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ABSTRACT

We develop an algorithm for the registration of surfaces rep-

resenting the contours of various subcortical structures of

the human brain. We employ a scale-space representation

of shape based on the heat kernel, which only depends on

the intrinsic geometry of the surfaces. The multi-scale repre-

sentation is used in conjunction with the non-linear Iterative

Closest Point algorithm based on thin-plate-spline warps to

establish point correspondences between shapes. The method

is applied to the registration of the contours of four subcorti-

cal structures: the hippocampus, caudate nucleus, putamen,

and third ventricle.

Index Terms— Shape registration, spectral representa-

tion, heat-kernel representation, surface registration.

1. INTRODUCTION

We present a surface registration method based on a scale-

space representation of shape derived from the heat kernel.

The registration of surfaces that delineate the contours of

various brain sub-structures such as the hippocampus, thala-

mus, caudate nucleus, putamen, and ventricles is a theme that

emerges in many problems in neuroimaging. Establishing

natural point correspondences between surfaces is an essen-

tial step in the analysis and comparison of the brain anatomy

of individuals or groups, for example, to characterize regional

morphological differences associated with a particular popu-

lation or disorder. Often, surfaces are represented as meshes,

and the registration of two surfaces S1 and S2, represented

by meshes M1 and M2, is posed as the problem of assigning

to each vertex of M1 a point in M2.

The Iterative Closest Point (ICP) algorithm [1] is one of

the early shape registration methods. In ICP, a vertex of M1

is initially assigned to the closest point in M2. Then, a trans-

formation is applied to warp M2 and “optimally” align it with

M1 under the estimated point correspondences, and the pro-

cess is iterated. If points that are expected to match are ini-

tially close enough, ICP performs well, but otherwise the al-
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gorithm may not produce meaningful shape correspondences.

In [2], Chui and Rangarajan developed a variant that uses soft

assignment to describe correspondences between point clouds

and thin-plate-spline (TPS) warps [3] for non-rigid alignment.

However, even under TPS warps, closeness of points in 3D

space may not effectively account for the geometry of the

surfaces, especially at fine scales. To address these issues,

several studies replaced the original mesh in 3D space with

a (low-dimensional) spectral representation derived from the

affinity of all pairs of vertices as measured by the geodesic

distances between them [4, 5, 6]. This type of representation

is more robust to non-linear deformations as it only depends

on the intrinsic geometry of the surfaces. One of the virtues

of such a representation is that, under appropriate conditions,

points that are expected to correspond map to close points in

the spectral domain, whereupon an ICP-type strategy is more

likely to produce correct matches. However, the calculation

of the affinity matrix of a high-resolution mesh can be costly,

and so limits the algorithm’s applicability.

We propose use of a scale-space representation of sur-

faces based on the heat kernel that can be computed much

more efficiently. The heat-kernel representation (HKR) is ex-

pressed in terms of the eigenvalues and eigenfunctions of the

Laplace-Beltrami operator Δ. We use HKRs in conjunction

with a variant of the matching techniques of [2], based on soft

assignment and TPS warps, for the registration of closed sur-

faces. The multi-resolution representation allows us to take a

coarse-to-fine approach to registration and to suppress noise

in the registration process. We apply the method to the sur-

face of the hippocampus, caudate nucleus, putamen, and third

ventricle. The data used was provided by the Center for Mor-

phometric Analysis at Massachusetts General Hospital and is

available at http://www.cma.mgh.harvard.edu/ibsr/. A differ-

ent registration method that uses the Laplace-Beltrami opera-

tor has been developed by Shi et al. [7].

The heat-kernel representation is introduced in Section 2,

and its discrete analogue is discussed in Section 3, including

the computation of the eigenvalues and eigenvectors of Δ. In

Section 4, we outline the registration technique, and several

examples are given in Section 5. We conclude with a sum-

mary and brief discussion.
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2. HEAT-KERNEL REPRESENTATION

Let S be a closed smooth surface in 3D space. The Laplace-

Beltrami operator Δ on S is a generalization of the usual

Laplacian of functions on planar domains and is given by

Δf = div (∇f) , (1)

where div and∇ are the Riemannian divergence and gradient

operators, respectively. Equivalently, Δf = ∗ d ∗ d, where d
denotes the exterior derivative and ∗ is the Hodge star opera-

tor. The heat kernel on S may be expressed as

K(x, y, t) =
∞∑

i=0

e−λitφi(x)φi(y) , (2)

where x, y ∈ S and t > 0 [8]. The scalars λi ≥ 0 are the

eigenvalues of −Δ and {φi, i ≥ 0} is a complete set of or-

thonormal eigenfunctions with respect to the inner product

〈f, g〉 =
∫

S
f(x)g(x) dσ, where dσ is the area element of S.

Thus, Δφi = −λiφi. As usual, we order the eigenvalues so

that λi ≤ λi+1. Henceforth, we assume that S is connected,

which implies λ0 = 0 and λi > 0 for i ≥ 1. The eigen-

functions of λ0 = 0 are the constant functions on S. Gener-

ically, the eigenvalues have multiplicity 1, in which case the

eigenfunctions φi are uniquely determined up to sign. The

mappings x ∈ S 	→ K(x, . , t), t > 0, give a scale-space

representation of the surface S in function space.

Let p be a positive integer. The coordinates of K(x, . , t)
with respect to the orthonormal family {φ1, . . . , φp} yield a

p-dimensional scale-space representation of S, namely,

x 	→ [
e−λ1tφ1(x) . . . e−λptφp(x)

]T
, (3)

where T denotes transposition. Note that we exclude the con-

stant eigenfunction φ0 from the representation. Because of

the sign ambiguity in the choice of φi, there are 2p different

representations of this type. We resolve this ambiguity in the

registration process.

If we scale a shape by a factor r > 0, the eigenvalues of

Δ divide by r2. Likewise, for the eigenfunctions to remain

orthonormal, they must be divided by r. For shape registra-

tion, we normalize scale by r =
√

λ1 so that the eigenvalues

of −Δ become λi/λ1, and (3) changes to

x 	→ 1√
λ1

[
e−tφ1(x) . . . e−λpt/λ1φp(x)

]T
. (4)

3. DISCRETE REPRESENTATION

We assume that all surfaces are realized as closed trian-

gle meshes. We now describe the finite-difference dis-

cretization of the Laplace-Beltrami operator (cf. [9]). Let

V = {v1, . . . , vn} be the vertex set of a surface mesh, where

the vertices are ordered arbitrarily. For each i, let R(i) be

the index set of the 1-ring of vi, that is, of the vertices ad-

jacent to vi. If j ∈ R(i), let �ij be the length of the edge

eij = (vi, vj). We denote the length of the 1-cell e∗ij dual to

eij by �∗ij , and the area of the 2-cell T ∗i dual to vi by Ai (see

Fig. 1). A function f : S → R is discretized over the vertex

v3

v2

e∗12

v1
e12

v4

v5

Fig. 1. Example of a dual cell of a triangulation.

set V and represented by the n-vector f = [f1 . . . fn]T ,

where fj = f(vj). With these conventions, the ith entry of

Δf is

(Δf)i = Δf(vi) =
1
Ai

∑
j∈R(i)

fj − fi

�ij
�∗ij . (5)

This is a geometric discretization of the divergence of the gra-

dient. The term (fj−fi)/�ij is the directional derivative of f
along the oriented edge (vi, vj). The summation estimates the

total outward flux of the gradient field ∇f across the bound-

ary of the 2-cell T ∗i , and the full expression represents the flux

density over the 2-cell T ∗i .

The natural discretization of the L
2 inner product over the

geometric mesh is

〈f, g〉 =
n∑

i=1

(figi)Ai , (6)

not the usual dot product (f · g). One can show that −Δ is

self-adjoint with respect to 〈 , 〉, with eigenvalues 0 = λ0 <
λ1 ≤ . . . ≤ λn. The matrix of a self-adjoint operator with

respect to any orthonormal basis is symmetric. If Ei, 1 �
i � n, is the canonical basis of R

n, it is easy to check that

Ei/
√

Ai is orthonormal with respect to 〈 , 〉. The (i, j)-entry

of the symmetric matrix B that represents the operator −Δ
with respect to this orthonormal basis is

bij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
Ai

∑
k∈R(i)

�∗ik

�ik
, if i = j;

−1√
AiAj

�∗ij

�ij
, if j ∈ R(i);

0 , otherwise.

(7)

The matrix B is sparse, so the eigenvalues λ1, . . . , λp and

a corresponding set of orthonormal eigenvectors u1, . . . , up
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(with respect to the usual Euclidean dot product) can be com-

puted efficiently with Krylov subspace methods for p small.

The eigenvalues of −Δ are the same as those of B. If we

write ui = [ui1 . . . uin]T , then the corresponding orthonor-

mal eigenfunctions of −Δ with respect to (6) are

φi =
[

ui1√
A1

. . .
uin√
An

]T

. (8)

Fig. 2 (a) shows the level sets of φ1, φ2, and φ3 of a putaminal

surface computed with this method. Notice how the level sets

slice the surface in complementary directions, resembling an

(x, y, z)-system.

(a) (b)

Fig. 2. (a) Plots of the first 3 eigenfunctions of a putaminal

surface; (b) a 3D heat-kernel representation of the surface.

The discrete analogue of the normalized representation

(4) is defined on the vertex set by

vj 	→ 1√
λ1

[
e−t√

Aj

u1j . . . e−λpt/λ1√
Aj

upj

]T

. (9)

We write (9) as the jth column of a matrix Q(t), whose (i, j)-
entry is

qij =
e−λit/λ1√

λ1Aj

uij . (10)

Given a mesh M , we refer to the p × n matrix Q(t) as its

p-dimensional HKR at time t. Q(t) may be viewed as an ana-

logue of the reduced affinity matrices of [4, 5, 6]. Fig. 2 (b)

shows a normalized 3-dimensional representation of a putam-

inal surface computed with the method just described.

4. SHAPE REGISTRATION

Let M1 and M2 be meshes with vertex sets V1 = {v1, . . . , vn}
and V2 = {w1, . . . , wm}, where n and m may be different

and the orderings of the vertices are arbitrary. For each t > 0,

let Q1(t) and Q2(t) be the associated p-dimensional HKRs.

We adapt methods of [2] to register surfaces in spectral co-

ordinates, representing homologous surfaces originally given

in Talairach coordinates. There are three principal differences

in the optimization process: (i) the initial steps of the shape

matching focus on a coarse sampling of the vertex set of M1;

(ii) we use a heat-kernel representation, except for the initial

vertex assignment done in Talairach coordinates; (iii) at the

fine-resolution level, the refinements of the correspondence

iterate over regions of the mesh to achieve computational ef-

ficiency for even high-resolution meshes. Now, we expand on

these three aspects of the registration algorithm.

To begin, we construct a coarse subset V ∗ of the vertex set

of M1 by decomposing M1 into several approximately uni-

form disjoint regions R� and selecting a vertex lying near the

“center” of each region, as illustrated in Fig. 3. We call such

Fig. 3. Decomposition of a hippocampal surface into regions.

a vertex the center of R�. In the original 3D representation,

after centering and scaling the vertex sets, we assign to each

vertex of V ∗ the closest vertex of M2. For general shapes,

this may not produce meaningful correspondences. However,

this procedure is effective for brain surfaces in Talairach coor-

dinates – this claim is supported by our experimental results.

In spectral space, we compute the p × p orthogonal matrix

U that optimally aligns the shapes with respect to the given

correspondences and replace Q2(t) with UQ2(t). The cal-

culation of U is identical to that in Procrustes alignment of

shapes [10]. Note that a sign change of an eigenfunction cor-

responds to a reflection in the spectral representation so that

the estimation of U includes the decision of best choices of

signs. We iterate the process to refine the correspondences

over V ∗, now in spectral space, using TPS mappings to warp

the HKR of M1.

Next, we proceed to soft assignments with TPS warps for

all vertices of M1, not just those in V ∗. To keep the calcula-

tions manageable, we refine the assignments iteratively over

each region R�. As we already have constructed a coarse

alignment, given a vertex v ∈ R�, we only allow for (soft)

matches comprising vertices in a neighborhood of the vertex

of M2 closest to v with respect to the current warp. As the

process is iterated, we shrink the size of the neighborhood

until it is reduced to the set of vertices within the 1-ring of the

closest vertex to v. We also gradually increase the number p
of eigenvectors used in the HKR to capture geometry at finer

scales.

5. EXPERIMENTS

We test our method on meshes, downloaded from the Cen-

ter for Morphometric Analysis, representing four brain sub-

structures, namely, the hippocampus, putamen, caudate nu-

cleus, and third ventricle. The number of vertices in these

meshes falls in the 1000–3000 range. For each structure, a
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target mesh is selected from among those in the collection

(shown as the leftmost shape of each group in Fig. 4), and the

other surfaces are registered with it. In these experiments, ei-

ther a 3- or 4-dimensional HKR is invoked in the coarse align-

ment, depending on the shape, and the same HKR is used for

the first iteration of the fine-resolution-level alignment. The

dimension of HKR increments by one per iteration and the

registration algorithm terminates with an HKR of dimension

at most 7. We add one dimension to the HKR per iteration to

keep the refinement of the correspondence gradual. The use

of low-dimensional representations makes the registration al-

gorithm robust to fine-scale differences. The value of the time

parameter for each HKR is selected empirically and is the

same over all shapes and HKRs considered. The approximate

size of the regions R� vary with structure, according to the

mesh size. Some results obtained with the proposed registra-

tion method are shown in Fig. 4. Each registration completed

in under ten minutes on a 3GHz Intel Xeon MP processor.

(a) Hippocampus

(b) Putamen

(c) Caudate nucleus

(d) Third ventricle

Fig. 4. Surface registration with a heat-kernel representation.

6. SUMMARY AND DISCUSSION

We employed a scale-space representation of shape based on

the heat kernel to develop an algorithm for the registration of

contour surfaces of various brain structures as encountered in

neuroimaging. The shape representation can be computed ef-

ficiently via the eigenvalues and eigenvectors of the Lapalce-

Beltrami operator and only depends on the intrinsic geometry

of a surface. The representation is used in conjunction with

the non-linear ICP algorithm based on TPS warps for shape

registration. The efficacy of the method has been demon-

strated on several experiments with subcortical structures of

the human brain. The selection of parameter values for spe-

cific types of shapes, as well as refinements of the algorithm

using surface diffeomorphisms to establish point correspon-

dences shall be investigated in future work.
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