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ABSTRACT
We introduce a class of spectral shape signatures constructed

from symmetric functions on the eigenfunctions of the Lapla-

cian exponentially weighted by their eigenvalues. Such a con-

struction is motivated by problems that arise in the use of the

eigenfunctions for shape comparison, such as indeterminacies

in the choice of signs and the particular ordering in which

the eigenfunctions are presented. The spectral invariants are

applied to the analysis of Alzheimer’s disease (AD) data col-

lected by the Alzheimer’s Disease Neuroimaging Initiative, in

particular, to the problem of determining whether the signa-

tures can aid in early detection of AD through morphology

and imaging.

Index Terms— Point-cloud Laplacian, spectral signa-

tures, shape analysis, Alzheimer’s disease, ADNI.

1. INTRODUCTION

We introduce a sequence of spectral shape signatures derived

from the point-cloud Laplacian and investigate their ability to

aid in early detection of Alzheimer’s disease (AD) through

brain imaging. These signatures generalize the heat-kernel

signature of [1] to an over-determined family, a characteristic

that is desirable in data representation and analysis because

it often enhances our ability to learn features that are able to

categorize shapes effectively.

The simplest spectral invariants of a shape are the eigen-

values of the Laplacian, also known as shape-DNA [2].

Richer information about the intrinsic geometry of a shape is

encoded in the eigenfunctions of the Laplacian, which have

been exploited, for example, for shape registration [3, 4] and

clustering [5]. The use of eigenvalues and eigenfunctions is

appealing because they are robust to pose and articulation,

and they lead to a multi-scale representation that progres-

sively captures finer morphological characteristics and thus

can also be designed to be very robust to noise.

Although an eigenvalue of the Laplacian can have mul-

tiplicity larger than one, this is rare in shapes representing

real data because high multiplicities are usually associated
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with perfect symmetries. Thus, it is common to assume that

the eigenvalues are all distinct and the associated normalized

eigenfunctions are well-defined up to sign. It is also common

to arrange the eigenvalues 0 = λ0 < λ1 < λ2 < · · · in as-

cending order, and to order the eigenfunctions similarly. The

lower modes are of special interest because they capture the

large-scale properties of a shape. In shape comparison it is

tempting to assume that the ith eigenfunctions naturally cor-

respond. However, counterexamples are known (cf. [3, 4]).

Thus, the choice of signs and the correspondence problem

suggest that care should be exercised in their use as shape

signatures, as already observed by other authors.

To undermine these difficulties, we propose a class of

spectral invariants based on symmetric functions of the first

k (nontrivial) eigenfunctions of the Laplacian. More specif-

ically, each spectral invariant is a symmetric function of k
terms, where each term is a squared eigenfunction weighted

by an exponential function of its associated eigenvalue, as

suggested by the eigenfunction expansion of the Riemannian

heat kernel. We thereby avoid the assumption that the first

k eigenfunctions correspond as ordered by the magnitudes of

the eigenvalues, and, furthermore, we avoid the sign indeter-

minacy of each eigenfunction.

The spectral invariants are applied to the problem of early

detection of Alzheimer’s disease through brain morphology,

that is, with the aid of morphological characteristics that may

indicate onset of the disorder. Klein et al. investigated early

stage detection of dementia, considering the morphology of

the whole brain [6]. In contrast, we look at the hippocam-

pus, putamen, and thalamus, substructures whose volumes

have been noted to change due to neurodegeneration asso-

ciated with AD [7]. We use magnetic resonance (MR) data

collected by the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) [8, 9]. The aforementioned substructures are

segmented with the software FreeSurfer [10, 11] from single

baseline MR scans of 102 ADNI subjects: 51 normal con-

trols and 51 classified as having mild cognitive impairment

(MCI) at the time of the scan and later classified as an AD.

MCI is viewed as a precursor to dementia as individuals in

this group exhibit an increased risk of conversion. We reit-

erate that only the baseline scans are used in this study. A

statistical summary of the spectral signatures yields a feature
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vector for each subcortical structure of each subject. Then a

linear support vector machine (SVM) is trained on these fea-

ture vectors. We use the leave-one-out method to evaluate the

classification accuracy.

In Section 2 we briefly review the Laplacian and describe

the proposed spectral signatures given by symmetric poly-

nomials on the eigenfunctions of the Laplacian weighted by

functions of the eigenvalues. In Section 3 we discuss exper-

imental results with various subcortical structures of ADNI

subjects. We conclude with a summary and some discussion.

2. SPECTRAL SHAPE SIGNATURES

2.1. Point-Cloud Laplacian

Given a 3D point cloud P = {xi ∈ R
3 | 1 � i � n}, there

are many ways of constructing a graph having P as vertex set

and with adjacencies reflecting geometric affinities between

them (cf. [12]). We use the ε-neighborhood graph in which

two vertices are connected by an edge if the distance between

them is less than ε. We employ the measures of affinity

wij =

{
exp

(
−‖xi−xj‖2

2σ2

)
, if ‖xi − xj‖ < ε ;

0, otherwise,
(1)

to construct the Laplacian. Let di =
∑

j wij and define the

n × n diagonal matrix D = diag (d1, . . . , dn). The Lapla-

cian matrix is given by L = D − W . We solve the general-

ized eigenvalue problem Lφ = λDφ and sort the eigenvalues

λ0, λ1, . . . , λn in ascending order. We denote the correspond-

ing eigenfunctions φ0, φ1, . . . , φn. If the graph is connected,

λ0 is the only zero eigenvalue and φ0 is constant. Thus, we

focus our attention on φi, i � 1, especially those associated

with the smaller eigenvalues, as they carry information about

the global geometry of the point cloud.

φ1 φ2 φ3 φ4

Fig. 1. Heat maps of the first four nontrivial eigenfunctions

of a normal right hippocampus.

2.2. Symmetric Polynomials

By a symmetric function, we mean a function that is invariant

under permutations of its arguments. As a preliminary ex-

ample, consider the symmetric polynomials f(r, s) = r + s
and g(r, s) = rs on two variables. An alternative way of

constructing these is to fix r and s and consider the quadratic

polynomial

(z − r)(z − s) = z2 − (r + s)z + rs

= z2 − f(r, s)z + g(r, s) .
(2)

in the variable z. Then, up to sign, f(r, s) and g(r, s) are

the coefficients of this quadratic polynomial in z with roots r
and s. More generally, for any set {r1, . . . , rk} of scalars, we

consider the polynomial

k∏
i=1

(z − ri) =

k∑
i=0

aiz
k−i (3)

whose roots are r1, . . . , rk and whose coefficients ai, 0 � i �
k, are symmetric polynomial functions on ri.

2.3. Spectral Signatures

We first truncate the generalized eigenfunctions of the Lapla-

cian at an index k, 1 � k � n ( n being the number of ver-

tices). That is, we only consider φ1, . . . , φk. As explained in

the Introduction, for each point x in the original point cloud,

we will consider symmetric functions on φ2
i (x), 1 � i � k,

weighted by e−λit, with t > 0. The factor e−λit is moti-

vated by the heat kernel on a Riemannian manifold [13], and

it allows for the modulation of eigenfunctions associated with

higher frequencies and helps to filter out noise. Recall that

the heat kernel on a compact Riemannian manifold may be

expressed in terms of the eigenvalues and eigenfunctions of

the Laplace-Beltrami operator as

K(t, x, y) =
∞∑
i=0

e−λitφi(x)φi(y) , (4)

where x and y are arbitrary points on the manifold and t may

be interpreted as a time parameter. Thus, e−λitφ2
i (x) is pre-

cisely the contribution of the ith eigenmode to K(t, x, x).
Writing ri(t, x) = e−λitφ2

i (x) and using (3), we obtain

coefficients a1(t, x), . . . , ak(t, x) implicitly defined by

k∏
i=1

(z − ri(t, x)) =

k∑
i=0

ai(t, x)z
k−i . (5)

For each point x in the point cloud and t > 0, the coefficients

ai(t, x), 1 ≤ i ≤ k, give k spectral signatures of the shape.

By construction, ai(t, x) depends neither on the sign of the

eigenfunctions nor on their particular ordering.

The signature a1(t, x), which is the coefficient of zk−1, is

given by

a1(t, x) = −
k∑

i=1

ri(t, x) = −
k∑

i=1

e−λitφ2
i (x) . (6)
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Thus, up to an additive constant, −a1(t, x) is the point-cloud

analogue of the truncated heat kernel K(t, x, x), which is pre-

cisely the Heat Kernel Signature (HKS) proposed by Sun et
al. [1]. Of course, we could set ri(t, x, y) = e−λitφi(x)φi(y)
in equation (3) and get

a1(t, x, y) = −
k∑

i=1

e−λitφi(x)φi(y) . (7)

Then, −a1(t, x, y) would give the full truncated heat kernel,

again up to an additive constant. However, we restrict our

discussion to the simpler ri(t, x) = e−λitφ2
i (x).

In analogy with [1], we normalize the coefficients to ob-

tain spectral invariants

gi(t, x) =
ai(t, x)∑

y∈P ai(t, y)/n
, 1 ≤ i ≤ k , (8)

where P is the point cloud and n is the total number of points

in P .

3. EXPERIMENTS

We carried out experiments with a total of 102 ADNI

(www.loni.ucla.edu/ADNI) subjects representing two differ-

ent groups: 51 normal controls and 51 subjects classified as

MCI at the time of a visit and as AD at a subsequent visit. We

refer to these two groups as NL-NL and MCI-AD, respec-

tively. The main goal was to test how effectively the spec-

tral signatures can differentiate these two groups, that is, how

well they can help to predict onset of Alzheimer’s disease.

Thus, we only used the baseline MR scans acquired prior to

the development of AD for patients in the MCI-AD group.

For each subject, we segmented the right hippocampus, puta-

men, and thalamus with FreeSurfer and used a point-cloud

obtained from the vertices of a mesh representing the contour

of each of these brain structures.

We selected the values of the parameters ε and σ involved

in the point-cloud Laplacian as follows. We computed the

mean pairwise distance μ over the full point cloud and set

ε = 0.5μ and σ2 = 0.1μ. This produced a connected ε-

neighborhood graph for all shapes.

Three functions were used to summarize the behavior of

the g1 signature. For each structure, subject, and t > 0, we

computed the functions gmax
1 (t), gmin

1 (t), and gstd
1 (t) as the

maximum, minimum, and standard deviation, respectively, of

g1(t, x) over all points x in the point cloud. Similarly, we

constructed three functions for the signatures g2(t, x). These

functions were sampled logarithmically at T time instants,

which are then concatenated to form feature vectors of length

3T associated with g1 and g2. In our experiments, such fea-

ture vectors were sampled at T = 32 instants for each of the

three subcortical structures. We then trained a linear SVM

classifier on these features and computed the classification ac-

curacy based on a leave-one-out strategy. The classification

Structure Feature k Accuracy
right hippocampus g1, g2 32 71.6%

right hippocampus g1 128 72.5%

right hippocampus g2 128 70.6%

right hippocampus g1, g2 128 69.6%

right hippocampus g1 512 76.5%

right hippocampus g2 512 75.5%

right hippocampus g1, g2 512 75.5%

right putamen g1, g2 32 64.7%

right putamen g1, g2 128 56.9%

right putamen g1, g2 512 60.8%

right thalamus g1, g2 32 64.7%

right thalamus g1, g2 128 60.8%

right thalamus g1, g2 512 56.9%

everything g1, g2 32 71.6%

everything g1, g2 512 77.5%

Table 1. Leave-one-out classification accuracy of linear

SVM. Feature gi is an abbreviation for the concatenation of

gmax
i (t), gmin

i (t), and gstd
i (t) over 32 time instants. Feature

g1, g2 means combination of the g1 and g2 features. The num-

ber of eigenfunctions used, hence the degree of the polyno-

mial, is given by k.

accuracy is recorded in Table 1 for experiments with the right

hippocampus, right putamen, and right thalamus, as well as

with a combination of all three, which is referred to as “every-

thing”. The results suggest that the the lower eigenfunctions

play a major role in discriminating the two groups through the

proposed signatures, as the improvement from increasing the

number of eigenfunctions from k = 32 to k = 512 is less

than 10% with all three substructures taken into account.

4. SUMMARY AND DISCUSSION

We proposed a new set of spectral signatures of shape of

point clouds that may be viewed as a generalization of the

heat-kernel signatures of [1]. The spectral invariants are con-

structed from the eigenvalues and eigenfunctions of the point-

cloud Laplacian and circumvent many of the usual difficul-

ties, such as indeterminacy of signs and correspondences, en-

countered in using the eigenfunctions of the Laplacian to rep-

resent shape. We carried out experiments that illustrate the

potential of these signatures to aid in the diagnosis of demen-

tia by comparing their behavior on subcortical structures of

ADNI subjects comprising 51 normal controls and 51 MCI

patients that converted into AD.

Richer summaries of the behavior of the spectral signa-
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Fig. 2. (a) A normal right hippocampus with six points marked by colored diamonds; (b) and (c) the g1 and g2 invariants,

respectively, for these six points are graphed with respect to time t.

tures of a shape remain to be explored. For example, instead

of simply looking at their maximum and minimum values,

and the spread, one could analyze the full histogram of their

distribution over a point cloud, one histogram for each point

in time. Other problems to be further investigated are the

effect of the choice of Laplacian parameters on the spectral

invariants and the use of higher-order spectral invariants. Ad-

ditionally, various dimension reduction techniques can be ap-

plied to the categorization problem via spectral signatures.
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