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Abstract

Learning data representations is a fundamental challenge in modeling neural processes and plays an important role in applications such as
object recognition. Optimal component analysis (OCA) formulates the problem in the framework of optimization on a Grassmann manifold and
a stochastic gradient method is used to estimate the optimal basis. OCA has been successfully applied to image classification problems arising in
a variety of contexts. However, as the search space is typically very high dimensional, OCA optimization often requires expensive computational
cost. In multi-stage OCA, we first hierarchically project the data onto several low-dimensional subspaces using standard techniques, then OCA
learning is performed hierarchically from the lowest to the highest levels to learn about a subspace that is optimal for data discrimination based
on the K -nearest neighbor classifier. One of the main advantages of multi-stage OCA lies in the fact that it greatly improves the computational
efficiency of the OCA learning algorithm without sacrificing the recognition performance, thus enhancing its applicability to practical problems. In
addition to the nearest neighbor classifier, we illustrate the effectiveness of the learned representations on object classification used in conjunction
with classifiers such as neural networks and support vector machines.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Learning algorithms for neural network models have been
a focal point (Bishop, 1995; Geman & Bienenstock, 1992).
Bishop (1995) stated that the choice of pre-processing and
feature extraction techniques is “one of the most significant
factors in determining the performance of the final system”. In
the past decades, linear subspace representation methods, such
as Principal Component Analysis (PCA) (Jolliffe, 1986; Turk
& Pentland, 1991), Independent Component Analysis (ICA)
(Comon, 1994; Hyvarinen, Karhunen, & Oja, 2001), Canonical
Correlation Analysis (CCA) (Anderson, 2003; Reiter, Donner,
Langs, & Bischof, 2006) and Linear Discriminant Analysis
(LDA) (Duda, Hart, & Stock, 2000; Zhao, Chellappa,
I An abbreviated version of some portions of this article appeared in Wu, Liu,
and Mio (2007) as part of the IJCNN 2007 Conference Proceedings, published
under IEE copyright.
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& Phillips, 1994), have been widely used for learning
representations suitable for neural networks. For example, Zhu
and Yu (1994) implemented a system for face recognition with
eigenfaces and a backpropagation neural network. Eleyan and
Demirel (2005) proposed a face recognition method in which
features are first extracted using PCA and faces are classified
using feed-forward neural networks. ICA-based recognition
methods, (e.g. Bartlett, Movellen, and Sejnowski (2002) and
Kwak and Pedrycz (2007)), tend to give better recognition
performance than PCA-based methods as they take high-order
statistics of data into account. LDA-based methods, on the other
hand, use class information and try to find an optimal basis
that maximize the between-class scatter while minimizing the
within-class scatter, and are also frequently employed in face
and object recognition (Etemad & Chellappa, 1997).

These classical linear representation methods, in general, are
not optimal for classification or recognition. For example, PCA
and ICA are optimized for data reconstruction and statistical
independence, not for the selection of discriminative features.
CCA is another multivariate statistical method which extracts
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Fig. 1. A synthetic dataset consisting of two classes, each with two clusters of
four points: (a) the data set of two classes (‘+’ and ‘×’) with eight points each
in R2; (b) the one-dimensional subspace obtained from PCA, ICA, and LDA;
(c) a one-dimensional optimal subspaces representation obtained using OCA.

the most coherent features among two data channels. LDA
assumes that the conditional probability distribution of each
class is Gaussian with the same variance. As the distributions
of real images are typically non-Gaussian (e.g. Srivastava,
Liu, and Grenander (2002)), in recognition tasks, there is
no theoretic guarantee of optimality of LDA basis. This is
also evident in comparative studies reported in the literature
(e.g. Belhumeour, Hespanha, and Kriegman (1997) and
Martinez and Kak (2001)). In fact, one can construct examples
in which all the common choices of learning algorithms give
the worst possible performance. Such an example is shown in
Fig. 1, which consists of two classes (‘+’ and ‘×’) with eight
points each, and the points are presented in clusters of four.
It can be shown that the one-dimensional subspace resulting
from PCA, ICA, and LDA coincides with either the horizontal
or the vertical axis. If we use the nearest neighbor classifier
and let a point from each cluster be used for training, the one-
dimensional basis obtained from PCA, ICA, and LDA gives the
worst performance.

It is thus apparent that, in the context of object recognition, a
more relevant question is that of finding a linear representation
that optimally selects discriminating features. Unlike the
classical methods, the recently proposed Optimal Component
Analysis (OCA) (Liu, Srivastava, & Gallivan, 2004; Srivastava
& Liu, 2005) provides a general optimality criterion. The search
for optimal linear representations, or an optimal subspace, is
based on a stochastic optimization process which maximizes
a pre-specified performance function over all subspaces of a
particular dimension and is estimated using a Markov Chain
Monte Carlo (MCMC) type algorithm. OCA exhibits good
performance on face and object recognition. Fig. 1(c) shows an
optimal subspace representation obtained by the OCA method.

The stochastic search techniques employed in OCA
typically result in heavy computational costs, which limits the
applicability of OCA to practical problems that involve feature
extraction and object recognition. As an example, consider
a facial recognition experiment based on the ORL data set
(Samaria & Harter, 1994). OCA learning takes approximately
one day to run 1000 iterations to estimate an optimal subspace.
Obviously, this is not practical for most object recognition
applications. In our previous work, a two-stage strategy was
proposed to address this problem (Wu, Liu, Mio, & Gallivan,
in press). In this approach, the input data is first reduced
to a lower dimension using methods such as PCA or LDA;
then, the OCA search is performed in the reduced space. This
strategy leads to significant computational gains. However, it is
generally difficult to determine a good choice for the reduced
subspace. In this paper, a multi-stage strategy is proposed
to address this problem. The idea of multi-stage OCA (M-
OCA) was presented in a previous short paper (Wu et al.,
2007): the data is first hierarchically reduced into several levels
using shrinkage matrices; then, the OCA search is performed
hierarchically from the lowest to the highest levels. The basis is
expanded progressively from the optimal basis obtained in the
previous level. As the learning process of each level starts with a
good initial selection from the previous level, M-OCA achieves
good recognition performance. Also, since the dimensions of
the Grassmann manifolds at the lower levels are much smaller
than that of the Grassmannian in the original space, M-OCA
reduces the computational costs associated with the original
algorithm significantly, thus making OCA learning feasible in
applications.

The rest of the paper is organized as follows: Section 2
gives a brief review of OCA and the proposed M-OCA method
is presented in Section 3; A comprehensive study of the
performance of the M-OCA algorithm is presented in Section 4;
Section 5 concludes the paper with a summary and a discussion
of future work.

2. Optimal component analysis

Optimal Component Analysis is a dimension reduction
technique designed to find an optimal subspace (of a prescribed
dimension) of feature space that optimizes the ability of the
nearest neighbor classifier to index and classify images or other
data. The measurement of optimality is based on training data
and the algorithm yields an orthonormal basis of the estimated
optimal subspace. More specifically, let U ∈ Rn×d be a matrix
whose columns form an orthonormal basis of a d-dimensional
subspace of Rn , where n is the size of the input image and d is
the dimension of the desired subspace (generally n � d). For
an image I , viewed as an n-vector, the vector of coefficients is
given by α(I, U ) = U T I ∈ Rd and represents the orthogonal
projection of I onto the subspace SU spanned by the columns
of U . Suppose the training data consists of representatives of C
classes of images, with each class represented by ktrain images
denoted by Ic,1, . . . , Ic,ktrain , where c = 1, . . . , C . Let

ρ(Ic,i , U ) =

min
c′ 6=c, j

D(Ic,i , Ic′, j ; U )

min
j 6=i

D(Ic,i , Ic, j ; U ) + ε
. (1)

The numerator is the distance from Ic,i to the closest training
image not in its class and the denominator is the distance from
Ic,i to the closest training image in the same class. Here, D
denotes Euclidean distance; that is,

D(I1, I2; U ) = ‖α(I1, U ) − α(I2, U )‖, (2)

where ‖ · ‖ is the usual 2-norm. In Eq. (1), ε > 0 is a small
number introduced to avoid division by zero. Note that large
values of ρ are desirable, since this means that Ic,i will be
closer to its class than to other classes after projection onto
the subspace SU . A performance function F is defined to
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essentially measure the average value of ρ over all training
images, as follows:

F(U ) =
1

Cktrain

C∑
c=1

ktrain∑
i=1

h(ρ(Ic,i , U ) − 1), (3)

where h(·) is a monotonically increasing bounded function
used to control bias with respect to particular classes in
measurements of performance. In our implementation, we use
h(x) = 1/(1 + exp(−2βx)), where β is a parameter that
controls the degree of smoothness of F(U ). Thus, F is a
quantifier of the ability of the nearest neighbor classifier to
discern the C classes after projection onto SU . Moreover, as
β → ∞ and ε → 0, F gives precisely the recognition
performance of the nearest neighbor classifier after projection
to the subspace given by U (see Liu et al. (2004)).

Under this formulation, F(U ) = F(U H) for any d × d
orthogonal matrix H since D(I1, I2; U ) = D(I1, I2; U H). The
Grassmann manifold, G(n, d), is the set of all d-dimensional
subspaces of Rn . It is a compact, connected manifold of
dimension d(n − d), which can be represented either by a basis
(non-uniquely) or by a projection matrix (uniquely). Choosing
the former, let U be an n × d matrix whose columns are
an orthonormal basis for the given subspace of Rn and let
[U ] denote the set of all the orthonormal bases of span(U ),
i.e., [U ] = {U H |H ∈ Rd×d , H T H = Id} ∈ G(n, d).
The value of F(U ) depends only on [U ]; unlike the actual
recognition performance, F([U ]) is smooth and thus allows
us to use gradient type algorithm to solve the optimization
problem. An optimal d-dimensional subspace for the given
classification problem from the viewpoint of the training data
is given by

[Û ] = arg max
[U ]∈Gn,d

F([U ]). (4)

To solve this optimization problem, Liu et al. (2004) present an
algorithm utilizing the geometric properties of the Grassmann
manifold. A Monte Carlo version of a stochastic gradient
algorithm that uses simulated annealing is used to find an
optimal subspace.

A brute force implementation of OCA is typically
computationally expensive and may limit its applicability. The
computational complexity Cn of each iteration of this algorithm
is

Cn = O(d × (n − d) × k2
train × n × d). (5)

Cn is obtained from the following analysis. The dimension of
the gradient vector is d × (n − d). For each dimension and for
each training image, the closest images in all the classes need to
be found to compute the ratio in Eq. (1) and to the performance
F in Eq. (3), which gives the factor k2

train. The term n × d
comes from Eq. (2). Therefore, we obtain the above estimate for
each iteration. The overall computational complexity is Cn × T
where T is the number of iterations. Thus, we see that the
computation at each iteration depends on several factors and
the complexity is O(n2). In typical applications, n is relatively
large since it represents the number of pixels in an image. This
leads to an algorithm that can be very time consuming.
Fig. 2. Multi-stage search process. Firstly, an optimal basis UL is obtained at
level L through an OCA search on GnL ,d . Then, a basis ŪL−1 at level L − 1
is obtained by expanding UL , where ŪL−1 is used to initialize the learning at
level L − 1 on GnL−1,d . This search – expand-basis – process is iterated until
we get an optimal basis at level 0.

The high computational cost of OCA motivated the
development of two-stage OCA (Wu et al., in press). Instead
of solving the optimization in the original space, by limiting
the search to (subspaces) of the span of the training images, we
showed that we can achieve better efficiency while preserving
effectiveness. In this paper, we further enhance the strategy by
developing a technique that we refer to as M-OCA.

3. Multi-stage OCA

In the first stage of two-stage OCA (Wu et al., in press),
the dimension of the input data is reduced using well-known
dimension reduction methods such as PCA, ICA, LDA and QR
factorization. Subsequently, an OCA search is performed on the
lower-dimensional space. Obviously, as the OCA search space
is smaller, the search time can be greatly reduced. However,
two-stage OCA requires the selection of a dimension in the first
stage. Experiments indicate that there is an optimal range of
values: if the dimension is too large (in the extreme case, it
becomes the original OCA), the complexity increases and the
search becomes ineffective; on the other hand, if it is too small
(in the extreme case, the second stage is not required and it
degenerates to the first stage), effective linear representations
for discrimination may not be achievable. M-OCA, on the other
hand, uses a multi-level learning strategy and effectively solves
the problem.

3.1. Multi-stage learning

The learning process of M-OCA is illustrated in Fig. 2.
First, we chose the number L + 1 of levels and shrinkage
matrices Al ∈ Rnl×nl+1 , 0 ≤ l < L , usually constructed with
classical techniques such as PCA or the K-Means algorithm
(see e.g. Zhang and Liu (2003), Forsyth and Ponce (2003) and
MacQueen (1967)). Level 0 is viewed as the highest level and
level L as the lowest. Then, we recursively shrink training
image data set Il ∈ RKtrain×nl , 0 ≤ l < L , to get nl+1-
dimensional image data Il+1 via right multiplication by the
shrinkage matrix Al at each level. If we denote the shrinkage
factor as ml and the dimension of the image data at level l as
nl , then nl =

nl−1
ml

=
n0∏l

i=1 mi
.
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Our goal is to find an optimal basis Û0 ∈ Rn0×d at level
0. To accomplish this, we hierarchically search an optimal
basis at each level. The search begins from level L on the
Grassmann manifold GnL ,d with image data IL of dimension
nL . The search can be performed efficiently since the learning
space GnL ,d is relatively low dimensional. After getting a basis
ÛL of an optimal d-dimensional subspace at level L , we obtain
a preliminary basis ŪL−1 at level L − 1 by expanding UL
through left multiplication by the shrinkage matrix AL−1. Then,
we use the basis ŪL−1 to initialize a new OCA search at
level L − 1 on GnL−1,d , with image data IL−1 ∈ RnL−1 . As
the recognition performance based on ŪL−1 is consistent with
that of ÛL , the search at this level will be significantly faster
than it would have been just using standard OCA since it
is initialized with a high-performance basis. This process is
repeated until we reach level 0. At this point, we will have
a basis that is “optimal” enough for discrimination, as shown
in various experiments. In summary, the search is performed
from the lowest level L to the highest level 0; the lower the
level, the more efficient the search. The search result at a lower
level provides a good initialization for the next level improving
the efficiency of OCA without compromising its discriminative
power. The recognition performance keeps on increasing at
each level. The pseudo-code for this procedure is given in
Algorithm 1.

Algorithm 1. M-OCA Algorithm

Input: Training image data set matrix Itrain ∈ RKtrain×n0 ,
shrinkage factors m1, . . . , mL .
Output: Optimal basis Û0 of level 0

1. For l = 0, . . . , L − 1
BEGIN
(a) Using dimension reduction methods, such as PCA or

the K-Means algorithm, construct shrinkage matrices Al ,
0 ≤ l < L , where Al ∈ Rnl×nl+1 and nl+1 =

nl
ml

.
(b) Set Il+1 = Il Al .

END
2. Learn an optimal basis UL , at level L , by doing an OCA

search on GnL ,d , where nL is the dimension of the image data
at level L .

3. For l = L − 1, . . . , 1,
BEGIN
(a) Set Ūl = AlÛl+1,
(b) Using Ūl as the initial basis, search for an optimal

basis Ûl at level l employing an OCA search on Gnl ,d with data
size nl .

END
4. At level 0, set Û0 = A0Û1.

From the discussion in Wu et al. (2007), PCA and K-
means are suitable choices for obtaining the data shrinkage
matrices for M-OCA. Also, since the performance in the initial
iteration of a higher level is consistent with the performance in
the final iteration of the previous lower level, the recognition
performance is improved level-by-level and a good recognition
performance can be achieved at level 0.

3.2. Computational analysis

Here, we estimate some of the computational gains realized
by using the M-OCA algorithm. For each iteration, the
computational complexity with images of size n0 is Cn0 =

O(d × (n0 − d) × k2
train × n0 × d) and the complexity with

images of size nl is

Cnl = O(d × (nl − d) × k2
train × nl × d)

= O

(
(nl − d) × nl

(n0 − d) × n0
Cn0

)
and the total computational complexity will be of the order of

Ctotal =

L∑
l=1

Cnl

=

L∑
l=1

(nl − d) × nl

(n0 − d) × n0
Cn0

=

L∑
l=1

(n0 −

l∏
i=1

mi d)

(n0 − d)(
l∏

i=1
mi )2

Cn0 . (6)

In applications, we usually select 2 ≤ L ≤ 5, 10 < d < 100
and mi > 1, so that Ctotal � Cn0 . Our experiments demonstrate
that, in practice, an improvement of this magnitude is actually
realized in this range of dimensions, so that the multi-stage
version is much more efficient than the original OCA.

4. Experimental results

We evaluate the effectiveness of the M-OCA in this section.
The data sets used in our experiments are described in
Section 4.1. In 4.2, we present a set of experiments to test
the recognition accuracy and efficiency of M-OCA algorithm
using the K-nearest neighborhood classifier. In Section 4.3, we
compare the recognition performance of M-OCA with PCA
using neural network and SVM classifiers. Speed is measured
on a workstation with an Intel Xeon 3.00 GHz CPU and 8.0G
RAM.

4.1. Data sets

The ORL, PIE, AR face, and COIL object data sets are used
in our experiments. Fig. 3 shows some sample images from
these data sets.

• ORL face data set (Samaria & Harter, 1994). It contains
400 face images of 40 individuals. The image size is 92 ×

112. The face images are perfectly centralized. The major
challenge on this data set is the variation of the face pose.
There is no lighting variation with minimal facial expression
variation and no occlusion. We use the whole image as an
instance, i.e., the dimension of an instance is 92 × 112 =

10,304.
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Fig. 3. Some example images of data sets used in experiments. (a): ORL face
data set, which contains 40 classes, each has 10 images; (b): PIE face data
set, which contains 66 classes, each class has 21 images; (c): AR face data set,
which contains 156 classes, each class has 13 images; (d): COIL data set, which
contains 100 objects, each has 72 images.

• PIE face data set (Sim, Simon, & Bsat, 2001). It contains
66 persons with 21 images each. Images of each person
was taken under 13 different poses, 43 different illumination
conditions and 4 different expressions. We use those 676
images that are cropped manually. The image size is 100 ×

100 = 10,000.
• AR face data set (Martinez & Benavente, 1998). It is a

large face image data set. An instance of a face may contain
significantly large areas of occlusion, due to the presence
of sun glasses and scarves. The existence of occlusion
dramatically increases the within-class variations of AR face
image data. In this study, we use a subset of AR containing
1638 face images of 126 individuals. Its image size is 768 ×

576. We first crop the image from the row 100–500 and the
column 200–550, and then sub-sample the cropped images
with sample step 4 × 4. The dimension of each instance is
reduced to 101 × 88 = 8888.

• COIL object data set (Nayar, Nene, & Murase, 1996). The
COIL-100 data set consists of color images of 100 objects
where the images of the objects that were taken at pose
intervals of 5 degrees, i.e., 72 poses per object. The images
were also normalized such that the larger of the two object
dimensions (height and width) fits the image size of pixels.
The image size is 32 × 32 = 1024.

4.2. Recognition performance of multi-stage OCA

The first set of experiments evaluates the performance of M-
OCA algorithm in terms of recognition accuracy and efficiency.
Here, we use half of the data in each class for training and
another half for testing. In all the following experiments, PCA
is used to compute the shrinkage matrix. The shrinkage level
is 3 and the subspace dimension d in each level is set to 10.
Table 1
Data dimension at each level

Level 0 1 2 3

ORL 10,304 199 100 50
PIE 10,000 600 100 20
AR 8,888 2000 1000 200
COIL 10,000 500 100 20

Table 2
Recognition accuracy (%) on test images of M-OCA for K-NN classifier

Dataset 1-NN 3-NN 4-NN 5-NN

ORL 100 98.50 98.00 95.50
PIE 100 99.17 98.35 94.36
AR 97.95 95.24 94.90 92.97
COIL 99.41 98.36 95.86 94.75

Table 1 shows the image size of each level, where level 0 is the
original image space. OCA search is performed in each level
except level 0 for 500 iterations. We also set a stop criterion
for the M-OCA search, that is, we claim that the optimal basis
is obtained when the recognition accuracy reaches 100%, or
improvement of recognition accuracies in two adjacent levels
is smaller than 1%. Here the K-Nearest Neighborhood (KNN)
is used as classifier. Table 2 gives the classification accuracy
of the M-OCA algorithm with different KNN on ORL, PIE,
AR and COIL data sets. From the table, we have the following
important observations:

• KNN with K = 1 usually performs the best by M-OCA
on these four data sets. There is a clear trend of decrease in
accuracy for each data set as K increases.

• M-OCA gives good classification accuracy on ORL and PIE
data sets. For example, the M-OCA algorithm can achieve
100% on ORL and PIE data sets. This is mainly due to the
relatively small within-class variations in these data.

• For the COIL data sets, although orientation difference
exists between each image in the same object. However, M-
OCA can still achieve better classification results than other
methods (e.g. Roth, Yang, and Ahuja (2002)).

• The classification accuracy on AR data set is slightly
worse than that on other data sets. This is mainly
because the images contain large areas of occlusion whose
direct consequence is large within-class variation of each
individual. However, the classification results give marginal
improvement when compared with other classification
methods (e.g. Lu and Jain (2003)).

We also compare the result of M-OCA with another non-
linear representation method—Kernel Discriminant Analysis
(KDA). KDA can find an optimal nonlinear representation in
which discrimination of the training samples is optimized. Ta-
ble 3 gives the comparative classification accuracies of M-OCA
and KDA on these four data sets, using 1-NN classifier. It shows
that M-OCA have better classification accuracy in all these data
sets.

Fig. 4 shows the evolution of recognition accuracy and
performance function of M-OCA algorithm on the data sets.
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Fig. 4. Evolution of recognition accuracy and performance function F on test data sets. Left column: Y -axis: recognition accuracy, X -axis: iteration numbers; Right
column: Y -axis: performance function F , X -axis: iteration numbers. From top to bottom: ORL, PIE, AR, COIL.
Table 3
Recognition accuracy (%) on test images of M-OCA and KDA for 1-NN
classifier

Dataset M-OCA KDA

ORL 100 97.50
PIE 100 98.48
AR 97.95 91.24
COIL 99.41 98.36

Although we can set a stop criterion for OCA searching in each
level, in order to better illustrate the evolution of performance
of the M-OCA, we set the level to 3 and run 500 iterations
in each level. The left figures in each row show the evolution
of recognition accuracy of test data. We can see that in each
level the recognition accuracy is increased and the recognition
accuracy of final iteration in a higher level is consistent with
the initial point of next lower level. The right figure in each row
Table 4
Time (in seconds per iteration) and classification accuracy (%) comparison of
M-OCA and original OCA

Data set Measured items M-OCA Original OCA

ORL Time 2.14 173
Accuracy 100 100

PIE Time 10.44 224
Accuracy 100 100

AR Time 46.40 421
Accuracy 97.34 98.03

COIL Time 46.12 531
Accuracy 99.11 99.41

shows the evolution of performance function F , which is also
convincing.

Table 4 shows the running time and classification accuracy
of M-OCA obtained in this experiment. We run OCA search
500 iterations in each level. From this table, we can see that
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Table 5
Class number and subspace selected in the second set of experiments

Dataset # of class subspace

ORL 40 10
PIE 66 10
AR 31 20
COIL 25 20

the running time of M-OCA is greatly reduced compared to the
original OCA algorithm; however, the classification accuracy is
comparable with the original OCA algorithm. Reader can refer
to Wu et al. (2007) for further details.

4.3. Performance evaluation using BP Neural Networks and
SVM classifiers

Neural networks (Rumelhart, Hinton, & Williams, 1986)
and Support Vector Machines (SVM) (Vapnik, 1995) can
be trained to approximate complex functions in various
fields of applications including pattern recognition and object
classification. Instead of using K-Nearest Neighborhood as
classifier, backpropagation neural networks (BPNN) and SVM
classifiers are used in this experiment. We use a 3 layer
backpropagation neural network for all cases. The number of
nodes in the input layer is determined by the length of the
feature of data, which is determined by the subspace dimension
d; the number of nodes in the output layer is determined by the
number of class in each data set; and the number of nodes in
the hidden layer is set to 20. The number of class and subspace
selected for the set of experiments are listed in Table 5. We use
the whole data sets for ORL and PIE data set, for AR and COIL
data sets, we select part of the data set to make neural networks
converge quickly during training.
Support vector machines map input vectors to a higher-
dimensional space where a maximal separating hyperplane
is constructed. Two parallel hyperplanes are constructed on
each side of the hyperplane that separates the data. In our
experiment, one-vs-one strategy (Schölkopf, Burges, & Smola,
1998) is used to solve the multi-class classification problem. It
forms a binary classifier for each class-pair and thus C(C −

1)/2 classifiers are required. For the test input, the decision
is made by combining these C(C − 1)/2 classifier outputs
using majority voting. A Gaussian kernel is used for all SVM
classifiers.

Table 6 shows the classifier result of M-OCA and PCA
using BPNN and SVM classifiers. We tested the classification
performance using PCA and M-OCA for representation
learning. We can see that for the ORL, PIE and COIL data
sets, M-OCA has significant improvement for both neural
networks and SVM classifiers. For AR data set, it also gives
improvement, although the improvement is smaller.

5. Discussion and future work

In this paper, we have proposed a M-OCA algorithm
which extends the two-stage OCA algorithm by first projecting
the data to several different lower-dimensional levels using
shrinkage matrices. Then, OCA is performed hierarchically
from the lowest to the highest levels. After constructing an
optimal basis at a level, we expand the basis to a higher level
and use this expanded basis to initialize the OCA search at the
next higher level. This strategy greatly reduces the OCA search
time, while essentially preserving the recognition performance.
The nature of OCA learning, which involves a stochastic
optimization, allows us to utilize a multi-stage strategy to
improve the computational efficiency. Several experimental
results using K-NN, Neural networks and SVM classifiers
Table 6
Recognition accuracy(%) on test images of multi-stage OCA and PCA using BPNN and SVM classifiers

Dataset # of trainings per class # of tests per class PCA/BPNN M-OCA/BPNN PCA/SVM M-OCA/SVM

ORL 2 8 64.06 69.38 69.69 78.75
3 7 76.07 82.50 89.29 91.07
5 5 83.00 88.00 93.00 96.50
7 3 88.33 96.67 94.17 96.67
8 2 92.50 97.50 95.00 100

PIE 4 17 90.02 92.87 90.26 93.76
7 14 95.45 96.53 96.10 97.94

10 11 95.59 98.48 96.56 98.07
14 7 96.10 98.70 96.67 98.70
17 4 96.96 99.62 98.86 100

AR 2 11 53.37 54.55 66.57 68.62
4 9 78.13 79.93 85.30 88.17
6 7 70.51 70.97 88.94 91.24
9 4 93.54 94.35 96.67 98.38

11 2 95.16 96.77 96.77 98.38

COIL 12 60 90.57 94.92 96.43 96.43
24 48 91.33 97.33 97.50 98.50
36 36 92.11 98.28 97.72 99.33
48 24 87.83 97.75 97.41 99.75
60 12 94.50 99.50 97.83 99.83
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demonstrate the improvement achieved using the proposed
learning method.

While this paper focuses on linear representations, the
proposed M-OCA algorithms can be generalized to model
nonlinearity using kernel methods. As shown in Liu and Mio
(2005), nonlinear representations induced by a kernel function
can be written as linear representations with respect to a basis
that depends only on the kernel function and the training
set. As multi-stage OCA algorithms significantly enhances the
applicability of OCA, kernel analogues of M-OCA should offer
similar benefits; this is being investigated.
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