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Abstract

We construct a scale space of shape of closed Rie-
mannian manifolds, equipped with metrics derived from
spectral representations and the Hausdorff distance.
The representation depends only on the intrinsic geom-
etry of the manifolds, making it robust to pose and artic-
ulation. The computation of shape distance involves an
optimization problem over the 2p-element group of all
p-bit strings, which is approached with Markov chain
Monte Carlo techniques. The methods are applied to
cluster surfaces in 3D space.

1. Introduction

We employ the heat kernel (HK) associated with
the Laplace-Beltrami operator ∆ on closed Rieman-
nian manifolds to construct a scale-space representa-
tion of shape, with scale controlled by a “time” pa-
rameter t. We call this representation a heat-kernel, or
HK, representation. HK representations are insensitive
to distance-preserving transformations, a property that
makes them robust to pose and articulation (cf. [4]). It
is difficult to compare the shape of different Rieman-
nian manifolds through the direct use of their HK rep-
resentations because they are defined on different do-
mains. To address this problem, we assume that the
eigenfunctions of ∆ (ordered by increasing magnitude
of the eigenvalues) are in correspondence. Although
this assumption is not always valid [3], e.g., for shapes
that exhibit symmetries, the shape distances defined are
robust to these mismatches. For a closed Riemannian
manifold M and positive integer p, the coordinates of
the orthogonal projection of the heat kernel of M onto
the orthonormal system φ1, . . . , φp, the eigenfunctions
of ∆ associated with the first p nontrivial eigenvalues,
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give a shape representation of M in p-dimensional Eu-
clidean space Rp (Section 2). We use the Hausdorff dis-
tance between subsets of Rp to obtain a family of shape
metrics indexed by t (Section 3). Generically, the eigen-
values of ∆ have multiplicity 1, so that the orthonor-
mal eigenfunctions are uniquely determined up to sign.
This means that, for each t, there are 2p different p-
dimensional representations of a shape. The Hausdorff
distance is minimized over all possible choices to elim-
inate dependence on a specific choice. This poses a
non-trivial optimization problem, which we treat with
a Markov chain Monte Carlo (MCMC) approach (Sec-
tion 4). To illustrate the methods and the effectiveness
of the HK representation, shape metric and optimization
strategies, we carry out a clustering experiment with
surfaces in 3D space (Section 5).

2. Scale-Space HK Representation

Let M be a closed Riemannian manifold, for exam-
ple, a watertight surface in 3D space. The Laplace-
Beltrami operator ∆M on functions f : M → R is
the differential operator ∆Mf = div (∇f), where div
and ∇ are the Riemannian divergence and gradient, re-
spectively. Equivalently, ∆f = ∗ d ∗ d, where d de-
notes the exterior derivative and ∗ the Hodge star oper-
ator. Let L2 be the Hilbert space of square-integrable
functions on M with the inner product 〈f, g〉 =∫
M
f(x)g(x) dV (x), where dV is the volume element

of M . L2 admits a complete orthonormal set φi : M →
R, i > 0, of eigenfunctions of −∆M , with eigen-
values λi > 0 satisfying limi→∞ λi = ∞. Thus,
∆φi = −λiφi. As usual, we order the eigenvalues so
that λi 6 λi+1. Hereafter, we assume that M is con-
nected, in which case λ0 = 0 and λi > 0 for i > 1. The
eigenfunction φ0 is constant. For symmetric shapes, the
non-zero eigenvalues may arise with multiplicity. How-
ever, the eigenvalues are generically all distinct. We as-
sume that this is the case since our interest is in shapes
extracted from data, and they exhibit no perfect intrinsic
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Figure 1. First 6 eigenfunctions of the Laplace-Beltrami operator of the contour of a cup.

self-similarities if dimM > 1. Figure 1 shows the first
6 eigenfunctions of the contour surface of a cup.

Let K(x, y, t), x, y ∈ M and t > 0, be the heat
kernel on M . K has the property that if f : M → R
is an initial distribution of temperature on M , then the
distribution for time t > 0 is given by

φ(x, t) =
∫
M

K(x, y, t)f(y) dV (y) . (1)

The heat kernel may be expressed as K(x, y, t) =∑∞
i=0 e

−λitφi(x)φi(y). Letting Kx,t(y) = K(x, y, t),
the assignment x 7→ Kx,t gives a scale-space represen-
tation of M in function space. For a fixed t, we see that
the contributions toKx,t of the eigenmodes decay expo-
nentially with the magnitude of λi. Because we expect
the most salient shape dissimilarities to be detectable at
the lower modes, we truncate Kx,t to

Kp
x,t(y) =

p∑
i=0

e−λitφi(x)φi(y) . (2)

The coordinates of Kp
x,t with respect to the orthonor-

mal set φ1, . . . , φp yield a p-dimensional representation
ψt : M → Rp, namely,

ψt(x) =
[
e−λ1tφ1(x) . . . e−λptφp(x)

]T
. (3)

We refer to ψt as a p-dimensional HK representation
of M at time t. As we are assuming that all eigenval-
ues have multiplicty 1, the choice of φi is unique up
to sign. Thus, there are 2p distinct p-dimensional heat-
kernel representations of a shape.

The shape representation (3) is sensitive to scale.
However, in practice, both scale-invariant and scale-
sensitive shape models are of interest. Among the many
ways of fixing scale, we normalize the eigenvalues as
follows. First note that if we scale a shape by a factor
r > 0, the eigenvalues of the Laplacian divide by r2.
Likewise, for the eigenfunctions to remain orthonormal,
they must be divided by rd/2, where d is the dimension
of the manifold M . If r =

√
λ1, the eigenvalues be-

come λi/λ1 and the HK representation changes to

ψ̃t(x) =
1

λ1
d/4

[
e−tφ1(x) . . . e−λpt/λ1φp(x)

]T
.

Figure 2 shows an example of a 3D HK representation.
Point correspondences are color coded.

original shape HK representation

Figure 2. 3D heat-kernel representation.

3. Shape Metric

The sign indeterminacies in the HK representation
may be formalized as follows. Let Zp2 be the mod 2 ad-
ditive group of all bit strings of length p. That is, binary
words of length p, with the bitwise “xor” operation. We
introduce an action of Zp2 on mappings f : M → Rp.
For b = (b1, . . . , bp) ∈ Zp2 , define b · f : M → Rp to be

(b · f)(x) =
[
(−1)b1f1(x) . . . (−1)bpfp(x)

]T
.
(4)

This action simply changes the sign of the ith coordi-
nate of f if bi = 1, and leaves it unchanged, otherwise.
The orbit of ψt under this action, O(ψt) = {b · ψt | b ∈
Zp2}, is precisely the collection of all p-dimensional HK
representations of M for a given t.

Given HK representations ϕt and ψt of the Rie-
mannian manifolds M and N , respectively, let
dH(ϕt, ψt) be the Hausdorff distance between the sets
ϕt(M), ψt(N) ⊂ Rp, which is given by

max{ sup
x∈M

d(ϕt(x), ψt(N)), sup
y∈N

d(ψt(y), ϕt(M))} .

(5)
For each fixed t > 0, define a shape metric

DH(M,N ; t) = min
b,c∈Zp

2

dH(c · ϕt, b · ψt)

= min
b∈Zp

2

dH(ϕt, b · ψt) ,
(6)

which measures the distance between the orbits of ϕt
and ψt. The second equality follows from the fact that
the action of Zp2 preserves the Hausdorff distance.
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The main computational problem that arises in cal-
culating dH is the minimization over Zp2 , which we ap-
proach with a Markov chain Monte Carlo (MCMC) al-
gorithm, as explained in Section 4.

In practice, a surface M in R3 is discretized as a tri-
angle mesh K. We use the discrete Laplace-Beltrami
operator on K as an approximation. The details of this
discretization and the computation of eigenvalues and
eigenfunctions are described in [1].

Functions on M are discretized over the vertex set
of K. Let W be the n × p matrix whose jth column
is the jth normalized eigenvector of −∆K , where n is
the number of vertices of K. Then, the value of the dis-
crete version of (3) on the ith vertex may be expressed
as
[
e−λ1twi1 . . . e−λptwip

]T
. These vectors are the

columns of the p × n matrix P (t) = e−ΛtWT , where
Λ is the diagonal matrix having λi as the ith diago-
nal entry. P (t) is the discrete version of (3) in ma-
trix form. The columns of P (t) may be viewed as the
point cloud {p1(t), . . . , pn(t)} ⊂ Rp. We abuse nota-
tion and denote both the matrix and the point cloud as
P (t). It is simple to check that the action of a bit string
b = (b1, . . . , bp) ∈ Zp2 on P (t) can be expressed as

b · P (t) = (−1)BP (t) = (−1)Be−ΛtWT , (7)

where (−1)B is the diagonal matrix with ith diagonal
entry (−1)bi . For 1 6 i 6 p, this action simply flips
the signs of the entries on the ith row of P (t) if bi = 1.
The scale-invariant case is similar.

4. Computation of Shape Distance

The main computational problem that arises in cal-
culating dH is the minimization over Zp2 , which we ap-
proach with a Markov chain Monte Carlo (MCMC) al-
gorithm (cf. [2]). We drop t from the notation because it
is held fixed throughout the discussion. With this con-
vention, if K and L are meshes, the problem is to cal-
culate

DH(K,L) = min
b∈Zp

2

dH(P, b ·Q) , (8)

where P and Q are p-dimensional HK representations
ofK and L, respectively. Define the plausibility of a bit
string b as F (b) = exp

(
−d2

H(P, b ·Q)/2σ2
)
, where

σ > 0 is a constant. The associated probability dis-
tribution on Zp2 is π(b) = F (b)/

∑
c∈Zp

2
F (c), but the

normalizing constant typically is unknown because it
involves a computation of exponential cost. The goal is
to find b that maximizes F (b).

To describe the MCMC algorithm, let εi ∈ Zp2 be the
p-bit string with ith coordinate 1 and other coordinates
0. Note that b, c ∈ Zp2 differ on a single coordinate if
and only if c = b+ εi for some i.

MCMC Algorithm:

1. Initialize the search with an arbitrary bit string, say,
b = (0, . . . , 0).

2. Calculate the plausibility F (b).

3. Randomly choose an integer i ∈ {1, . . . , p} with
uniform probability 1/p and set b∗ = b+ εi.

4. Calculate F (b∗) and let q = min {1, F (b∗)/F (b)}.
Replace b with b∗ with probability q.

5. Repeat 3, 4, 5.

Figure 3 shows results for the first 7 eigenfunctions
of two human silhouettes. We used 6 runs of the chain
with t = 0.01 and selected the most plausible bit
string visited. Rows (a) and (b) show the initial arbi-
trary choices of eigenfunctions, and row (c) shows the
choices prescribed by the MCMC algorithm. Note that
all but the third align correctly. This is caused by the
fact that φ3 captures a sagittal plane (near) symmetry of
the shape. However, this does not have a noticeable ef-
fect in the calculation of shape distance because it is ro-
bust to ambiguities associated with near self-isometries
of a shape.

5. Clustering

We carried out a clustering experiment to illustrate
the ability of the metric to classify shapes. The data set
comprises 24 meshes, each on the order of 103 vertices,
representing the contour surfaces of 6 caudate nuclei
(C), 6 hippocampi (H), 6 putamina (P), and 6 thalami
(T). The data was provided by the Center for Morpho-
metric Analysis at Massachusetts General Hospital and
is available at http://www.cma.mgh.harvard.edu/ibsr/.
Figure 4 shows four samples from each group. We
used a scale-invariant 12-dimensional HK representa-
tion with t = 1. The parameter in the expression of F
was set to σ = 0.1. We calculated the pairwise DH dis-
tance between all shapes and the dendrogram showed
that all shapes cluster correctly. To visualize the re-
sults, Figure 5 shows a 2D multi-dimensional scaling
(MDS) representation of the distance data. The colors
represent: red (H), green (P), purple (T), cyan (C). The
clusters that lie closest together with respect to DH are
those formed by putamina and thalami, but the cluster
separation is sharp. The shapes in these two groups are
visually the most similar.
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(a)

(b)

(c)

φ1 φ2 φ3 φ4 φ5 φ6 φ7

Figure 3. Matching eigenfunctions: (a) and (b) show the original choices of eigenfunctions and
(c) shows the final choices for the shape of (b), calculated with MCMC.

Caudate nucleus (C) Hippocampus (H)

Putamen (P) Thalamus (T)

Figure 4. Sixteen samples of the shapes
used in the clustering experiment.

6. Summary and Discussion

We used the heat kernel to construct a scale-space
representation of shape that depends only on its intrin-
sic geometry. Shape dissimilarity was quantified using
metrics derived from the Hausdorff distance of subsets
of Euclidean space and an MCMC algorithm was de-
veloped for the computation of distances. Both scale-
invariant and scale-sensitive models were discussed,
and clustering experiments were carried out to illustrate
the applicability of the methods. In future work, we will
compare the relative merits of our HK representation
to other representations based on Laplacian eigenfunc-
tions, e.g. [5, 6].
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Figure 5. 2D MDS realization of the dis-
tance data.
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