. The discrete inner product is given by

〈α, β〉k1 = a
n∑

j=1

(α(vj) · β(vj))Aj + b
m∑

j=1

(d(Lα)(ej) · d(Lβ)(ej))Bj . (3)

4 Mean Shapes and Atlases

Let s1, . . . , sr be spherical shapes represented by the pre-shapes α1, . . . , αr : S2 →
Rk. Given a shape s, let α be a pre-shape that represents s and let Uα

i ∈ O(k) be
the orthogonal transformation that optimally aligns αi with α. A Fréchet mean
shape of the family is a shape that minimizes the total scatter function

V (s) =
1
2

r∑

i=1

d2(s, si) =
1
2

r∑

i=1

arccos2
〈
α,Uα

i αi
〉k

1
. (4)



This last expression of V shows that we can lift V to a function defined for any
α ∈ Hk

1 since Uα
i can be defined for any α. The estimation of mean shapes can

be treated with gradient descent methods, but we take a different approach. We
extend to the present context an algorithm of Huckemann and Ziezold for the
calculation of mean shapes in the classical landmark theory of planar shapes [2].
First, lift V to a function on Hk

1 , as indicated above. The unconstrained gradient
is given by

∇V (α) = −
r∑

i=1

arccos ζi(α)√
1− ζ2

i (α)
Uα

i αi , (5)

where ζi(α) = 〈α,Uα
i 〉. Since the centering condition is linear, it suffices to

use Lagrange multipliers to constrain α to the unit sphere. Thus, at a pre-
shape α, we require that ∇V (α) = λα, which makes the gradient perpen-
dicular to the pre-shape sphere. Taking the inner product of (5) with α, we
get λ = −

∑r
i=1 ζi(α) arccos ζi(α)/

√
1− ζ2

i (α). At a minimum, we obtain α =
sign(λ)∇V (α)/‖∇V (α)‖k

1 . Thus, we are interested in attracting fixed points of
the mapping T : S → S defined by T (α) = sign(λ)∇V (α)/‖∇V (α)‖k

1 , as they
lead to stable minima of V . The strategy adopted in [2] consists of moving to-
wards the fixed point by an iteration of T , initializing the procedure with a
pre-shape α, say, one of the pre-shapes in the given family. For a threshold value
ε > 0, one calculates T (α), . . . , Tn(α) iterating until ‖Tn(α) − Tn−1(α)||k1 < ε.
The mean is estimated as the shape associated with the pre-shape Tn(α).

We construct an atlas of the right hippocampus with this technique. Triangle
meshes representing the right hippocampal surfaces of 28 controls were extracted
from MR images. One of the surfaces was fixed and parameterized over S2 with
the methods of [5, 6]. The remaining 27 were registered with the fixed shape
using the direct mapping techniques of [4] and an atlas was constructed as the
mean shape of the group. Figure 1 shows 8 of the 28 surfaces in the data set and
the atlas constructed with parameter values a = 0.95 and b = 0.05. Here, the
operator L is the identity. The choice of a, b is discussed below.

Fig. 1. Eight samples from a control group of 28 subjects and an atlas constructed as
the mean shape with a = 0.95 and b = 0.05.

5 A Model of Normal Shape Variation

To model normal variation based on the control group of 28 subjects, we em-
ploy tangent-space principal component analysis (TPCA) [3] on the pre-shape
sphere. Among other things, such construction reveals the main modes of shape
variation. Let αi, 1 ! i ! 28 be pre-shapes representing the control group and
let α represent the mean shape. We assume that each αi has been optimally



aligned with α. For each i, let Vi ∈ TαS be the tangent vector to S at the mean
that gets mapped to αi under the exponential map. The vectors Vi give a good
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Fig. 2. Histograms of the distributions along the first six principal components.

linear approximation to the data as the samples are fairly concentrated about
the mean. Now, we perform PCA on the tangent space TαS with respect to the
inner product (3). To recast the results in terms of shapes, we simply exponenti-
ate tangent vectors at α back into pre-shapes. The choice a = 0.95 and b = 0.05
for the development of a Gaussian model was based on experimentation with
this specific shape data. The decay of the eigenvalues of the covariance matrix
and the approximate Gaussianity of the 5-bin histograms of the distributions
along the first six principal components, shown in Figure 2, support this choice.
To visualize the regions where the most significant shape deformations occur,
color plots of the intensity of the deformation fields associated with the first two
principal directions are shown on the atlas in Figures 3(a) and 3(b). Figures 4(a)
and 4(b) show the shape variations along the first two principal directions.

(a) (b)

Fig. 3. Intensity of the deformation fields associated with the first two principal direc-
tions shown on the atlas.

A Gaussian model supported on the subspace corresponding to the six dom-
inant principal components was constructed on the tangent space at the mean.
The magnitude of the 7th eigenvalue falls below 10% of the largest. In pattern
theory, the generation of random samples from a statistical model is proposed as
an effective way of testing and validating a model. The idea is that most samples
should resemble a normal hippocampus and exhibit variations similar to those
observed in the control group. Figure 5 shows six random samples generated
from the 6-dimensional Gaussian model.

6 Local Shape Divergence in Early Blindness
We employ the atlas, the shape metric and the registration techniques of [4]
to characterize the statistically significant shape differences observed in early
blindness, as modeled on segmented hippocampi of a group of 22 blind subjects.
These differences tend to be localized to specific regions, while the shape metric
is a global quantifier of dissimilarities. Thus, a direct use of geodesic distances
is ineffective. The key observation is that, although the geodesic distance has a



−2.5σ1 −2σ1 −1.5σ1 −σ1 −0.5σ1 atlas

(a)
+0.5σ1 +σ1 +1.5σ1 +2σ1 +2.5σ1

−2.5σ2 −2σ2 −1.5σ2 −σ2 −0.5σ2 atlas

(b)
+0.5σ2 +σ2 +1.5σ2 +2σ2 +2.5σ2

Fig. 4. Hippocampal shape variation along the first two principal directions.

Fig. 5. Random samples from a tangent-space Gaussian model based on the first six
principal components.

global nature, it is directly related to the minimum energy needed to deform a
shape into another. This energy is measured assembling pointwise contributions
associated with a geodesic deformation field and this allows us to define an energy
density function that quantifies the local contributions. A (parametric) geodesic
Λ(t), 0 ! t ! 1, of length ω is traversed with constant speed ‖∂tΛ(t)‖k

1 = ω. The
energy of the geodesic Λ, in turn, is given by

∫ 1

0
(‖∂tΛ(t)‖k

1)2 dt =
∫

S2

∫ 1

0

(
a‖∂tΛ(p, t)‖2 + b‖d(∂tΛ(t))p‖2

)
dt dσ(p) = ω2 ,

(6)
which shows that the total energy is an integration over S2 of “pointwise ener-
gies”. Here, to simplify notation, we assumed that the operator L is the identity.
This motivates the definition of the energy density function as

ρ(p) =
1
ω2

∫ 1

0

(
a‖∂tΛ(p, t)‖2 + b‖d(∂tΛ(t))p‖2

)
dt . (7)

Notice that ρ has been normalized to satisfy
∫

S2 ρ(p) dσ(p) = 1.
To characterize local shape differences between hippocampal surfaces in the

blind and control groups, we aligned all surfaces with the atlas, as indicated in
Figure 6(a). We calculated the energy density functions for the geodesics from
the atlas to each of the 28 control shapes and the 22 blind subjects. In the



discrete representation, ρ becomes a function on the vertex set of the mesh M
representing S2. Thus, for each vertex, there is a total of 50 values of energy
density. A t-test was performed to detect the areas where the statistically sig-
nificant differences occur. Figure 6(b) highlights the regions where the p-values
are < 0.05. Consistent with the above-normal spatial and auditory abilities ob-
served in blind individuals [7], a closer inspection of the geodesic deformation
fields reveals that in some of the areas highlighted in Figure 6(b), for most blind
subjects, the geodesic fields point outward on the atlas suggesting enlargement
and local gains in volume.

control atlas blind

(a) (b)

Fig. 6. (a) Examples of registration with the atlas; (b) Two views of the hippocampal
atlas indicating the regions where the difference in local anatomy between the control
and the blind groups is statistically significant.
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