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Abstract We construct a 1-parameter family of geodesic
shape metrics on a space of closed parametric curves in
Euclidean space of any dimension. The curves are modeled
on homogeneous elastic strings whose elasticity properties
are described in terms of their tension and rigidity coef-
ficients. As we change the elasticity properties, we obtain
the various elastic models. The metrics are invariant un-
der reparametrizations of the curves and induce metrics on
shape space. Analysis of the geometry of the space of elas-
tic strings and path spaces of elastic curves enables us to
develop a computational model and algorithms for the es-
timation of geodesics and geodesic distances based on en-
ergy minimization. We also investigate a curve registration
procedure that is employed in the estimation of shape dis-
tances and can be used as a general method for matching
the geometric features of a family of curves. Several exam-
ples of geodesics are given and experiments are carried out
to demonstrate the discriminative quality of the elastic met-
rics.
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1 Introduction

Much of the present interest in shapes of curves in Euclid-
ean space stems from questions arising in computer vision,
medical imaging and pattern recognition. Many studies of
shapes have aimed at the design of discriminative shape
descriptors, which are useful in retrieval and classification
problems. A different viewpoint is based on the construction
of shape spaces—in which “all” shapes are represented—
equipped with metrics that attempt to quantify shape re-
semblance and dissimilarity. This provides a framework
for shape analysis and inference, and the general philoso-
phy is more in line with Pattern Theory (Grenander 1993;
Mumford 2002). We seek to integrate these views by con-
structing shape spaces of curves equipped with families of
geodesic metrics, whose choice can be tuned to a particular
problem to enhance the discriminative qualities of the met-
ric.

Our perception of shapes and the notions of shape sim-
ilarity and divergence tend to be very contextual. This mo-
tivates the development of flexible models that are adapt-
able to different settings. A structured family of shape met-
rics, from which one may select or learn a metric that is
best suited to a specific scenario, can be instrumental in the
mathematical formulation of context dependence. Michor
and Mumford offer an overview of the organization of some
shape metrics in Michor and Mumford (2007). Largely mo-
tivated by this problem, we extend the 1-parameter family
of homogeneous elastic models (HEM) for plane curves de-
veloped in Mio et al. (2007b) to geodesic metrics for curves
in Euclidean space of any dimension. The shape metrics are
given by geodesic distances calculated with respect to Rie-
mannian structures on a manifold of elastic strings. As we
change the elasticity properties of the strings, we obtain the
different metrics in the family. The development of these
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models and the investigation of their geometry for the de-
sign of effective computational strategies form the core of
this paper. Even in the planar case, the formulation and com-
putational models of this paper lead to algorithms that are
more efficient and robust than those of Mio et al. (2007b).

Shape spaces of curves equipped with a variety of met-
rics have been investigated in several recent studies (Klassen
et al. 2004; Michor and Mumford 2006; Mio et al. 2007b;
Klassen and Srivastava 2006; Joshi et al. 2007; Michor et al.
2007). Two main types of shape representation have been
adopted: curves as subspaces of R

k and parametric presen-
tations of curves. The most common view is that two curves
have the same shape if they differ by the action of the group
generated by rigid transformations and homotheties of R

k .
If parametrizations are used, shape is also preserved under
reparameterizations by diffeomorphisms of the parameter
space. The parametric models of this paper yield metrics that
are invariant under rigid transformations, scale and repara-
metrizations, thus inducing metrics on shape space. We also
develop a curve registration technique that allows more ef-
ficient estimations of shape distances and geodesics. The
curve matching algorithm is implemented via dynamic pro-
gramming and is a fully symmetric, multidimensional vari-
ant of those investigated in Tagare (1999), Sebastian et al.
(2003), Zheng et al. (2005), Mio et al. (2007b). The tech-
nique can be employed not only to help estimate shape geo-
desics, but also as a tool to establish correspondences be-
tween curves in a given family.

To motivate the representation of curves adopted in the
paper and explain the nature of the elastic metrics, we be-
gin with a few remarks on some shape models of paramet-
ric plane curves developed in previous studies. We focus on
the case of closed curves, as shapes of arcs can be treated
with a simpler version of the same techniques. The Rie-
mannian model of Klassen et al. (2004) employs a repre-
sentation of plane curves via direction (or angle) functions
with respect to the arc-length parameter. The model was first
implemented using shooting methods. Later, energy mini-
mization was used in Schmidt et al. (2006) to improve the
computational efficiency, and an extension to curves in R

k

was studied in Klassen and Srivastava (2006). A drawback
of this model is that the shape representation relies on the
arc-length parameter so that geodesic deformations are not
free to stretch or compress curves to match their geomet-
ric features. A geodesic deformation essentially gives the
most efficient way of bending a shape into another respect-
ing the arc-length parameter. In that model, curves are flexi-
ble, but have infinite tension and do not allow any tangential
deformations. As a consequence, the resulting shape geo-
desics often do not yield natural or intuitive deformations.
Thus, relaxation of the tension of the strings is very desir-
able for shape analysis. An early elastic model of shapes
of plane curves was proposed by Younes (1998, 1999) and

provides a combination of bending and stretching elastic-
ity. This model has been fully worked out in recent work by
Michor et al. (2007). Mio et al. (2007b) introduced a contin-
uous 1-parameter family of metrics that considers both the
stretching and bending properties using a first-order repre-
sentation of plane curves. A variant for plane curves based
on (signed) curvature functions was subsequently studied by
Shah (2006). More recently, Joshi et al. (2007) introduced
a Riemannian pre-shape space of curves in R

k based on a
square-root representation of velocity fields, which turns out
to be isometric to one of the models constructed in this pa-
per. To describe the Riemannian models studied in Mio et
al. (2007b) and motivate the present treatment, we first in-
troduce some notation.

Let S
1 be the unit circle in R

2 centered at the origin. We
express a point z ∈ S

1 as z = ejs , where s ∈ [0,2π] and j =√−1. Given a parametric closed plane curve α : S
1 → R

2,
we denote the velocity vector at z by v(z) = ∂sα(ejs). We
often abuse notation and write v(z) = α′(s). Assuming that
the curve is non-singular (that is, the velocity vector never
vanishes), write

α′(s) = eϕ(s)ejθ(s), (1)

where ϕ(s) is the speed of the curve expressed in logarith-
mic scale and θ is a measurement of the angle that α′(s)
makes with a horizontal axis. If we express an infinitesimal
variation of (ϕ, θ) as (h,f ), the shape model of Mio et al.
(2007b) is based on the Riemannian metric

〈(h1, f1), (h2, f2)〉(ϕ,θ) = a

∫ 2π

0
h1(s)h2(s)e

ϕ(s) ds

+ b

∫ 2π

0
f1(s)f2(s)e

ϕ(s) ds, (2)

where a, b > 0 are parameters that can be interpreted as the
tension and rigidity coefficients of the curves. Large values
of a relative to b indicate that the curves offer much higher
resistance to stretching or compression than to bending. If a

is small as compared to b, the curves are tensile and com-
pressible, but more rigid. Since the arc-length element of α

is d� = eϕ(s) ds, (2) defines a weighted inner product with
respect to d�. Multiplying a and b by a common factor sim-
ply scales the metric globally. Therefore, this construction
essentially yields a 1-parameter family of metrics. To obtain
a shape metric, various normalizations are made on (ϕ, θ)

to ensure that the representation is invariant under shape
preserving transformations. Reparameterizations via diffeo-
morphisms of the circle are taken into account, as well.

In this paper, we extend the elastic models of shapes
of plane curves to closed curves in arbitrary Euclidean
space. We devise computational strategies and develop al-
gorithms to calculate geodesics and geodesic distances that
apply equally well to all metrics in the family. Shooting
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methods for the calculation of geodesics have been used in
some previous studies of plane shapes (Klassen et al. 2004;
Mio et al. 2007b). However, energy minimization is a more
attractive alternative as it leads to more efficient and robust
algorithms for the calculation of shape geodesics. Evidence
supporting this fact is offered by the results of Schmidt et al.
(2006), Klassen and Srivastava (2006), Joshi et al. (2007).
Energy minimization leads to an improvement of computa-
tional efficiency over shooting methods by orders of mag-
nitude. However, in contrast with the computational mod-
els of Klassen and Srivastava (2006), Joshi et al. (2007),
the energy minimization algorithms of this paper have the
added advantage that each step of the minimization process
scales linearly with the dimension k of the ambient Euclid-
ean space. Given two shapes, they are first connected by a
path in the pre-shape manifold, which is gradually deformed
to a geodesic following the negative gradient flow of the en-
ergy. A substantial part of this work is devoted to the inves-
tigation of the geometry of pre-shape manifolds of elastic
strings and path spaces of pre-shapes to set up and integrate
the evolution equations. From a computational standpoint,
the payoff of this detour through geometry is a set of al-
gorithms that are efficient and rather simple to implement.
We illustrate the flexibility offered by the models through
various examples, carry out shape retrieval experiments and
compare the performance of the metrics with some previ-
ously reported results to demonstrate the ability of the elas-
tic metrics to discriminate shapes.

Another important problem in shape analysis is to deter-
mine the particular features or regions that make two shapes
to be perceived as similar or different. For example, in med-
ical imaging, shape differences are often concentrated in
particular areas, so it is important to have a localization tool
to characterize and detect the regions where the main mor-
phological differences occur. To quantify these local con-
tributions, we resort to the geodesic deformation fields and
introduce the notion of energy density functions that de-
scribe the distribution of the total (geodesic) deformation
energy along the strings. We also examine the limit behav-
ior of the HEM metrics as the tension coefficient a → ∞.
As expected, the ∞-tension limit coincides with the arc-
length model of Klassen and Srivastava (2006). At the other
extreme, with the full relaxation of the tension (that is, as
a → 0), the homogeneous elastic metrics degenerate and
become singular in directions tangential to the curves. Ex-
tensions of the model to shapes of surfaces and other multi-
dimensional objects, the investigation of models of inhomo-
geneous and anisotropic elastic shapes, the study of learning
techniques to select the elasticity coefficients for a particu-
lar problem, and statistical modeling of shapes based on the
elastic metrics will be considered in future work.

The paper is organized as follows. In Sect. 2, we con-
struct the pre-shape manifold of closed elastic strings and

introduce the homogeneous Riemannian metrics. In Sect. 3,
we show that the metrics are invariant under the action of the
diffeomorphism group of the circle and thus induce metrics
on shape space. Matching of a family of curves is discussed
in Sect. 4. Path spaces and the energy functional are intro-
duced in Sect. 5. This is followed by a discussion, in Sect. 6,
of a procedure to find the closest pre-shape to a given curve
using a Riemannian version of Newton’s method. Section 7
brings all of these elements together in the calculation of
pre-shape geodesics via energy minimization. Energy den-
sity functions are also introduced and several examples of
geodesics are given. In Sect. 8, we discretize the model and
provide pseudo-code for the algorithms. Experimental re-
sults are presented in Sect. 9 and the limit behavior of the
homogeneous metrics is discussed in Sect. 10. We close the
paper with a summary and discussion of future work.

2 Pre-Shape Space of Closed Curves

We study the shapes of parametric curves α : S
1 → R

k .
A point z ∈ S

1 is often expressed as z = ejs , s ∈ [0,2π].
For a mapping F defined on S

1, we abuse notation and
frequently write F(z) = F(s). We also express the veloc-
ity vector ∂sα(ejs) simply as α′(s). Throughout the pa-
per, we assume that the curves are non-singular; that is,
α′(s) 	= 0, for every s. Let S

k−1 be the unit sphere in R
k

centered at the origin. The simplest generalization of the
representation of plane curves used in Mio et al. (2007b) is
the log-polar representation of the velocity field of α given
by the pair (ϕ, ν), where ϕ : S

1 → R and ν : S
1 → S

k−1

are given by ϕ(s) = log‖α′(s)‖ and ν(s) = α′(s)/‖α′(s)‖.
Thus, α′(s) = eϕ(s)ν(s). ϕ is the modular component of the
velocity in logarithmic scale and ν is the direction field or
tangent indicatrix. This leads us to consider the space M

formed by all such pairs equipped with various Riemannian
structures to be described below. Note that a pair (ϕ, ν) de-
termines a parametric curve α up to translations. The curve
is given by

α(s) = x0 +
∫ s

0
eϕ(ζ )ν(ζ ) dζ, (3)

where x0 ∈ R
k is arbitrary.

It is often convenient to view M as a subspace of the
vector space N of pairs of mappings (ϕ, ν), ϕ : S

1 → R and
ν : S

1 → R
k . The difference between M and N is that, in the

space N , ν is not restricted to take values in S
k−1. Infinites-

imal variations of (ϕ, ν) in N (or equivalently, tangent vec-
tors to N at (ϕ, ν)) are given by pairs (h,w), where h : S

1 →
R and w : S

1 → R
k . Tangent vectors to M at (ϕ, ν) ∈ M are

those that satisfy the constraint w(s) · ν(s) = 0, for every
s ∈ S

1, which ensures that w(s) be tangent to S
k−1 at ν(s).

The representation of a parametric curve α via the pair
(ϕ, ν) is clearly invariant under translations since it is based
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on the velocity field of α. Invariance under scale will be
achieved by fixing the length to be, say, 2π . Since ‖α′(s)‖ =
eϕ(s), this condition may be expressed as

∫ 2π

0 eϕ(s) ds = 2π .
Moreover, as α′(s) = eϕ(s)ν(s), the pair (ϕ, ν) ∈ M rep-
resents a closed curve if and only if

∫ 2π

0 ν(s)eϕ(s) ds = 0.
Thus, our interest is in the submanifold P of M consisting
of all pairs satisfying these two constraints, which we refer
to as the pre-shape space of closed curves. Thus, we have
the following hierarchy of spaces:

P ⊂ M ⊂ N, (4)

where P is the space of primary interest, while M and N

will facilitate the geometric analysis of P . More formally, let
� : N → R and δ : N → R

k be the length and displacement
functionals defined as

�(ϕ, ν) =
∫ 2π

0
eϕ(s) ds and

(5)

δ(ϕ, ν) =
∫ 2π

0
ν(s)eϕ(s) ds,

respectively. Then, the pre-shape space may be expressed as

P = M ∩ �−1(2π) ∩ δ−1(0). (6)

Now, we introduce Riemannian structures on N that gen-
eralize (2) to curves in Euclidean space of any dimension.
Let a, b > 0 be parameters representing the tension and
rigidity coefficients of the strings. Define

〈(h1,w1), (h2,w2)〉(ϕ,ν)

= a

∫ 2π

0
h1(s)h2(s)e

ϕ(s) ds

+ b

∫ 2π

0
(w1(s) · w2(s))e

ϕ(s) ds. (7)

The elasticity coefficients a and b have been omitted from
the left-hand side of (7) to avoid cumbersome notation.

Given pre-shapes pi = (ϕi, νi), i = 0,1, we define the
pre-shape distance d(p0,p1) as the geodesic distance in
P with respect to the Riemannian structure on P induced
by (7). If we multiply a and b by a common factor, we sim-
ply scale the metric globally. Hence, we often assume that
a + b = 1 and essentially have a 1-parameter family of pre-
shape metrics.

3 Shape Spaces

The pre-shape representation of a curve, introduced in
Sect. 2, is invariant under translations and the scale has been
fixed by normalizing the lengths of all curves to be 2π . How-
ever, the representation is sensitive to reparametrizations and
rotations. In this section, we first examine the effect of these
transformations on (ϕ, ν).

3.1 The Right Action of the Diffeomorphism Group

If α : S
1 → R

k is a curve and γ : S
1 → S

1 is a diffeomor-
phism, the reparametrization of α by γ is the curve αγ given
by αγ (s) = α(γ (s)). The velocity of αγ at s is α′

γ (s) =
α′(γ (s))‖∂sγ (s)‖. Thus, if (ϕ, ν) is the pair that represents
α, the curve αγ is represented by (ϕ ◦ γ + log‖∂sγ ‖, ν ◦ γ ),
where ◦ denotes composition of mappings. This suggests
that we define a right action of the diffeomorphism group D
of the circle on N by

(ϕ, ν) · γ = (ϕ ◦ γ + log‖∂sγ ‖, ν ◦ γ ). (8)

A simple change-of-variables argument shows that the dif-
feomorphism group D acts by isometries on N , so that

d((ϕ0, ν0), (ϕ1, ν1)) = d((ϕ0, ν0) · γ, (ϕ1, ν1) · γ ), (9)

for any γ ∈ D . The invariance of d under γ implies that the
distance does not depend on the particular parametrizations
chosen, only on the point correspondences they induce since
parametrizations that induce the same correspondences are
those that differ by the action of some γ . Note that the ac-
tion is also compatible with the hierarchy (4) of spaces in
the sense that it preserves the subspaces P and M . In other
words, if (ϕ, ν) ∈ P or M , then (ϕ, ν) · γ ∈ P or M , respec-
tively.

3.2 The Left Action of the Rotation Group

The action of the rotation group SO(k) on R
k induces a left-

action of SO(k) on N by isometries, as follows:

U · (ϕ, ν) = (ϕ,Uν), (10)

where U ∈ SO(k) and (ϕ, ν) ∈ N . The action is trivial on
the modular component ϕ since rotations do not affect the
speed of a parametric curve. In some applications, one may
wish to consider the action of the full orthogonal group O(k)

in order to include orientation-reversing orthogonal transfor-
mations such as reflections. The SO(k) action is also com-
patible with the hierarchy (4).

3.3 Geodesic Shape Spaces

We define the shape space S of closed curves as the (double)
quotient space of P under the actions of SO(k) and D ; that
is,

S = SO(k)\P/D . (11)

The orbit of a pre-shape (ϕ, ν) under this two-sided action
is given by
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O(ϕ, ν)

= {U · (ϕ, ν) · γ |U ∈ SO(k) and γ ∈ D}
= {(ϕ ◦ γ + log‖∂sγ ‖,Uν ◦ γ ) |U ∈ SO(k), γ ∈ D}

(12)

and each element of S can be identified with an orbit in P .
If s0, s1 ∈ S, we define the geodesic shape distance by

d(s0, s1) = inf
(ϕ0,ν0)
(ϕ1,ν1)

d((ϕ0, ν0), (ϕ1, ν1)), (13)

where (ϕi, νi), i = 0,1, range over the orbit associated with
si . Thus, for each choice of a and b, we have constructed a
geodesic shape space of closed homogeneous elastic curves,
which we refer to as the HEM(a, b) model. Since both
SO(k) and D act on P by isometries, to calculate the dis-
tance, one may fix any pre-shape (ϕ0, ν0) representing s0

and take the infimum only over the orbit of a representative
(ϕ1, ν1); that is,

d(s0, s1) = inf
γ∈D

U∈SO(k)

d((ϕ0, ν0),U · (ϕ1, ν1) · γ ). (14)

4 Correspondences and Parametrizations

In this section, we address the elastic registration problem
for curves in R

k . The techniques can be used as a general
tool for establishing point correspondences for a given fam-
ily of curves and also for the estimation of a diffeomorphism
γ and an orthogonal transformation U that will allow us to
approximate the shape distance defined in (14). To obtain
accurate estimates of the shape distance, the registration cri-
terion should be as compatible as possible with the geodesic
metrics in pre-shape space and not just seek to match some
geometric features of the curves.

Curve matching based on velocity fields or curvature
functions have been investigated by many authors, primar-
ily in the context of plane curves (see e.g. Cohen et al. 1992;
Geiger et al. 1995; Tagare 1999; Tagare et al. 2002; Sebas-
tian et al. 2003; Zheng et al. 2005; Mio et al. 2007b). We
utilize a variant of these models, which take the elasticity
coefficients into account and can be applied to curves in ar-
bitrary Euclidean spaces. We base correspondences on elas-
tic alignment of velocity fields, as a first-order representa-
tion is more compatible with the pre-shape metrics proposed
in this paper. Since velocity fields are not invariant under
rotations of a curve, we will have to optimize alignments
over rotations as well. This is similar to the sensitivity of
the proposed pre-shape metrics to rotational alignment, as
discussed in Sect. 3.3.

4.1 Elastic Correspondence

We begin with two curves C1 and C2 viewed as submani-
folds of R

k . We use parametrizations α,β : S
1 → R

k of C1

and C2, respectively, to describe a correspondence. For each
s, α(s) and β(s) are to be viewed as matching points. Let
γ : S

1 → S
1 be an orientation-preserving diffeomorphism.

Recall that the reparametrization of β by γ is the curve
s �→ β(γ (s)), which is denoted βγ . Clearly, for any dif-
feomorphism γ1, the correspondence between C1 and C2

established by α and β is the same as that given by the
pair αγ1 and βγ1 . Thus, one may fix a parametrization of
C1 and only consider reparametrizations of C2. Through-
out our discussion of curve registration, α and β will be
constant speed parametrizations and we consider correspon-
dences induced by α and βγ . Let v(s) = α′(s)/‖α′(s)‖ and
w(s) = β ′(s)/‖β ′(s)‖ be the direction fields of the curves
C1 and C2. For an orientation-preserving diffeomorphism
γ , consider the functional

G1(γ ;α,β)

= a

∫ 2π

0
log2 ‖γ ′(s)‖ds

+ b

∫ 2π

0
‖v(s) − w(γ (s))‖2

√
1 + ‖γ ′(s)‖2 ds, (15)

with a, b > 0. The first term quantifies the stretching en-
ergy associated with γ on a logarithmic scale. The second
term measures the discrepancy of the velocity fields of α and
βγ , which is calculated with respect to the arc-length ele-
ment dτ =√1 + ‖γ ′(s)‖2 ds of the graph � = {(z, γ (z)) :
z ∈ S

1} of γ . The cost function G1 can be re-expressed more
symmetrically as

G1(γ ;α,β) = a

∫ 2π

0
log2 ‖γ ′(s)‖ds

+ b

∫
�

‖v(p1(τ )) − w(p2(τ ))‖2 dτ, (16)

where p1 and p2 are the projections onto the first and sec-
ond coordinates, respectively. G1 is symmetric in the sense
that G1(γ ;α,β) = G1(γ

−1;β,α). For curve registration,
we seek γ̂ that minimizes G1. In implementations, we ap-
proximate diffeomorphisms with piecewise linear homeo-
morphisms. Computational strategies to estimate γ̂ for en-
ergy functionals such as G1 using dynamic programming
(DP) were studied in Sebastian et al. (2003) for both open
and closed curves. As velocity fields are not invariant un-
der orthogonal transformations, we will combine this elastic
alignment procedure with an optimization over orthogonal
maps or rotations.
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4.2 Rotational Alignment

We now discuss the optimal rotational alignment of the di-
rection fields of α and βγ . If U ∈ SO(k), the direction field
of the rotated curve U ◦βγ is s �→ Uw(γ (s)). The goal is to
minimize

G2(U ;α,β, γ ) =
∫

�

‖v(p1(τ )) − Uw(p2(τ ))‖2 dτ. (17)

To include orientation reversing mappings, the minimization
should be carried out over the full orthogonal group O(k).
This optimization problem is similar to that encountered in
Procrustes alignment of shapes (Kendall 1984). We give an
explicit description of the solution in the discrete case, but
the continuous version is similar (Mio et al. 2007a). Let
ζ : [0,2π] → � be a constant speed parametrization of �.
Sample the fields v(p1(ζ(s))) and w(p2(ζ(s))) at n uni-
formly spaced point s1, . . . , sn ∈ [0,2π] to obtain unit vec-
tors vj ,wj , 1 � j � n. Let V and W be the k × n ma-
trices whose columns are vj and wj . If V WT = V1�V T

2
is a singular value decomposition of V WT , the solution
of (17) over O(k) is given by Û = V1V

T
2 . To optimize

only over rotations, one may use the following variant. If
det(V1V

T
2 ) < 0, let the least eigenvalue of the nonnega-

tive diagonal matrix � occur at the j th column. Then, we
change the sign of the j th column of V1 and proceed as be-
fore.

4.3 Full Correspondence

The full alignment problem takes into account both the ac-
tion of orthogonal transformations and reparametrizations.
Starting with constant speed parametrizations α and β of C1

and C2, the goal is to minimize the energy functional

G(γ,U ;α,β)

= a

∫ 2π

0
‖ logγ ′(s)‖2 ds

+ b

∫
�

‖v(p1(τ )) − Uw(p2(τ ))‖2 dτ, (18)

over the pair (γ,U). Starting with the variable U , we ap-
proach this optimization problem alternating over U and γ .
We initialize the search with the diffeomorphism γ as the
identity map, so that ‖γ ′(s)‖ = 1, ∀s. Note that, for a fixed

γ , the minimization of G over U reduces to the minimiza-
tion of the functional G2 of Sect. 4.2, which has a closed-
form solution. The γ -step was discussed in Sect. 4.1.

If (Û , γ̂ ) represents an optimal pair, then we use the cor-
respondence induced by α(s) and β∗(s) = Û ◦ β(γ̂ (s)) to
compare the shapes of C1 and C2. As observed earlier, for
any γ , the point correspondence between C1 and C2 induced
by α and β∗ is identical to that induced by αγ and β∗

γ , for
any diffeomorphism γ . However, the discrete representation
of β∗ may lead to regions where C2 may be highly under-
sampled or oversampled, due to the distortions introduced
by γ̂ , while the sampling of C1 is uniform. In implementa-
tions, this may produce noticeable errors, so that it is desir-
able to reparameterize both curves to distribute the distor-
tions more equitably. This is discussed next.

4.4 Balanced Parametrizations

Let αj : S
1 → R

k , 1 � j � n, be constant-speed parame-
trizations of a family of curves Cj , and let γj : S

1 → S
1

be diffeomorphisms. Consider the parametrization of Cj

given by αγj
(s) = αj (γj (s)). Suppose we sample αγj

us-
ing a uniform grid on the interval [0,2π]. Then, Cj will be
undersampled where stretching occurs (near points where
‖γ ′

j (s)‖ > 1) and oversampled near compression points. Our
goal is to reparameterize all curves so that the correspon-
dences induced by αγj

are maintained and the sampling dis-
tortion becomes more uniformly distributed. The problem
posed in Sect. 4.3 is the special case where n = 2, γ1 is the
identity map, and γ2 = γ̂ .

Let � = {(γ1(s), . . . , γn(s)), s ∈ [0,2π]} ⊂ S
1 ×· · ·×S

1

and λ : S
1 → � be a constant-speed parametrization of �.

To make the choice of λ unique, we impose the condi-
tion λ(0) = (γ1(0), . . . , γn(0)). Let pj : � → S

1 be the pro-
jection onto the j th coordinate. Define λj : S

1 → S
1 by

λj = pj ◦ λ. Then, one can verify that the parametriza-
tions αγj ◦λj

, 1 � j � n, preserve the correspondences and
yield more uniform samplings upon discretization. The im-
plementation details are similar to those in Sebastian et al.
(2003), Mio et al. (2007b).

4.5 Examples of Shape Correspondences

Figure 1 shows two examples of shape correspondences ob-
tained with the method just described. For each pair, dy-
namic programming was used to align the velocity fields and

Fig. 1 Matching pairs of plane
shapes from the LEMS database
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then balanced parametrizations were extracted as described
in Sect. 4.4. The shapes used are from the LEMS database.
In each case, 200 points were used to represent the contours
and correspondences were obtained with elasticity coeffi-
cients a = 0.1 and b = 0.9. Some corresponding points are
highlighted for visualization purposes. Even in the second
example, where the thumb is subject to a severe deforma-
tion, the use of a low tension coefficient allows us to obtain
fairly natural correspondences on other parts of the contour.
A similar example for curves in 3D space is shown in Fig. 2;
the curves were extracted from the contour surface of a cow.
Figure 3 shows the results of the shape matching technique
applied to two families of shapes. The leaf data used is from
the Swedish Museum of Natural History and the jets from
the LEMS database. In each case, all curves were aligned
to the first using dynamic programming and then a balanced
set of parametrizations was constructed for the entire set.

5 Path Spaces and the Energy Functional

Given pre-shapes (�0,V0), (�1,V1) ∈ P , our next goal is
to construct a geodesic connecting them in P . As remarked

Fig. 2 Matching the curves highlighted on the contour surface of a
cow. Color-coded correspondences are shown on the right

in the Introduction, it is well established that energy min-
imization leads to more efficient algorithms, so this is the
strategy adopted. The idea is to begin with a path in P from
(�0,V0) to (�1,V1) and gradually deform it to a geodesic
following the negative (Riemannian) gradient flow of the en-
ergy. Implicit in this statement is the assumption that a path
space, where the energy is defined, equipped with a Rie-
mannian structure has been constructed. We now introduce
the various path spaces that arise in our calculation of geo-
desics.

5.1 Path Spaces

Let I = [0,1]. A path in M is given by a pair of mappings
ϕ : S

1 × I → R and ν : S
1 × I → S

k−1. We denote the path
by (ϕt , νt ), t ∈ I , where ϕt (s) = ϕ(s, t) and νt (s) = ν(s, t).
We think of t as a time (or deformation) parameter and s

as the curve parameter. Let Y be the space of all continu-
ous paths in M (with square integrable derivative). A tan-
gent vector to Y at (ϕt , νt ), which can be interpreted as
the “direction” of an infinitesimal deformation of (ϕt , νt ),
is represented by a pair (ht ,wt ), with ht : S

1 → R and
wt : S

1 → R
k , with the property that wt(s) · νt (s) = 0, for

each t and s. This last condition ensures that wt(s) is tan-
gent to the unit sphere S

k−1 at νt (s). Define a Riemannian
structure on Y by the inner product

〈
(h1

t ,w
1
t ), (h

2
t ,w

2
t )
〉
(ϕt ,νt )

= 〈(h1
0,w

1
0), (h

2
0,w

2
0)
〉
(ϕ0,ν0)

+
∫ 1

0

〈
Dt(h

1
t ,w

1
t ),Dt (h

2
t ,w

2
t )
〉
(ϕt ,νt )

dt, (19)

Fig. 3 Row 1 shows the alignment of the silhouettes of 5 leaves with a balanced set of parametrizations. Row 2 displays the result of a similar
experiment with the contours of 5 jets



Int J Comput Vis (2009) 82: 96–112 103

where Dt denotes covariant differentiation in M along the
path. This type of metric was introduced by Palais (1963).
In computer vision, variants of the metric have been used
in curve evolution based on gradient methods by Mio et al.
(2004) for the calculation of elastica, by Sundaramoorthi
et al. (2007) in the study of Sobolev active contours, and by
Klassen and Srivastava (2006) in shape analysis. We shall
consider the following submanifolds of Y :

(i) the space ZM ⊂ Y of paths in M satisfying the bound-
ary conditions (ϕ0, ν0) = (�0,V0) and (ϕ1, ν1) =
(�1,V1);

(ii) the space ZP ⊂ ZM of paths in the pre-shape space P

satisfying the boundary conditions described in (ii); a
path in ZP has the property that each (ϕt , νt ), t ∈ I , also
satisfies the length and closure constraints that define
pre-shapes.

We thus have the following nested sequence of path spaces:
ZP ⊂ ZM ⊂ Y . Our goal is to find a minimal energy path in
ZP , but we exploit this hierarchy in the development of our
algorithms.

5.2 The Energy of a Path

On the path space Y , define the energy functional E : Y →
R by

E(ϕt , νt ) = 1

2

∫ 1

0
〈(∂tϕt , ∂t νt ), (∂tϕt , ∂t νt )〉(ϕt ,νt )

dt. (20)

A pre-shape geodesic between (�0,V0), (�1,V1) ∈ P is a
path (ϕt , νt ) ∈ ZP , which is a critical point of the energy
E restricted to ZP . We are particularly interested in paths
of minimal energy since they represent minimal length geo-
desics.

6 Pre-Shape Projection

Our energy minimization algorithm will rely on a projec-
tion � that maps a pair (ϕ, ν) ∈ M (near P ) to the nearest
pre-shape in P . If α is a curve associated with (ϕ, ν), as de-
scribed in (3), � turns α into a closed curve and normalizes
its length to be 2π . In the construction of geodesics, we shall
use � to map a path in M obtained as an infinitesimal de-
formation of a path in P back to P . Thus, our main interest
is in the projection of pairs (ϕ, ν) that lie in a small vicinity
of P in M . We employ a Riemannian version of Newton’s
method to search for the pre-shape closest to (ϕ, ν).

A pair (ϕ, ν) ∈ M represents a pre-shape if and only
if �(ϕ, ν) = 2π and δ(ϕ, ν) = 0 ∈ R

k , where � and δ =
(δ1, . . . , δk) are the length and displacement functionals de-
fined in (5). Consider the k + 1 residual functions

ρ0(ϕ, ν) = 2π − �(ϕ, ν) and ρj (ϕ, ν) = −δj (ϕ, ν),
(21)

1 � j � k, whose simultaneous vanishing is equivalent to
(ϕ, ν) being a pre-shape. Letting

H(ϕ, ν) = 1

2
ρ2

0(ϕ, ν) + 1

2

k∑
j=1

ρ2
j (ϕ, ν), (22)

the pair (ϕ, ν) is a pre-shape if and only if H(ϕ, ν) = 0.
We employ Newton’s method on the manifold M to find the
nearest zero of H , thereby projecting (ϕ, ν) onto P . This
requires the computation of the gradient of H relative to the
Riemannian metric determined by the elasticity coefficients
a, b. As shown in Appendix A, the gradient of H at (ϕ, ν),
as a functional on N , is the mapping ∇NH : S

1 → R × R
k

given by

∇NH(s) = −ρ0(ϕ, ν)∇�(s) −
k∑

j=1

ρj (ϕ, ν)∇δj (s), (23)

where

∇�(s) =
(

1

a
,0

)
and ∇δj (s) =

(
νj (s)

a
,
ej (s)

b

)
. (24)

Here, ej : S
1 → R

k is the constant function ej (s) = ej ,
where {e1, . . . , ek} is the canonical basis of R

k , 0 denotes the
constant function 0 ∈ R

k , and the unit vector ν(s) is written
as ν(s) = (ν1(s), . . . , νk(s)). We have dropped (ϕ, ν) from
the notation of gradients to keep the expressions more man-
ageable. The gradient ∇MH of H as a functional on M can
be obtained by orthogonally projecting ∇NH onto the tan-
gent space to M at (ϕ, ν). If we write the modular and di-
rectional components as

∇NH(s) = (∇ϕ
NH(s),∇ν

NH(s)) and
(25)

∇MH(s) = (∇ϕ
MH(s),∇ν

MH(s)),

the projection amounts to making ∇ν
NH(s)) orthogonal to

ν(s) in R
k , for each s. Therefore,

(∇ϕ
MH(s),∇ν

MH(s))

= (∇ϕ
NH(s),∇ν

NH(s) − [∇ν
NH(s) · ν(s)]ν(s)). (26)

In each step of Newton’s method, the geodesic update of the
directional component is performed along great circles in
S

k−1 to ensure that each ν(s) remains a unit vector. Letting

ε(ϕ, ν) = H(ϕ, ν)

〈∇MH,∇MH 〉 (ϕ,ν)

and g(s) = ∇ν
MH(s),

(27)

the (spherical) update rule is
⎧⎨
⎩

ϕnew(s) = ϕ(s) − ε∇ϕ
MH(s)

νnew(s) = cos(ε‖g(s)‖)ν(s) − sin(ε‖g(s)‖) g(s)
‖g(s)‖ ,

(28)

if g(s) 	= 0. Otherwise, νnew(s) = ν(s).
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7 Geodesics in Pre-Shape Space

To calculate geodesics in pre-shape space, we resort to a gra-
dient search for paths of minimal energy.

7.1 Initialization

To initialize the energy minimization process, we use the
following construction. Let α0, α1 : S

1 → R
k be paths as-

sociated with the given pre-shapes, as described in (3). We
linearly interpolate the curves to obtain a 1-parameter family
of curves αt , 0 � t � 1. If the velocity fields of these curves
vanish at some points, we gently deform the family to make
all curves non-singular and then scale each αt to have length
2π . The pre-shapes (ϕt , νt ) associated with αt , t ∈ I , yield
the desired path.

7.2 Covariant Integration and Parallel Transport

In order to describe the calculation of the gradient of the
energy E at (ϕt , νt ), we first discuss covariant integration
in M of vector fields along the path (ϕt , νt ). Let (ft , xt ) be
a vector field along a path (ϕt , νt ) ∈ Y , which is tangential
to M for each t ∈ I . This means that xt (s) · νt (s) = 0 is
satisfied for every s, t . As shown in Appendix B, a vector
field (Ft ,Xt ) along (ϕt , νt ) is tangential to M and represents
a covariant integral of (ft , xt ) if and only if it satisfies the
system of differential equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tFt (s) = ft (s) − 1
2∂tϕt (s)Ft (s)

+ 1
2

b
a
[Xt(s) · ∂tνt (s)]

∂tXt (s) = xt (s) − 1
2 (Xt (s)∂tϕt (s) + Ft(s)∂t νt (s))

− [Xt(s) · ∂tνt (s)]νt (s).

(29)

In the calculation of geodesics, we will integrate this sys-
tem numerically with prescribed initial conditions (F0,X0).
In the special case where the field (ft , xt ) is identically
zero, the integral field (Ft ,Xt ) is the parallel transport of
(F0,X0) along (ϕt , νt ).

7.3 The Gradient of the Energy

Given a path (ϕt , νt ) ∈ ZP , we first calculate the gradient of
E at (ϕt , νt ) as a functional on the path space Y . For this pur-
pose, we consider a variation (ϕt (s;μ), νt (s;μ)) of (ϕt , νt )

in Y along a direction (ht ,wt ), which is defined on a small
interval −ε < μ < ε. This means that (ϕt (s;0), νt (s;0)) =
(ϕt , νt ), the path (ϕt (_ ;μ), νt (_ ;μ)) ∈ Y for each fixed μ,

ht (s) = ∂

∂μ
ϕt (s;μ)

∣∣
μ=0 and

(30)
wt(s) = ∂

∂μ
νt (s;μ)

∣∣
μ=0.

Differentiating (20) at μ = 0, we obtain

dE(ϕt ,νt )(ht ,wt )

=
∫ 1

0

〈
Dμ(∂tϕt , ∂t νt )

∣∣
μ=0, (∂tϕt , ∂t νt )

〉
(ϕt ,νt )

dt

=
∫ 1

0
〈Dt(ht ,wt ), (∂tϕt , ∂t νt )〉(ϕt ,νt )

dt. (31)

In (29), we set ft = ∂tϕt and xt = ∂tνt , and integrate the
differential equation with initial condition (F0,X0) = (0,0)

to get a vector field (F 1
t ,X1

t ) along the path (ϕt , νt ). Then,
using (19), we may rewrite (31) as

dE(ϕt ,νt )(ht ,wt )

=
∫ 1

0

〈
Dt(ht ,wt ),Dt (F

1
t ,X1

t )
〉
(ϕt ,νt )

dt

= 〈(ht ,wt ), (F
1
t ,X1

t )
〉
(ϕt ,νt )

. (32)

Thus, the gradient of E at (ϕt , νt ) as a functional on Y is
given by

∇Y E(ϕt , νt ) = (F 1
t ,X1

t ). (33)

To obtain ∇ZM
E(ϕt , νt ), we project ∇Y E(ϕt , νt ) orthogo-

nally onto the tangent space of ZM with respect to the Palais
inner product. Since the space ZM is obtained from Y by
imposing the boundary conditions (ϕ0, ν0) = (�0,V0) and
(ϕ1, ν1) = (�1,V1) on a path (ϕt , νt ), a tangent vector to Y

at (ϕt , νt ) is tangent to ZM if and only if it vanishes at t = 0
and t = 1. Moreover, as explained in Appendix C, the or-
thogonal complement of the tangent space of ZM in the tan-
gent space of Y at (ϕt , νt ) is formed by the covariantly linear
fields (that is, fields whose second covariant derivatives van-
ish) in M along (ϕt , νt ). By construction, the field (F 1

t ,X1
t )

vanishes at t = 0. Thus, to orthogonally project (F 1
t ,X1

t )

onto the tangent space of ZM , we simply need to subtract
from (F 1

t ,X1
t ) the covariantly linear field that vanishes at

t = 0 and coincides with (F 1
t ,X1

t ) at t = 1. Again, we re-
sort to covariant integration, this time applied to the reverse
of the path (ϕt , νt ). We first construct a parallel field along
the reverse path with initial condition (F 1

1 ,X1
1). Reversing

the path again, after integration, we obtain a parallel field
(Gt , Yt ) along (ϕt , νt ) whose value at t = 1 is (F 1

1 ,X1
1). The

field (tGt , tYt ) is covariantly linear with the desired proper-
ties. Therefore, the gradient is given by

∇ZM
E(ϕt , νt ) = ∇Y E(ϕt , νt ) − (tGt , tYt ). (34)

Our goal is to minimize E on the path space ZP . The
direct calculation of ∇ZP

E(ϕt , νt ) is a possible approach,
however, the computation is costly for large values of k.
For this reason, we resort to an alternative strategy, which
replaces the gradient descent in ZP with its counterpart in
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ZM followed by the closest-point projection onto ZP . Ex-
periments with the two strategies for k = 2 indicate that the
number of iterations needed for the calculation of geodesics
is approximately the same and the results are nearly identi-
cal. Thus, the proposed strategy is adopted.

7.4 Pre-Shape Geodesics

We now present an algorithm to calculate a pre-shape geo-
desic from (�0,V0) to (�1,V1). Let ε, δ > 0 be small real
numbers.

(i) Initialize the search with a path (ϕt , νt ) in ZP , which
can be constructed, for example, as described in
Sect. 7.1.

(ii) Let (ft , xt ) = (∂tϕt , ∂t νt ). Using (29), integrate this
field covariantly along the path (ϕt , νt ) with zero initial
condition. According to (33), the integral field (Ft ,Xt )

gives the gradient ∇Y E(ϕt , νt ).
(iii) Using (29), calculate the parallel transport of (F1,X1)

along the reverse of the path (ϕt , νt ). Reverse the path
and the parallel field again to obtain a parallel field
(Gt , Yt ) along (ϕt , νt ). By (34), the ZM -gradient of E

is given by ∇ZM
E(ϕt , νt ) = ∇Y E(ϕt , νt ) − (tGt , tYt ).

(iv) Write the modular and directional components of the
gradient as ∇ZM

E = (∇ϕ
ZM

E,∇ν
ZM

E). Update (ϕt , νt )

as a path in ZM according to

ϕ∗
t = ϕt − ε∇ϕ

ZM
E(ϕt , νt );

ν∗
t (s) = νt (s), if ∇ν

ZM
E(ϕt , νt )(s) = 0;

(35)
νt (s) = cos(εη(t, s))νt (s) − sin(εη(t, s))A(t, s),

otherwise.

Here, η(t, s) = ‖∇ν
ZM

E(ϕt , νt )(s)‖ and A(t, s) =
∇ν

ZM
E(ϕt , νt )(s)/η(t, s), where the norm is Euclidean.

Note that the update of νt takes place along great cir-
cles ensuring that ν∗

t is a unit vector.

(v) Project each (ϕ∗
t , ν∗

t ) onto the pre-shape space P , as
discussed in Sect. 6, to obtain a path (ϕt , νt )new in P .

(vi) Iterate the process until ‖(ϕt , νt )new − (ϕt , νt )‖(ϕt ,νt ) <

δ; that is, until the update is δ-small as measured by the
Palais norm.

7.5 Energy Density

A (parametric) pre-shape geodesic (ϕt (s), νt (s)), 0 � s �
2π , 0 � t � 1, is traversed with constant speed ω, where ω

is the length of the geodesic. The energy of the path is given
by

E =
∫ 2π

0

∫ 1

0

[
a(∂tϕ(s; t))2 + b‖∂tν(s; t)‖2]eϕt (s) dtds

= ω2. (36)

Thus, we define the energy density function ρ : S
1 → R by

ρ(s) = 1

ω2

∫ 1

0

(
a(∂tϕ(s; t))2 + b‖∂tν(s; t)‖2)eϕt (s) dt,

(37)

which quantifies the local contribution at s to the total en-
ergy of the geodesic path. The density function allows us to
trace back the regions that exhibit the highest shape resem-
blance or dissimilarity as measured by the elastic shape met-
ric. Note that ρ has been normalized so that

∫ 2π

0 ρ(s) ds = 1.
If desired, one can further decompose the energy into ten-
sion and bending components to quantify separately the
local contributions due to stretching (or compression) and
bending.

7.6 Examples of Geodesics

Figure 4 shows two examples of geodesics between shapes
from the LEMS database, which are calculated with elas-
ticity coefficients a = 0.1 and b = 0.9 and 200 points on

Fig. 4 Examples of geodesic interpolations between shapes from the LEMS database calculated with elasticity coefficients a = 0.1 and b = 0.9
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each contour. On each row, the first and last images depict
the given data and the intermediate shapes represent several
stages of the geodesic deformation. Figure 5 shows the evo-
lution of the energy during the construction of the geodesics
and the energy density functions associated with the geodes-
ics. We divided the interval [0,2π] into seven equal parts, as
illustrated in Fig. 4, and calculated the average value of the
density function in each of these intervals, which are shown
in the bar graphs. The first bin corresponds to the arc 1–2
and continues sequentially to bin 7, which is associated with
the arc 7–1. For the geodesic between the dog and the cow,
the highest values occur along the arcs 3–4 and 4–5, as in-
tuitively expected since these are the regions where defor-
mation due to bending is most pronounced. For the second
geodesic, the peak value occurs along the leg where the most
significant bending takes place. Although there is significant
shrinking along one of the arms, the density function has low
value along the arc 2–3 reflecting the fact that the tension co-
efficient used is relatively small so that compression can be
achieved with low energy expenditure. Similar examples for
curves in R

3 are shown in Fig. 6. The knot data used was
obtained from The KnotPlot Site developed by R. Scharein.

8 Computational Model and Algorithms

In the discrete model, we use polygonal representations of
curves with n + 1 vertices A0, . . . ,An, with the regularity
assumption that the edges ei = Ai − Ai−1, 1 � i � n, are

nondegenerate. For closed curves, A0 = An. If ri = log‖ei‖
and vi = eT

i /‖ei‖ are the modular and the (transpose of the)
directional components of the ith edge, we let

r =
⎡
⎢⎣

r1
...

rn

⎤
⎥⎦ and v =

⎡
⎢⎣

v1
...

vn

⎤
⎥⎦=

⎡
⎢⎣

v11 . . . v1k

...
. . .

...

vn1 . . . vnk

⎤
⎥⎦ . (38)

The pair (r, v) gives a discrete analogue of (ϕ, ν) ∈ M . More
generally, pairs (r, v) without the requirement that each vi

have unit Euclidean norm give discrete analogues of ele-
ments of N . Similarly, a tangent vector to M or N is rep-
resented by a pair (h,w), where h ∈ R

n and w is an n × k

matrix. In this representation, the inner product (7) becomes
〈
(h,w), (h∗,w∗)

〉
(r,v)

= a

n∑
i=1

hih
∗
i e

ri + b

n∑
i=1

(wi · w∗
i )e

ri . (39)

To discretize a path (ϕt , νt ), we sample the interval I =
[0,1] at m+1 uniformly distributed points, so that a path be-
comes a sequence (r(0), v(0)), . . . , (r(m), v(m)). The dis-
crete analogues of the length and displacement functionals,
introduced in (5), are

�(r, v) =
n∑

i=1

eri and δj (r, v) =
n∑

i=1

vij e
ri , (40)

and the residual functions defined in (21) become ρ0(r, v) =
2π − �(r, v) and ρj (r, v) = −δj (r, v), 1 � j � k. The rep-

Fig. 5 Plots of the evolution of the energy during the gradient search and the energy density functions for the geodesics in Fig. 4

Fig. 6 Two examples of shape
geodesics in 3D space
calculated with elasticity
coefficients a = 0.1 and b = 0.9
using data from The KnotPlot
Site
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resentation of the gradient vectors (24) take the form

∇�(r, v) =
⎛
⎜⎝
⎡
⎢⎣

1/a
...

1/a

⎤
⎥⎦ ,

⎡
⎢⎣

0 . . . 0
...

. . .
...

0 . . . 0

⎤
⎥⎦
⎞
⎟⎠ and

(41)

∇δj (r, v) =
⎛
⎜⎝
⎡
⎢⎣

v1j /a
...

vnj /a

⎤
⎥⎦ ,

⎡
⎢⎣

0 . . . 1/b . . . 0
...

. . .
...

. . .
...

0 . . . 1/b . . . 0

⎤
⎥⎦
⎞
⎟⎠ ,

where the entries 1/b appear on the j th column.

8.1 The Projection Algorithm

Let (r, v) be as above and δ > 0 a small real number.
The goal is to find the closest pair with the property that
ρj (r, v) = 0, for 0 � j � k.

Algorithm 8.1.1 (Pre-Shape Projection)

1. Calculate H(r, v) = 1
2

∑k
j=0 ρ2

j (r, v).
2. Using (42), calculate

∇NH(r, v) = −ρ0(r, v)∇�(r, v)

−
k∑

j=1

ρj (r, v)∇δj (r, v).

Let ∇r
NH(r, v) and ∇v

NH(r, v) be the modular and direc-
tional components of ∇NH(r, v), respectively.

3. Set ∇r
MH(r, v) = ∇r

NH(r, v).
4. Let qi be the ith row of ∇v

NH(r, v). Calculate q∗
i = qi −

(qiv
T
i )vi and let ∇v

MH(r, v) be the n × k matrix whose
ith row is q∗

i .
5. Set

∇MH(r, v) = ((∇r
MH(r, v),∇v

MH(r, v)).

6. Let ε(r, v) = H(r, v)/ 〈∇MH(r, v),∇MH(r, v)〉(r,v).
7. Update (r, v) spherically, as follows:

r = r − ε(r, v)∇r
M(r, v) and

vi = cos(ε(r, v)‖q∗
i ‖)vi − sin(ε(r, v)‖q∗

i ‖) q∗
i

‖q∗
i ‖ .

8. Iterate until ‖∇MH(r, v)‖(r,v) < δ.

8.2 The Covariant Integration Algorithm

Let (r(t), v(t)), t = 0, . . . ,m, be the discrete representation
of a path in M and let (f (t), x(t)) be a vector field tangential
to M along the path. This means that xi(t)vi(t)

T = 0, for
every 0 � t � m and 1 � i � n. We now present a first-order
algorithm to estimate the covariant integral of (f (t), x(t))

with initial conditions (F0,X0).

Algorithm 8.2.1 (Covariant Integration)

1. Set t = 0 and let F(t) = F0 and X(t) = X0. While t < m,
do:

2. For i = 1, . . . , n, calculate

�ri(t) = m
(
ri(t + 1) − ri(t)

)
and

�vi(t) = m
(
vi(t + 1) − vi(t)

)
.

Set

�iF(t) = fi(t) − 1

2
�ri(t)Fi(t) + b

2a
Xi(t)(�vi(t))

T

and

�iX(t) = xi(t) − 1

2

[
Xi(t)(�ri(t))

T + Fi(t)�vi(t)
]

− [Xi(t)(�vi(t))
T
]
vi(t).

3. Let �F(t) = [�F1(t) . . .�Fn(t)]T ∈ R
n and �X(t) be

the n × k matrix whose ith row is �iX(t).
4. Set

F(t + 1) = F(t) + 1

m
�F(t) and

X(t + 1) = X(t) + 1

m
�X(t).

5. Set t = t + 1.

8.3 Computation of Geodesics

Our goal is to construct a geodesic path between two discrete
pre-shapes (R0,V0) and (R1,V1), following the strategy de-
scribed in Sect. 7.4.

Algorithm 8.3.1 (Pre-Shape Geodesics) Let (R0,V0) and
(R1,V1) be discrete pre-shapes and ε, δ > 0 small real num-
bers.

1. Initialize the search with a path (r(t), v(t)), t = 0, . . . ,m,
where each (r(t), v(t)) is a pre-shape. This can be done,
for example, as described in Sect. 7.1.

2. For each 0 � t � m − 1, calculate

�r(t) = m(r(t + 1) − r(t)) and

�v(t) = m(v(t + 1) − v(t)).

3. Set

f (t) = �r(t) and x(t) = �v(t),

for 0 � t � m − 1, f (m) = 0, and x(m) = 0. Using Al-
gorithm 8.2, integrate the field (f (t), x(t)) covariantly
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along the path (r(t), v(t)) with initial condition zero. Let
the integral field be (F (t),X(t)).

4. Using Algorithm 8.2, integrate the zero field along the
reverse of the path (r(t), v(t)), with initial condition
(F (m),X(m)). Reverse the path and the resulting field
to obtain a parallel field (G(t), Y (t)) along (r(t), v(t)),
which agrees with (F (m),X(m)) at t = m.

5. Set

∇rE(t) = F(t) − (t/m)G(t) and

∇v
i E(t) = Xi(t) − (t/m)Yi(t).

6. Define the path (r∗(t), v∗(t)) according to

r∗(t) = r(t) − ε∇rE(t);
v∗
i (t) = vi(t), if ∇v

i E(t) = 0;
v∗
i (t) = cos(εηi(t))vi(t) − sin(εηi(t))Ai(t),

otherwise.

Here,

ηi(t) = ‖∇v
i E(t)‖ and Ai(t) = ∇v

i E(t)/‖∇v
i E(t)‖,

where the norms are Euclidean.
7. For 0 � t � m, use Algorithm 8.1 to project (r∗(t), v∗(t))

to a pre-shape (rnew(t), vnew(t)).
8. For 0 � t � m, calculate ζ(t) = ‖(rnew(t), vnew(t)) −

(r(t), v(t))‖2
(r(t),v(t)).

9. If
∑m

t=0 ζ(t) < δ, stop. The path (rnew(t), vnew(t)) is
the estimated geodesic. Else, set (r(t), v(t)) = (rnew(t),

vnew(t)) and go to Step 2.

9 Experimental Results

Recall that one of our goals is to produce metrics that can
discriminate shapes of curves in multi-dimensional space
using a representation that also allows us to construct geo-
desic shape spaces for other shape modeling tasks. We
present two sets of experiments with plane curves to demon-
strate that the proposed metrics can achieve shape classifi-
cation and retrieval results at least comparable to those ob-
tained with several other systems. The values of the elastic-
ity coefficients used were chosen experimentally, but future
work will address criteria for the selection of parameters.

9.1 LEMS-99

In this experiment, we use the LEMS-99 database—comp-
iled by B. Kimia—which consists of binary images depict-
ing 99 shapes divided into 9 categories with 11 shapes each,
as shown in Fig. 7. The binary images were segmented and
the noisy contours obtained were smoothed and sampled
with 300 points; this pre-processing stage is illustrated in
Fig. 8. The shape matching procedure described in Sect. 4
was used with homogeneous elastic coefficients a = 0.25
and b = 0.75 to estimate optimal parametrizations for shape
comparisons. The HEM(a, b) metric was first used with the

Fig. 7 LEMS-99 database compiled by B. Kimia: 99 shapes grouped into 9 categories
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Fig. 8 Shape preprocessing:
(a) original data; (b) segmented
contour; (c) smoothed contour

Table 1 Results of shape
retrieval experiments with the
LEMS-99 database shown in
Fig. 7. The results for SC, GM,
SE and IDSC-DP were reported
in Ling and Jacobs (2007)

Method 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC 97 91 88 85 84 77 75 66 56 37

GM 99 97 99 98 96 96 94 83 75 48

SE 99 99 99 98 98 97 96 95 93 82

IDSC-DP 99 99 99 98 98 97 97 98 94 79

HEM(0.25,0.75) 99 99 99 99 99 97 96 92 80 73

HEM(0.35,0.65) 99 99 99 99 98 97 97 91 84 75

HEM(0.40,0.60) 99 99 99 99 99 96 95 94 86 74

Table 2 Results of leaf classification experiments with the HEM metric for two different values of the elasticity coefficients and comparison with
the results reported in Söderkvist (2001), Ling and Jacobs (2007)

Method SO FO SC-DP MDS IDSC-DP SPTC-DP HEM HEM

SC-DP (0.15,0.85) (0.25,0.75)

Perf. 82% 89.6% 88.12% 95.33% 94.13% 95.33% 96.67% 96.53%

same elasticity coefficients employed for alignment. Subse-
quently, using the same parametrizations, we also carried
out retrieval experiments with other values of a and b. For
each shape, the ten closest shapes were retrieved and ranked
1–10 according to the increasing distance to the query shape.
For each i, 1 � i � 10, the total number of ith retrievals that
fall in the correct category is shown in Table 1. For each
choice of a and b, a total of 4,851 geodesic distances were
calculated. For comparison, the table also shows results re-
ported in the literature obtained with the following methods:
(i) shape context (SC) of Belongie et al. (2002); (ii) shock
edit (SE) developed in Sebastian et al. (2004); (iii) the gener-
ative model (GM) of Tu and Yuille (2004); (iv) shape context
based on the inner-distance implemented with dynamic pro-
gramming (IDSC-DP) (Ling and Jacobs 2007). Overall, the
results obtained are somewhat comparable to the best previ-
ously reported for this data set. Note that the HEM metrics
tend to perform well at the top retrievals. We argue that this
is an important property of a shape metric. In applications
involving large data sets, instead of computing the distance
to all shapes in a database, it is much more likely that the
metric will be used for retrieval in conjunction with classi-
fication and labeling based on a training set. For example,
one could use the shape metric and the k-nearest neighbor
classifier to first identify the class to which a shape belongs
and then retrieve from that class based on shape distance.
In such more realistic scenarios, metrics for which the top
retrievals are correct will exhibit better performance.

9.2 Swedish Foliage

The data set used in this experiment is from a project at
Linköping University and the Swedish Museum of Natural
History (Söderkvist 2001); it consists of images of 75 leaves
from each of 15 different species of Swedish trees for a total
of 1,125 samples. We used segmented contours made pub-
licly available by the authors of Ling and Jacobs (2007).
Twenty five samples from each species were used as train-
ing shapes and the remaining 750 contours were used for
testing our shape metrics. As in the previous experiment,
the contours were aligned using the algorithm described in
Sect. 4 and re-sampled with 100 points. Table 2 shows the
performance of the homogeneous elastic metrics in shape
recognition using the nearest neighbor classifier and two
different choices of elasticity coefficients. For comparison
purposes, we include several previously reported results.
The label SO refers to the experiments carried out by O.
Söderkvist (2001) using a combination of several classical
shape descriptors. The results obtained with Fourier descrip-
tors (FO), shape context with dynamic programming (SC-
DP), MDS with shape context and dynamic programming
(MDS-SC-DP), inner-distance shape context with dynamic
programing (IDSC-DP), and shortest path texture context
(SPTC-DP) were reported in Ling and Jacobs (2007). Note
that SPTC is not a single cue method as it integrates shape
and texture features.
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10 The Infinite-Tension Limit

For a fixed rigidity coefficient b, we sketch an argument that
the limit of the HEM(a, b) models, as the tension coefficient
a → ∞, is the arc-length parametrization model of Klassen
and Srivastava (2006), up to a scaling factor. A geodesic de-
formation in shape space is realized by a geodesic in the
pre-shape manifold P that is always orthogonal to the orbits
of the action of diffeomorphisms and rotations. We investi-
gate in more detail the orthogonality with respect to the orbit
of the diffeomorphism group D of the circle at (ϕ, ν). We
first characterize vectors that are tangent to the orbit of D at
(ϕ, ν).

The action of a diffeomorphism γ on (ϕ, ν) is described
in (8). Given a 1-parameter family γ (·,μ) of diffeomor-
phisms, −ε < μ < ε, satisfying γ (s,0) = s, let g(s) =
γμ(s,0). Differentiating (8) at μ = 0, we see that tangent
vectors to the orbit of diffeomorphisms at (ϕ, ν) are those of
the form (dϕ ◦ g + ∂sg · ∂sγ, dν ◦ g). In particular, if ϕ = 0,
tangent vectors to orbits are of the form (∂sg · ∂sγ, dν ◦ g).
Note that ∂sγ is simply the counterclockwise unit tangent
field ∂/∂s on S

1. If we write, ∂sg = B(s)∂/∂s , where B(s)

is a scalar field, then ∂sg · ∂sγ = B(s). Thus, tangent vectors
to orbits at (0, ν) are those of the form (B,dν ◦ g) and the
orthogonality of (h,w) to the orbit of D may be expressed
as

〈(h,w), (B,dν ◦ g)〉(0,ν)

= a

∫ 2π

0
h(s)B(s) ds

+ b

∫ 2π

0
w(s) · dν(g(s)) ds = 0, (42)

for any g of the form g(s) = γμ(s,0). Equivalently,

∫ 2π

0
h(s)B(s) ds + b

a

∫ 2π

0
w(s) · dν(g(s)) ds = 0. (43)

If b is fixed, in the limit as a → ∞, we get

∫ 2π

0
h(s)B(s) ds = 0. (44)

Since (44) holds for every B , it follows that h = 0. The same
can be shown at any (ϕ, ν) using the fact that diffeomor-
phisms act on M by isometries. Therefore, in the limit as
a → ∞, orthogonality of a path (ϕt , νt ) to orbits implies that
∂tϕt = 0. If ϕ0(s) = 0, then ϕt (s) = 0, for every t . In other
words, if the initial curve is parameterized by arc-length, it
remains so for every t ∈ I . For a fixed b, although the Rie-
mannian structure becomes singular in the limit, it is non-
singular on the subspace of pairs of the form (0, ν) and co-
incides with (a multiple of) the standard L

2 metric. Thus,
up to a scaling factor, we obtain the arc-length model at the
∞-tension limit.

11 Summary and Discussion

On the pre-shape space of closed parametric curves in
Euclidean space R

k , we constructed a family of Riemannian
metrics indexed by the elastic tension and rigidity coeffi-
cients. Curves were represented by their velocity fields in
log-polar coordinates and the elastic metrics were defined
so as to account for the stretching and bending properties of
the strings. The metrics are invariant under the action of the
diffeomorphism group of the parameter space S

1 and induce
metrics on shape space. We studied the geometric properties
of the pre-shape manifold and various path spaces of elastic
strings to develop a computational model and algorithms to
calculate geodesics using energy minimization. The shape
metrics are related to the elastic metrics for plane shapes
studied in Mio et al. (2007b), but even in that case, the shape
representation and the computational strategies are more ro-
bust and efficient. We also developed a shape registration
method, implemented via dynamic programming, that al-
lows us to estimate shape distances more efficiently and can
be used as a general curve registration technique. Although
the elastic shape distance is a global measure of shape dis-
similarity, energy density functions were introduced to iden-
tify the regions where shape similarities and differences tend
to be most pronounced. This type of local-global geomet-
ric analysis of shapes is important in applications in which
one needs to trace back the main sources of morphological
differences. Several examples of geodesics were given and
experiments were carried out to demonstrate the ability of
the elastic metrics to discern and classify shapes, as well as
to characterize the relevance of shapes of curves in high di-
mensional space in pattern recognition. This paper provides
a framework and a set of basic tools for modeling the shapes
of curves. An important element in our approach is the flex-
ibility to adjust the shape metric to a particular problem to
address the problem of context dependence typically en-
countered in shape analysis. This raises the problem of de-
veloping criteria to select the most appropriate elasticity
coefficients for a given application. A possible approach, as-
suming that training data is available, is to use a modified
version of the cost function employed in Linear Discrimi-
nant Analysis (LDA) to select a shape metric that maximizes
the ratio of inter-class to within-class scatter. Other crite-
ria used in machine learning and dimension reduction algo-
rithms can also be adapted to the selection of shape metrics
and will be investigated in future work. We also plan to study
extensions of the techniques to shapes of surfaces, other
compact Riemannian manifolds, and finite simplicial com-
plexes. These higher dimensional analogues of the curve
models developed in this paper are needed in several dif-
ferent settings, for example, in computational anatomy to
model normal morphological variations and pathological
changes in anatomy. We also will further investigate the use
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of curves to obtain sparse representations of surfaces and
higher dimensional objects for tasks such as object classifi-
cation and recognition.
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Appendix A: The Gradient of H

Let (ϕ(s;μ), ν(s;μ)), μ ∈ (−ε, ε), be a variation of (ϕ, ν)

and let (h,w) = (∂μϕ(s;μ), ∂μν(s;μ))|μ=0 represent a
tangent vector. We write the components of w as w =
(w1, . . . ,wk). Differentiating (22) at μ = 0 and using (5),
we obtain

dHϕ,ν)(h,w) = −ρ0(ϕ, ν)

∫ 2π

0
h(s)eϕ(s) ds

−
k∑

j=1

ρj (ϕ, ν)

∫ 2π

0
ν(s)h(s)eϕ(s) ds

−
k∑

j=1

ρj (ϕ, ν)

∫ 2π

0
wj(s)e

ϕ(s) ds

= −ρ0(ϕ, ν)

∫ 2π

0
a
h(s)

a
eϕ(s) ds

−
k∑

j=1

ρj (ϕ, ν)

∫ 2π

0
a
νj (s)h(s)

a
eϕ(s) ds

−
k∑

j=1

ρj (ϕ, ν)

∫ 2π

0
b
wj (s)

b
eϕ(s) ds

= −ρ0(ϕ, ν)

〈(
1

a
,0

)
, (h,w)

〉
(ϕ,ν)

−
k∑

j=1

ρj (ϕ, ν)

〈(
νj

a
,
ej

b

)
, (h,w)

〉
(ϕ,ν)

.

(45)

Hence, ∇NH can be calculated as claimed in (23).

Appendix B: Covariant Integration

The Riemannian structure on N given by (7) is defined by an
integration over the unit circle. For each fixed s, if we set r =
ϕ(s) ∈ R and y = (y1, . . . , yk) = ν(s) ∈ R

k , the integrand is

obtained from the Riemannian metric on R × R
k given at

(r, y) by

〈(h1,w1), (h2,w2)〉(r,y) = a(h1h2)e
r + b(w1 · w2)e

r . (46)

Thus, to derive the differential equation that governs covari-
ant integration along a path in N , it suffices to derive the
corresponding differential equation for R × R

k with respect
to (46). Using the subscript 0 to identify the r-coordinate
and the subscript i for the yi -coordinate, the metric tensor
on R × R

k is given by g00(r, x) = a er , gii(r, x) = ber , for
1 ≤ i ≤ k, and gij (r, x) = 0, otherwise. The Christoffel sym-
bols of the Levi-Civita connection are

�0
00 = �i

0i = �i
i0 = 1

2
, �0

ii = − b

2a
,

1 ≤ i ≤ k, and zero otherwise. Therefore, the covariant
derivative of a vector field (Ft ,Xt ) along a path (ϕt , νt ) in
N is given by (see e.g. do Carmo 1994)

⎧⎪⎪⎨
⎪⎪⎩

DN
t Ft (s) = ∂tFt (s) + 1

2∂tϕt (s)Ft (s)

− 1
2

b
a

[
Xt(s) · ∂tνt (s)

]
DN

t Xt (s) = ∂tXt (s) + 1
2 (Xt∂tϕt + Ft∂tνt ),

(47)

where the superscript N on the left hand side just highlights
the fact that covariant differentiation takes place in the Rie-
mannian manifold N . Fields that are tangential to the sub-
manifold M ⊂ N are those that satisfy the additional orthog-
onality condition Ft(s) · νt (s) = 0, for every s and t . Thus,
if (ft , xt ) and (Ft ,Xt ) are tangential to M along a path in
M , we can rephrase the condition that (DM

t Ft ,D
M
t Xt ) =

(ft , xt ) as

DN
t Ft (s) = ft (s) and DN

t Xt (s) = xt (s) − τt (s)νt (s),

where τt is a scalar field to be determined. Substituting in
(47), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂tFt (s) = ft (s) + 1
2∂tϕt (s)Ft (s)

− 1
2

b
a

[
Xt(s) · ∂tνt (s)

]

∂tXt (s) = xt (s) + 1
2 (Xt (s)∂tϕt (s)

+ Ft(s)∂t νt (s)) + τt (s)νt (s).

(48)

Differentiating Xt(s) · νt (s) = 0, it follows that ∂tXt (s) ·
νt (s) = −Xt(s) · ∂tνt (s). From the expression for ∂tXt (s)

obtained in (48), we get τt (s) = −Xt(s) · ∂tνt (s), where we
used the facts that Xt(s) ·νs = 0 and ∂tνt (s) ·νt (s) = 0. Sub-
stituting this value of τt (s) in (48) yields (29). It is easy to
check that, for any t ∈ I , a solution of (29) is actually tan-
gential to M .
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Appendix C: Paths with Fixed Boundary

In Sect. 7.3, we used the fact that the orthogonal comple-
ment of the tangent space of the path space ZM in the tan-
gent space of Y at (ϕt , νt ) ∈ ZM , with respect to the Palais
inner product, consists of the covariantly linear fields along
(ϕt , νt ). This follows from a simple integration-by-parts ar-
gument that holds in general Riemannian manifolds, as we
recall next.

Let Q be the manifold of continuous paths α : I → M
(with square integrable derivative) in a Riemannian mani-
fold M, and Q1 ⊂ Q the submanifold of paths satisfying
the boundary conditions α(0) = p0 and α(1) = p1, where
p0,p1 ∈ M. If α ∈ Q1, a vector field h(t), t ∈ I , along α

represents a tangent vector in TαQ1 if and only if the field
vanishes at the end points, as can be easily seen from the
constraints defining Q1. If r(t) is another tangent vector,
then the Palais inner product is given by

〈h, r〉α = 〈h(0), r(0)〉p0
+
∫ 1

0
〈Dth(t),Dt r(t)〉α(t) dt

=
∫ 1

0
〈Dth(t),Dt r(t)〉α(t) dt

= 〈h(t),Dt r(t)〉α(t)

∣∣1
0 −

∫ 1

0
〈h(t),D2

t r(t)〉α(t) dt

= −
∫ 1

0
〈h(t),D2

t r(t)〉α(t) dt.

The last expression vanishes for every h ∈ TαQ1 if and only
if D2

t r = 0. Hence, r is orthogonal to TαQ1 if and only if r

is covariantly linear.
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