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Abstract

This paper presents an efficient algorithm to achieve ac-
curate subpixel matchings for calculating correspondences
between stereo images based on a path-based matching al-
gorithm. Compared to point-by-point stereo matching algo-
rithms, path-based algorithms resolve local ambiguities by
maximizing the cross correlation (or other measurements)
along a path, which can be implemented efficiently using
dynamic programming. An effect of the global matching
criterion is that the cross correlation at all pixels can con-
tribute to the criterion; since cross correlation can change
significantly even with subpixel changes, to achieve sub-
pixel accuracy, it is no longer sufficient to first find the
path that maximizes the criterion and then refine to subpixel
accuracy. In this paper, by writing bilinear interpolation
using integral images, we show that cross correlations at
all subpixel locations can be computed efficiently and thus
lead to a subpixel accuracy path based matching algorithm.
Our results show the feasibility of the method and illustrate
the significant improvements over the original path-based
matching method.

1. Introduction

The use of stereo images is crucial in computer vision ap-
plications where depth perception is required [2]. Stereo vi-
sion algorithms rely on the ability to perform accurate point
correspondence between the image pair in order for them to
be useful [3]. Point correspondence is defined as the prob-
lem of finding the accurate location of the same point in
a pair of stereo images. Correspondence methods can be
divided into region-based ones which rely on matching lo-
cal windows, and feature-based ones which rely on match-
ing more distinctive features. For dense matching, region-
based methods are widely used. A common method is to
match the local windows using normalized cross correlation
and other matching criteria. To achieve subpixel accuracy,
a polynomial, typically a second order one, is used to fit

matching scores in a local neighborhood [1]. One of the in-
trinsic limitations of point-based matching methods is that it
can not resolve local ambiguities effectively. For example,
due to low texture variations and other factors, there are of-
ten more than one matching candidate in a local region. In
addition, local deformations may cause the correct match-
ing one not to be the local maximum, causing many of the
algorithms that use local maxima to fail.

To overcome the local ambiguities and achieve more ro-
bust matching, a more global matching criterion can be
used. In [6], Sun poses the matching problem as an opti-
mization one of the total cross correlation scores over a sur-
face through a 3D cross correlation volume (height, width,
and the disparity range of a region) and the matching is
solved efficiently using a two-stage dynamic programming
algorithm, where cross correlation scores are maximized
along paths in the 3D cross correlation volume. Note that
by using a global matching criterion, accurate cross correla-
tions are needed at all locations since they affect the optimal
path estimation and thus the matching. As cross correlations
can change significantly even at subpixel level, in order to
achieve optimal matching, subpixel accuracy cross correla-
tions need to be calculated. However, in [6], subpixel accu-
racy is obtained only in the post processing stage by fitting
a quadratic function in a neighborhood. In this paper, we
show that subpixel accuracy cross correlations can be com-
puted efficiently using integral images and thus improve the
accuracy of the path-based matching significantly, which is
supported by experimental results.

The rest of the paper is organized as follows. In Sec-
tion 2, we summarize the path-based stereo matching algo-
rithm [6] and in Section 3 we show how the subpixel accu-
racy can be incorporated efficiently using integral images;
note that while Sun [6] also performs subpixel matching, it
is done after the path matching. As shown by our results in
Section 4, our algorithm improves the performance signif-
icantly by having more accurate path matching. Section 5
concludes the paper.
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2. Path-based Stereo Matching

Our work is inspired by an algorithm presented by
Sun [6]. In [6], Sun presents a dynamic programming al-
gorithm which uses rectangular subregioning and maximum
surface techniques in order to perform path-based matching.
The images are first broken down into subregions in order
to separate areas with similar disparity ranges. For each
subregion, a range of different disparity values is taken into
consideration (with the ultimate goal being to determine the
optimal disparity value at each location). Using normalized
cross correlation (NCC), a 3D correlation coefficient vol-
ume of size W ×H ×D is built for each subregion, where
W and H are the subregion dimensions and D is the size of
the disparity range.

Given a left image f(x, y), a right image g(x, y), and a
central pixel location in the left image (x0, y0), we would
like to compute the normalized cross correlation using a
windows size of (2M + 1)× (2N + 1) for a displacement
(u0, v0) to be used with the path based matching, proposed
by Sun [6]. Here the first dimension (e.g., x, u, x0, M )
refers to the column of the image, and the second dimen-
sion(e.g., y, v, y0, N ) refers to the row of the image.

To be specific, let f̄(x, y) and ḡ(x, y) be the mean of the
left and right windows respectively. Similarly, let ¯̄f(x, y)
and ¯̄g(x, y) be the variance of the left and right windows.
We can define the normalized cross correlation (NCC) be-
tween the left image window at (x0, y0) and the right image
window at (x0 + u, y0 + v) as NCC(x0, y0, u, v) =

∑
i,j f̂(x0 + i, y0 + j)g(x0 + u + i, y0 + v + j)

C

√
¯̄f(x0, y0)¯̄g(x0 + u, y0 + v)

, (1)

where f̂(x0+i, y0+j) = f(x0+i, y0+j)−f̄(x0, y0), C =
(2×M+1)(2×N+1), and the summation for i is from−M
to M and j from −N to N (also in subsequent equations).
As pointed out in [7, 6], for a fixed u and v, the summations
can be done efficiently using integral images as well as the
mean and variance of a local window. For the variance, note
that ¯̄f(x, y) = (1/C)(

∑
i,j f2(x0+i, y0+j))−(f̄(x, y))2,

and thus it can also be done efficiently using an integral
image with pixel values squared.

Given this 3D volume of correlation coefficients, Sun
employs a two stage dynamic programming algorithm to
find the best surface across the volume and obtain a smooth
set of disparity values. The first stage of the dynamic pro-
gramming algorithm is to separate the volume vertically and
calculate an intermediate 3D volume in the vertical direc-
tion for each vertical section. Given the original 3D volume
of NCC, the intermediate 3D volume Y is calculated ac-

cording to the equation

Y (x, y, d) = NCC(x, y, x, y+d)+ max
t:|t|≤p

Y (x−1, y, d+t)

(2)
where p determines the number of local values to be con-
sidered (eg., if p = 1, three locations are considered). Note
that the stereo pair is assumed to be rectified, i.e., the cor-
responding row in the left image matches with that of the
right image and thus the disparity is specified by d. The
3D volume of Y then contains the maximum summation of
correlation coefficients in the vertical direction. The sec-
ond stage of the algorithm works in the horizontal direction
calculating the path from the left side to the right side of
the volume that maximizes the summation of Y ’s along the
path. The optimal path corresponds to the disparity values
for the given row in the disparity image. The second stage
can be implemented using a shortest path algorithm similar
to the first stage.

The method leads to an efficient path-based matching al-
gorithm. Subpixel accuracy matching is performed as a post
processing step by fitting a quadratic function over pixels in
a neighborhood. The disparity is solved by finding the max-
imum of the quadratic function. Experiments demonstrate
the improvements of the algorithm over other existing ones.
However, this subpixel accuracy matching is not optimal
as the obtained paths may not be optimal if we consider
subpixel cross correlations. In addition, quadratic functions
used are not sufficient for bilinear interpolation.

3. Stereo Matching with Subpixel Accuracy

Our goal is to achieve a matching accuracy to the sub-
pixel level between the left and right images. As in [6], we
assume that the input stereo pair is rectified, i.e., the match-
ing row is within one row from the corresponding row. As
in [6], we also adopt normalized cross correlation as given
in (1). For digital images, these values are only defined at
integer locations. In order to allow subpixel accuracy, we
use bilinear interpolation to obtain values at subpixel loca-
tions. Since images are discrete in nature, we define the
bilinear interpolation for 0 ≤ s, t ≤ 1 in the right image
only. According to the bilinear interpolation, we can ex-
press g(x + s, y + t) as

= (g(x, y)(1− s) + g(x + 1, y)s) (1− t)
+ (g(x, y + 1)(1− s) + g(x + 1, y + 1)s) t

= g(x, y)(1− s)(1− t) + g(x + 1, y)s(1− t)
+ g(x, y + 1)(1− s)t + g(x + 1, y + 1)st

= [g(x, y)− g(x + 1, y)− g(x, y + 1)
+ g(x + 1, y + 1)]st
+ [−g(x, y) + g(x + 1, y)] s
+ [−g(x, y) + g(x, y + 1)] t + g(x, y).



(a)

(b)
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Figure 1. Disparity map for stereo pairs (left
images) using the method in [6] (middle im-
ages) and the proposed method (right im-
ages). (a) A baseball pair. (b) A park meter
scene. (c) An outdoor ground.

Since NCC(x0, y0, u, v) can change significantly, even
for fractional changes in u and v, in order to make the path
matching algorithm effective at the subpixel level, we define
N̂CC(x0, y0, u, v) as

= arg max−.5≤s≤.5, −.5≤t≤.5 NCC(x0, y0, u + s, v + t)
= maxk=1,···,4

{
N̂CCk(x0, y0, u, v)

}
,

assuming that u and v will be integer values, and

N̂CC1(x0, y0, u, v) =
arg max−.5≤s≤0, −.5≤t≤0 NCC(x0, y0, u + s, v + t),
N̂CC2(x0, y0, u, v) =
arg max0≤s≤.5, −.5≤t≤0 NCC(x0, y0, u + s, v + t),
N̂CC3(x0, y0, u, v) =
arg max−.5≤s≤0, 0≤t≤.5 NCC(x0, y0, u + s, v + t),
N̂CC4(x0, y0, u, v) =
arg max0.0≤s≤.5, 0≤t≤.5 NCC(x0, y0, u + s, v + t).

Here NCC(x0, y0, u + s, v + t) are defined using bilin-
ear interpolation. The central problem is how to compute
N̂CCk(x0, y0, u, v), k = 1, · · · , 4 efficiently; clearly a
brute force implementation will be computationally expen-
sive. Here we give details for N̂CC4(x0, y0, u, v) and the
other three cases can be computed similarly.

As given in (1), to compute N̂CC4(x0, y0, u, v), we
need to compute the summation of images with pixel values
squared. Let x1 = x0 + u, y1 = y0 + v, x2 = x0 + u + 1
and y2 = y0 + v + 1. Using bilinear interpolation, we have∑

i,j g(x1 + i + s, y1 + j + t)2

=
∑

i,j [g(x1 + i, y1 + j)(1− s)(1− t)
+g(x2 + i, y1 + j)s(1− t)
+g(x1 + i, y2 + j)(1− s)t
+g(x2 + i, y2 + j)st]2

= (1− s)2(1− t)2
[∑

i,j g(x1 + i, y1 + j)2
]

+s2(1− t)2
[∑

i,j g(x2 + i, y1 + j)2
]

+(1− s)2t2
[∑

i,j g(x1 + i, y2 + j)2
]

+s2t2
[∑

i,j g(x2 + i, y2 + j)2
]

+C1

[∑
i,j g(x1 + i, y1 + j)g(x2 + i, y1 + j)

]
+C2

[∑
i,j g(x1 + i, y1 + j)g(x1 + i, y2 + j)

]
+C3

[∑
i,j g(x1 + i, y1 + j)g(x2 + i, y2 + j)

]
+C4

[∑
i,j g(x2 + i, y1 + j)g(x1 + i, y2 + j)

]
+C5

[∑
i,j g(x2 + i, y1 + j)g(x2 + i, y2 + j)

]
+C6

[∑
i,j g(x1 + i, y2 + j)g(x2 + i, y2 + j)

]
,

(3)
where C1 = 2(1−s)s(1−t)2, C2 = 2(1−s)2(1−t)t, C3 =
2(1−s)s(1−t)t, C4 = 2(1−s)s(1−t)t, C5 = 2s2(1−t)t,
and C6 = 2(1 − s)st2. Note that the

∑
i,j terms can be

computed using integral images. Four additional integral
images are needed: g(x, y)g(x + 1, y), g(x, y)g(x, y + 1),
g(x, y)g(x + 1, y + 1), and g(x, y + 1)g(x + 1, y + 1).

For ḡ(x1 + s, y1 + t), we have

ḡ(x1 + s, y1 + t)
= (1− s)(1− t)ḡ(x1, y1) + s(1− t)ḡ(x1 + 1, y1)

+ (1− s)tḡ(x1, y1 + 1) + stḡ(x1 + 1, y1 + 1).
(4)

By combining (3) and (4), we can therefore compute the
normalized cross correlation with subpixel accuracy effi-
ciently through integral images. As all the integral images
only need to be computed once, they will not increase the
computational complexity in a significant way.

4. Experimental Results

Here we provide several examples to illustrate the results
obtained by our algorithm. Since our method is an exten-
sion of the work by Sun [6], we provide direct comparisons
between his method and ours. The results shown here show
the feasibility of our method, as well as illustrate the im-
provements over the original algorithm.

The first example illustrated in Figure 1(a) presents re-
sults using stereo images obtained from the test data in [5].



The left image shows one of the stereo images, a baseball
against a noisy background. The second image shows the
disparity map obtained by Sun’s algorithm. Notice that the
algorithm obtains a good estimate of the disparity. The
rightmost image is the disparity image obtained with our al-
gorithm, incorporating our subpixel measurements. Notice
that the boundaries of the ball are sharper and better defined
than the ones provided by Sun’s algorithm. The second ex-
ample is illustrated in Figure 1(b). The input images for
this test case were images also obtained from the test data
in [5]. The disparity image generated by Sun’s algorithm
presents an accurate estimate of the scene’s depth, but con-
tains some noise, particularly in areas of low texture. Our
disparity image, however, obtained sharper boundaries and
smoother disparity areas. The third example illustrated in
Figure 1(c) presents an image of the ground taken from a
45o angle such that the top region of the image represents
the part of the ground that is furthest from the stereo camera.
As before, Sun’s algorithm provides an accurate estimate
of the depth in the scene. Our results, however, provide a
smoother disparity image with correct depth estimation.

(a)

(b)

Figure 2. Two additional disparity map exam-
ples. See Fig. 1 for figure caption. (a) Part of
a car and ground. (b) A stereogram pair.

The fourth example illustrated in Figure 2(a) combines
the image of the third experiment (illustrated in Figure 1(c))
with the rearview mirror of a car in the foreground. As in the
previous cases, Sun’s algorithm does a good job of recover-
ing scene depth. Our disparity image, however, is able to re-
cover better boundaries between the foreground object (car)
and the background (ground), as well as provide a smoother
disparity map overall. It also appears to perform slightly
better in recovering the depth of the ground. The final ex-
ample presented is illustrated in Figure 2(b). The input im-
ages were a stereogram pair obtained from Sun [6]. The
results show that although Sun’s method provides a good

disparity map, our results show more accurate boundaries
around the edges of the squares, as well as overall smoother
measurements inside each square.

5. Conclusion

We have presented an efficient subpixel accuracy path-
based matching algorithm. Our algorithm provides a nor-
malized cross correlation measurement based on bilinear in-
terpolation between pixel locations in order to provide cor-
relation coefficients accurate to the subpixel level. We ap-
ply the subpixel measurements to the cross correlation step,
since these values greatly improve the paths obtained by
path-based matching [6]. Our experiments show the feasi-
bility of our method. Compared to the algorithm in [6], our
subpixel measurements provide smoother and more accu-
rate disparity maps, with sharper and more accurate bound-
aries. The extra calculations cost roughly twice the amount
of work than that of the original algorithm [6], but the time
complexity remains linear. As explained in [6], the algo-
rithm’s time complexity is O(WHD), where W, H are the
image dimensions, and D describes the disparity range (es-
sentially, W ×H ×D is the size of the 3D correlation co-
efficient volume). Because of the rectangular subregioning
process, the disparity range for each subregion can be re-
duced, therefore reducing the time complexity of the algo-
rithm to O(Wi Hi Di), where Wi ≤ W , and so on. We
are currently working on improving the performance of the
method by modifying it to work with larger disparity ranges,
as done in [4].
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