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Texture Classification Using Spectral Histograms
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Abstract—Based on a local spatial/frequency representation,we  On the other hand, studies on the human visual system sug-
employ a spectral histogram as a feature statistic for texture clas- gest that it transforms a retinal image into a local spatial/fre-
s_n‘lcatlon. The spectral hlstogram consists of marglrjal d_ls_trlbu- quency representation [4], [10], which can be computationally
tions of responses of a bank of filters and encodes implicitly the _. - . - . .
local structure of images through the filtering stage and the global SImula}ted by Convolvmg the mqu 'mage with a bank of f'l,'
appearance through the histogram stage. The distance betweent€rs with tuned frequencies and orientations. The mathematical
two spectral histograms is measured using?-statistic. The spec- framework for the local spatial/frequency representation was
tral histogram with the associated distance measure exhibits sev- |aid out by Gabor [13] and extended by Daughman [8]. Re-
Selecton algorithm s proposed to maximize siassiication perfor- CoY: tis theory has also been confirmed by deriving sim-
mance of a given dataset.pOur classification experiments us?ng nat- llar fe?tur? detectors fram natu_ral Images [33].' Thgse advances
ural texture images reveal that the spectral histogram representa- have inspired much research in texture classification based on
tion provides a robust feature statistic for textures and generalizes filtering (see [34] for a review). In this framework, a texture
well. Comparisons show that our method produces a marked im- image is transformed into feature vectors by filtering the input
provement in classification performance. Finally we point out the - jmage using a bank of filters, followed by some nonlinearity
relationships betyveen existing texture feature.s and the _spectral his- and smoothing steps [34]. The nonlinearity is necessary for tex-
togram, suggesting that the latter may provide a unified texture o - . . ;
feature. ture classification, since, otherwise, filter responses cannot dis-

. ) . criminate textures with the same mean intensity (see, e.g., Malik
Index Terms—Filtering, spectral histogram, texture analysis, - . . .
texture classification. and Perona [29]); the smoothing is necessary since the filter re-
sponses are not homogeneous even within a homogeneous tex-
ture region. While the nonlinearity and smoothing steps are crit-
. INTRODUCTION ical for texture classification, current research focuses instead
EXTURE classification is a fundamental prob|em in com@n the fIIterlng stage, i.e., d.eriVin.g Optlmal fllterS for texture
T puter vision with a wide variety of applications [40]. Twoclassification based on certain optimization criteria. As a result,
fundamental issues in texture classification are how to chardile both the theoretical and numerical aspects of filter design
terize textures using derived features and and how to defindPh texture classification are well studied [30], the recent com-
robust distance/similarity measure between textures, which Rséhensive study by Randen and Husoy [34] showed that the
main elusive despite considerable efforts in the literature [34§Xture classification performance is very limited for real tex-
Because images of the same underlying texture can vary sigﬁ"rF:es- This study clearly leads to the need for studying statistic

icantly, textural features must be invariant to (large) image vafatures beyond the filtering stage for texture classification.

ations and at the same time sensitive to intrinsic spatial strucR€Cently, Heeger and Bergen [18] proposed a texture syn-

tures that define textures. Because there is no obvious feattiesis algorithm that can match texture appearance. The algo-

common for all texture images, texture features are often pfdhm transforms a random noise image into one with similar

posed based on assumptions for mathematical convenienc&Rfféarance to a given target image by matching independently

task-specific heuristics (see [35], [40] for reviews). For exampl&1€ histograms of image pyramids constructed from the random

geometric properties based on the texture elements are offd fargetimages. The success of synthesizing natural textures
used for textures with periodic structures [39]. Early featur%fsed r?n hlstlograms has rrzjotlv:;l]ted ccf)nsllderap le resEaLc_:P [43],
including cooccurrence matrices [17] and Markov random fie 4]. Zhuet al. [44] proposed a theory for learning probability

models [7] have limited expressive power because the anal)/agde,lsl by ?atchilng histo%r_args b,a,SEd ona rlnaxin;um_ intropy
of spatial interaction is limited to a relatively small neighborprInCIp e. Zhuet al. [43] studied efficient sampling algorithms

hood. As a result, the adequacy of these features for characigf—mamhmg histograms. While these synthesis methods pro-

izing various textures is rarely checked. vide features to characterize a s_mgle_ tex}ure, the effectiveness
of these features for texture classification is not known as a good
synthesis model does not imply a good classification model (see
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tively small image windows and the effect of the window sizecale Because the marginal distribution of each filter response

on histogram-based representations needs to be studied. is a probability distribution, we define a distance between two
Motivated by the research on texture synthesis, we propaggectral histogramfw, and Hw, as

a local spectral histogram, consisting of marginal distributions 9

of responses from a bank of filters for an image window, as a K (Hf;z () — H&?) (Z))

feature statistic for texture classification. We define a distance X (Hw,, Hw,) = Z Z @ (@)

between two image windows as thé-statistic of their spectral a1z Hw,(2) + Hy,(2)

histograms, which exhibits nonlinearity that is consistent with

the human texture perception [27]. Our work presented else-

where [27] demonstrates that this proposed model provides a @

satisfactory account for a systematic set of human texture dighere y>-statistic is a first-order approximation of the

crimination data. We propose a filter selection algorithm to of<ullback-Leibler divergence and used widely to compare

timize the classification performance of a given dataset. We tastograms.

port that the spectral histogram produces good classification re-

sults. A systematic comparison with other methods documentdd Properties

in [34] demonstrates that our approach yields far better results The spectral histogram integrates responses of different filters
This paper is organized as follows. Section Il introduces thgéd provides a normalized feature statistic to compare images
local spectral histogram model and discusses its properties édifferent sizes. Some of its properties are discussed below.
texture classification. Section Il presents a filter selection al- Property 1: A spectral histogram is translation invariant.
gorithm and shows the classification results on a natural tex-This property is easy to see from the definition of the spec-
ture dataset. Section IV compares our method with existing apal histogram. Because filter responses depend only on relative
proaches. Section V discusses the relations of the spectral fogations of pixels, the absolute position of an image window
togram model with previous ones and some related issues. S#wes not affect its spectral histogram. This is essential for any

Il

X (Hw) ) ) ®)

M=

1

tion VI concludes the paper. texture model to characterize texture appearance.
Property 2: A spectral histogram is a nonlinear operator.
II. LOCAL SPECTRAL HISTOGRAM In other words, the spectral histogram of images does not sat-

isfy the linearity conditions due to the histogram operation given

A. Definition in (1). As discussed earlier, some form of nonlinearity is neces-
Given an image windoWV and a bank of filter§ F(*),a = sary for texture classification and the intrinsic nonlinearity of
1,2,...,K},* we compute, for each filteF(*), a sub-band the spectral histogram model makes an additional nonlinearity
imageW (%) through linear convolutior?. That is, W(®)(#) =  step not needed while it is necessary for other filtering-based

F) 5« W(7) = 3. F()(@)W (7 — @), at pixel location#, methods [34]. For nonconstant filters, the nonlinearity of the
where a circular boundary condition is used. Mgf*), we de- spectral histogram can also be caused by the dependency among

fine the marginal distribution, or histogram as pixel values, and this makes the spectral histogram sensitive to
1 texture structures.
H (2) = — 36 (z W@ (17)) (1)  Property 3: With sufficient filters, a spectral histogram can
W] Z uniquely represent any image up to a translation.

) ) ) ) To show this, lefl be an image defined on a finite lattice
whereé() is the Dirac delta function. We then define the spectrad |t 1(7%) = 0, Vs € £, the proposition holds. Assume that

histogram with respect to the chosen filters as - [I(%)] > 0, we choose two filters, the intensity filtéH!) =
A ) ) 6() and F?)(%) = 1(7, — ¥), V¥ € L, whered, € L. ltis
Hw = (Hw Hyy . Hy ) - (2)  sufficient to show thatJ, an image defined on the finite lattice

_ _ _ £, Jis equivalent td up to a translation it {" (z) = H{"(z)
Here, the concatenation of different histograms assumes thedﬂaH§2)(z) _ HI(2)(z), Va. If Hél) _ HI(l), J must be a

dependence among different filters; under the independence&a—mutaﬁon off in terms of the group of pixels. FaF(®), the
sumption, the distance between two image windows is SimpHiaximum response of the filter is bounded

fied to the sum of the distance between the corresponding his-

tograms of each filter as shown in (3). This is justified for nat- 12 (7) =F@ « 1(#) = > F@ (i) (7 — i)

ural images since edge-like filters are empirically shown to be i

the independent components of natural images [2]. The spec- 2 L
tral histo%ram of an irﬂage or an image win(?ow i[s]essenti:IIy <, Z (F& (@)) Z (1 (7~ @)
a vector consisting of marginal distributions of filter responses " "

and integrates responses of different filters to form a texture fea- - Z (1(2) (a‘)) 2

ture. The size of the input image window is caliategration -

IWe require thay", | F'(*)(&)| > 0 for any«. In other wordsF() must  due to Cauchy-Schwartz’ inequality. The maximum is achieved

have some nonzero coefficients. wheni = i. Similarly, if J is a permutation afandH " (z) =
2In this work, we restrict the definition of the spectral histogram to Iinealzg(g) b ival lati
filters, even through nonlinear filters such as the power spectrum of filter paitér  (2), ¥z, J must be equivalent td up to a translation to

can also be included. achieve the same maximum response.
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Fig. 1. Atypical image that satisfiedd; = H,,. with different filters. The size of the images is 1R8128. Here the filters correspond to the ones in Table | for
texture classification. (a) A texture image. (b) Three filters. (c) Five filters. (d) Seven filters. (e) Forty filters. (f) Three filters withioetiséy filter. (g) Six
filters without the intensity filter. (h) Thirty-nine filters without the intensity filter.

(c)

Fig. 2. Different types of images characterized by spectral histograms. Top row shows observed images and the bottom row the correspondiagéypical im
that shares the same spectral histogram. (a) A gray-level image consisting of two piece-wise constant regions with additive Gaussian noiget{bjexsye

consisting of cross elements. (c) A stochastic image. (d) An image with periodic structures.

While this property does not provide a practical way to choose Essentially, spectral histograms divide all the images into
filters, it shows that the marginal distributions are sufficiergquivalent classes [43]. Extensive simulations suggest that
to characterize the joint distributions implicitly defined by anhe spectral histogram is sufficient in characterizing texture
image and thus justifies the sufficiency of using only marginappearance [24], [43] when filters are chosen properly. In other
distributions in the spectral histogram. In practice, this propenyords, all the images with the same spectral histogram are
is approximated by using a large number of filters. Intuitivelyperceptually similar in that perceptually similar textures are
each filter provides some constraints on the images that can sgnthesized by matching the spectral histogram. The top row
isfy Hy = H,p,s. With constraints imposed by sufficiently manyof Fig. 2 shows four texture images and the bottom row shows
filters, the solution to the equatiatf; = H,;,s would converge corresponding typical images by satisfying the constraints
to the observed image up to a translation. Fig. 1 gives an illu§1 = H,s, wherel is an image,H; its spectral histogram,
tration. With more filters, the images that share the observadd H,,,s the spectral histogram of the observed image. Due to
spectral histogram become more similar to the observed. the high dimensionality df, the constraints have to be satisfied

Property 4: All the images sharing a spectral histogram dehrough stochastic simulation because traditional deterministic
fine an equivalent class. searching methods are computationally not feasible. These
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examples shown in Fig. 2 were generated using a Gibbs samlisen number of bins evenly. Given the histogram bin number
[14], [43]. In Fig. 2(a), the spectral histogram captures thend bin ranges, a direct implementation of (1) can have a large
perceptual appearance of both regions. Given that the circulariance, which can cause a large error for yRedistance be-
boundary is used, the synthesized image matches closely tihheen marginal distributions. To overcome this problem, we use
observed image. Fig. 2(b) shows a synthetic texture imag®arzen windows [11] to estimate the marginal distribution based
where the spectral histogram captures the texture element andhe filter responses, given by

its density. Fig. 2(c) and (d) show that the spectral histograms

of two stochastic textures capture their perceptual appearance @ (01:a9) = xxf 259 (:v,W<“)(17)) dz ©)
well. WA S g (5, WO (@) da
C. Implementation Issues Here, g is a kernel function (Gaussian kernel is used in this

Because a spectral histogram is defined with respect to a b&Per): and am:ﬁ? are the minimum and maximum \;alrl]Jes of
of filters, the first implementation issue is what filters should b&'€ 9iven bin. While (6) provides a better estimate of the mar-
used so that various textures can be modeled effectively. H&{Ba! distribution, itis computationally expensive. We approxi-
we use four different types of filters suggested from the studigite (6) by the following two steps. Firstwe sample the function

of visual perception and the empirical studies of independeﬁ"}:tthe middlg vglug of each bin and then_ smaath the samp_les.
components of natural images [2], [33], [44]. The smoothing is implemented by applying a small Gaussian

1) The intensity filter, which is thé() function and captures kernel for a s_pecmed numper of t.|mes determmgd by th? SC‘?"e
. . . \ of the Gaussian kernel. This provides a more reliable estimation
the intensity value at a given pixel.

. . . of the marginal distribution and thus more accurgtedistance
2) Difference or gradient filters. We use four of theby, = between t\?vo spectral histograms ret

[0'8 0 —L0 LO], 1271“0: [-1.0 20 -10], D, = Alternatively, one can adopt a parametric model and then es-
) A timate the model parameters from the training samples. A par-
-1.0|,D,y = | 20 ; S .
10 10 ticular two-parameter distribution model [16] provides a good

approximation for histograms of filter responses for a variety of
o o real images, which leads to analytical probability models of nat-
LoG(w,y|T) = (a® + y* = T?) 77 /T (4) ural images [37].

whereT = /20 determines the scale of the filter and

is the variance of the Gaussian function. These filters are 1. TEXTURE CLASSIFICATION

referred to ad.oG(T). We apply spectral histograms and-statistic as a distance

4) The Gabor filters with both sine and cosine componentgieasure to texture classification. Given a database Mitiex-
Gabor(z,y|T, 9)26—1/2T2(4(z cos O+y sin 0)2 +(—z sin f+y cos 0)?) tgre types, we represe_nt each _tymeby the average spectral
histogramH,;,s~ of available training samples, defined as

3) Laplacian of Gaussian filters:

e—i?‘n’/T(;Iz cos 64y sin f) (5)

whereT is a scale. The cosine and sine components of H 1 AZ o )
these filters are referred to @s0s(T', §) andGsin(T, §), D VEDPA R
respectively. o

These filters provide efficient ways of extracting spatial strusvhereW;™ is a training sample of texture type and M™ is
tures at different orientations and frequencies and empiricaffye total number of training samples for type Because our
have shown to be effective for different kinds of textures (sé¥imary goal is to demonstrate the effectiveness of the spectral
Fig. 2 for some examples). Given these families of filters, tH@Stogram as a texture feature, we useiaimum-distancelas-
optimal ones for classification of a given set of textures depeftiier for a new sampldV;, given by
on the characteristics of the input textures; they are selected by
a filter selection algorithm presented in Section IlI-A.

Another_lmplementathn ISSU€ 1S how to quantize gnd eSE)'ther classification approaches can also be applied [11] and is-
mate the histogram of a filtered image. In theory, the histogram . o . L
. . . . S . sues related to the choice of classifiers are not discussed in this
is an approximation of the underlying distribution of filter re- . .

. - =, . aper. In the spectral histogram framework, to measure the gain
sponses. With sufficient data and sufficient number of h|stograpm. . . . . .
} . : .2 using a particular set of filterS, we define classification gain
bins, the histogram can represent the underlying dlstrlbuu%n
with arbitrary accuracy. For texture classification, the integra-
tion scale we use is often small and only a limited number of (S = (1=Cerr(9))
samples is available to compute the histogram. In order to have () = T
a good approximation of the underlying distribution, we have ’
to choose the number of bins and where the bins should bewhere C.,..(S) is the classification error ratéyf is the total
our implementation, the number of bins is specified as a paramumber of classes in the database, and td$ is the expected
eter for each filter. When the number of bins is given, we findorrect classification rate based on a random decisi($)
the average of minimum and maximum filter responses fromeasures the effectiveness of filtersSiimore objectively than
training images and divide the filter response range into tli&,..(S) becaus&’,,..(S) is closely related td/. Here we use

miy, = min x* (Hw,, Hobs ) - (8)

=M(1-Cen(S)  9)
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B={FW,F@ ... )}  §=¢ of filters. Here, the computation time is the time for classifying
test images relative to that of using only the intensity filter. For
repeat texture classification, it is often desirable to use only derivative

filters. The last three columns in Table | show the result without

for each filter F(*) in B : o X :
or each fiter " the intensity filter. As Table | shows, the filter selection algo-

calculate Gy (S U F(@) rithm essentially <_:hooses the most effe<_:tive filters. '!'he row Wi_th
a star shows the filters chosen automatically for optimal classifi-
o = max, Gy (S U F(@) cation, whose performances are better than those of all the avail-
able filters. This illustrates clearly a key difference between tex-
E =Gy (SUF©)) -Gy (S) ture classification and texture synthesis. As Fig. 2 shows, more
filters clearly give better synthesis results. However, more fil-
if E'> ¢ then ters may not improve the classification performance and in fact

may give worse performance. In this particular case, while the
difference in classification gain between the optimal choice and
all the available filters is not significant, the difference in com-
putation time is very significant, which can be critical for some

Fig. 3. Filter selection algorithm. Herd is the subset of the filters that has applications.
not been chosels, is the subset that has been chosen,camthreshold. Initially
B consists of all the available filters arflan empty set.

S=SUFl), B=RB\F)

until £ < €

B. Classification Experiments

G(S) to emphasize that the classification gain depends on theye apply our classification method to the 40-texture dataset
filters in 5. Because the spectral histogram representation dgpwn in Fig. 4. This dataset is challenging because there are
pends critically on the filters used, we present our filter seleggnificant variations within some textures and some of them are
tion algorithm first and then our classification results on a nafary similar to each other. At a given integration scale, we parti-

ural texture dataset. tion the images into nonoverlapping samples, which are then di-
] ) vided into disjoint training and testing set. Here seven filters in-
A. Filter Selection cluding the intensityZcos(2, 0°), Geos(2,30°), Geos(3,30°),

As demonstrated in Fig. 1, the particular set of images th@tos(3,60°), Geos(3,90°), and Gcos(5,150°), are selected
is characterized by a spectral histogram critically depends antomatically by the filter selection algorithm (see Table I) and
the filters used. In one extreme, no filter is used and all imagate used to compute the spectral histogram.
are admitted in the set. In the other extreme, when infinitely Fig. 5(a) shows the classification gain with respect to the in-
many filters are used, only the original image and its translgegration scale on the 40-texture dataset using the seven filters.
tions are admitted. In addition, for a given set of textures, sorite avoid the bias due to the particular images in the training
of the filters are more effective than others. To address thesedsd test set, we randomly divide the total samples into disjoint
sues, we propose a method that selects a subset of filters frivaining and test set and we repeat the classification experiment
a large filter bank by optimizing the classification performanc&00 times and collect the average, best, and worst performance.
of training samples [41]. To estimate the classification perfoHere 1/2 of the available samples are used for for training and
mance, we divide the available samples into a training/setthe remaining ones for testing. This result shows several im-
(used to train the chosen classifier), and a validatiofvsetsed portant aspects of texture classification. 1) It shows clearly that
to estimate the performance), known as cross-validation [1&].reasonable integration scale is needed in order to discrimi-
Specifically, for a given set of filters, we calculateH,,s= nate textures as the texture structures have certain spatial extent.
using (7) for each texture class using the samplé&s amd then Here the average classification gain at integration scal&&s
we classify the samples i with (8) and calculate the classi-21.34 (corresponding to a classification error of 46.64%), and
fication gainGy/(S) using (9). To be computationally efficient,it improves to 35.86 (corresponding to a classification error of
we use a greedy algorithm. In other words, we choose filters oh@.35%) at integration scale 2424. 2) Given a reasonable in-
by one so that the next one has the maxim@ign(S) with the tergration scale, the spectral histogram provides a robust fea-
ones already chosen. The filter selection algorithm is shownture statistic for classification. The average classification gain
Fig. 3. The computational complexity of the algorithm depends integration scales of 32 32 or larger is better than 37 (cor-
on the complexity of calculating’y (S) and K (the number of responding to an error less than 7.5%). If we allow the correct
filters in B). For the minimum distance classifier used in thisne within the three closest classes, the classification error is
paper, the complexity i©(K? x (|T'| + M x |V])), where|T| less than 1% for all the 100 trials. Given the significant varia-
is the time to computél,,s~, andM x |V| to compute&y (S) tions within textures and similarities between textures, the per-
given Hpgm . formance is sigficantly better than exisiting filter-based methods

To demonstrate the effectiveness of the filter selection algsee Section IV for comparisons). 3) It shows also that the spec-
rithm, we use a texture database that consists of 40 Brodatz tea} histogram is not sensitive to particular images in the training
ture images, 10 of which are shown in Fig. 4. Initially there arand test sets as the best and worst are close to the average of 100
40 filters. Table | shows the classification gain along with thigials. At integration scale 24 24, the average gain is 35.86, the
computation time for classification with respect to the numbevorst 35.50, and the best 36.36.
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Fig. 4. Ten of the 40 textures used in the classification experiments. The input image sizex2266These images are available at http://www-dbv.cs.
uni-bonn.de/image/texture.tar.gz.

CLASSIFICATION GAIN AND COMPUTATION TIME WITH R;sﬁ?zl(_:E T(IDFILTERS CHOSEN BY THEFILTER SELECTION ALGORITHM
# of filters | Classification | Computation | # of filters | Classification | Computation
gain time (no intensity) gain time
1 23.63 1.00 1 22.56 1.26
2 31.41 3.69 2 30.86 3.92
3 34.19 8.59 3 32.22 8.72
5 35.72 16.16 5 35.44 18.45
7* 36.84 32.30 6* 36.68 39.31
40 36.69 690.86 39 35.13 690.22

40 o 40 40 40

w
=3
w
k=3
w
o

Classification gain
3
CIassnllcgt;on gain
o

w
S

Classification gain
S

Classitic’%tion gain
o

3
2
3
2

40 60 1 5 o 10 20 40 60 20 40 60
Integration scale Test-to-training ratio Integration scale Integration scale

() (b) () (b)

Fig. 5. Classification result for the 40-texture dataset. (a) The average (soliélg. 6. Comparison of different features and distance measures of the 40
best (dash-dotted) and worst (dotted) classification gain of 100 trials witbexture dataset. (a) Classification gain for different features. Dashed line—
randomly divided training and test set with respect to the integration scaietensity mean; dash-dotted line—intensity mean and variance; dotted line—
(b) The classification gain with respect to test-to-training sample ratio. Solidtensity histogram; solid line—spectral histogram of the seven filters.
line—integration scale 3% 32; dashed line—integration scale 244. (b) Classification gain for commonly used distance measures for histograms.
Solid line—y2-statistic; dotted line-£, -norm; dashed line-£,-norm; dash-

o - dotted—Kullback-Leibler divergence.
To demonstrate the generalization capability of the spectraf 9

histogram, Fig. 5(b) shows the classification gain at two inte-
gration scales with respect to the test-to-training sample ratiothe classification gain for features commonly used for inten-
both cases, the classification gain does not change much forsiy images, including the mean value, combination of mean
tios between 1:1 and 12:1. This confirms the generalization cgrd variance values, and intensity histogram. As we can see
pability of spectral histograms in characterizing texture imagdsom Fig. 6(a), the mean and Gaussian models are not sufficient
To provide numerical justifications of the proposed reprder characterizing those images and generate worst results. The
sentation, we have compared the spectral histogram with otkemparison shows that the smoothing stage commonly used in
commonly used features and distance measures. Fig. 6(a) shmxture classification methods [34] is not optimal; the distribu-
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(b)

Fig. 7. Ten-texture image groups used in [34]. The image size ix1P88. (a) The images in Fig. 11(h) of [34]. (b) The images in Fig. 11(i) of [34].

tion of local features is far more effective in discriminating texand the filters are chosen automatically from the 40 filters using
tures. This is also consistent with the comparisons shown in tine filter selection algorithm. We use a separate set of images for
next section. Fig. 6(b) compares several commonly used digaining and a separate set of images for testing as imn[34e
tance measures for histograms, includii)gnorm, L, norm, results for the two most challenging groups of texture images,
Kullback-Leibler divergence, ang?-statistic. For texture clas- Shown in Fig. 7(a) and (b), are summarized in Table Il, where
sification using spectral histograms, Fig. 6(b) shows that dihe average performance and the best in tables 3, 6, 8, and 9 in
ferent measures give very similar results, suggesting that spktd] are shown. For these two groups, due to the inhomogeneity
tral histograms is insensitive to a particular form of distanc@d large variations, texture types in local windows given by

measure. the integration scale are perceptually close and they require a
very accurate texture model for classification. In addition, sepa-
IV. COMPARISONWITH EXISTING APPROACHES rate images are used for training and this creates additional dif-

) ) ficulties for methods that cannot generalize well to new data.
Several comparative studies about texture features have begg cjassification gains of all the methods studied in [34] are

conducted. Ohanian and Dubes [31] studied the performanggwn in Fig. 8(a) and (b). Our method is significantly better
of various texture features, including fractal features, COOCCYFan the best performance in [34]. Furthermore, the most errors
rence features, Markov random field features, and Gabor fea-gur method are from the texture pairs that are perceptually
tures. However, the evaluation was done only on four classgsy similar. If we consider the two closest textures as correct,
of images and the conclusion may not be generalized. OjgJgr method gives a classification gain of 9.50 and 9.58 respec-
et al. [32] did a similar study on joint occurrences of featurgyely, corresponding to 95.0% and 95.8% correct classification
pairs using nine texture images and the ones in [31]. Recentlyje This comparison clearly suggests that classification based
Randen and Husoy [34] did an extensive comparative study g, filtering output is inadequate for characterizing texture ap-
texture classification on cooccurrence methods, Law’s textys@arance and an integration after filtering must be done. Our

measures, different filtering-based methqu, and a'r'1eural &mparison strongly indicates that some representation like the
work approach [19]. They used a supervised classifier of Ko-
honen [23] for most of their experiments. The filter responses3ln [34], windows that include different texture types are used to test tex-

. e . _ture boundary accuracy of classification methods. Due to the uncertainty prin-
at each pixel form a vector and the texture classification is [y (5], there is an intrinsic tradeoff between classification performance and
classify feature vectors. Because filters have a spatial extent, thendary accuracy. Since a considerable integration scale is needed to charac-
receptive field of a vector overlaps heavily with the neighboring:;: a texture (see Figs. 5_ and 6), test wmdow_s are confined within a _smgle

. . . xture here. With spectral histogram representations, the boundary localization
ones. We hgve applied our method to the same Images with e pieved by building a more accurate probability model after initial classifi-
same experimental settings. We use an integration scate322 cation [28].
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Fig. 8. The classification gain for all the methods in [34] for Fig. 7(a) and (t":"L Y
respectively. In each plot, each data point represents one result in tables 3

8, and 9 of [34] and the dashed line is the result of the proposed classificat 2t
method. i

TABLE 1
CLASSIFICATION GAINS OF METHODS SHOWN IN [34] AND THE
PROPOSEDMETHOD
Texture | Methods in [34] Proposed method

group Average | Best | First one correct | First two correct

Fig. 7(@) 326 6.77 8.31 2.50 Fig.9. Sixteen textureimages used in[1]. Images in the firstrow are generated
from Gaussian random fields, and remaining rows are from the Brodatz album.
Fig. 7(b) 5.40 7.22 791 9.58 The image size is 128 128.

one can choose different filters to define different features. In

Hls section, we point out the relations between the spectral his-
; ._togram and other existing methods.

To further illustrate our method, we have done a comparnsongefore we discuss specific features for textures, we point out

¥V'tT a methtod _proposed gybAzegcelItahI. [1]. Int[l]l, da tex:uref that uniform regions are simply a special case under the spectral
eature veclor 1S proposed based on the Spectral density o \Aﬂri]s'togram, thus the spectral histogram provides a unified feature
dowed Fourier filters, e.g., Gabor filters, and a distance betwe,

P textur well as nontexture im However, textures ar
two textures is defined as a symmetrized Kullback distanceﬂ% texture as well as nontexture images. However, textures are

. . Stten studi rately from intensity im nd texture fea-
tween computed vectors. A minimum distance classifier is alfo "> udied separately fro ensity images and texture fea

0 . .
used for texture classification. For an unbiased comparison, g\%es from other approaches may not be applicable to uniform

: ) . . Images [6].
use the same settings used in [1]. Each input texture image wi . : .
the size of 128 128 is divided in 49 image patches with Size%rexture analysis has been studied extensn_/ely and many
32x 32 and thus adjacent patches are overlapped. We use r{heethods have been proposed. Tuceryan and Jain [40] classified

same seven filters as in the previous section to compute sp%%'—sung approaches into four categories, namely statistical
ethods, geometrical methods, model based methods, and

tral histogram. The 16 texture images used in [1] are shownT ; . . .
Fig. 9; therefore there are 784 image patches in total. signal processing methods. We discuss the relationships be-

Two classification experiments were reported in [1]. In thveen each category and our proposed method.

first experiment, the 49 patches of each image were divided intooratistical methods, including cooccurrence matrices [17],

a training set of 21 patches and a test set of 28 patches. Ryiocorrelation features [40], and our method here, are based
result in [1] gives six misclassified patches, i.e., 1.34% clas§P the observation that a texture is defined by the spatial
fication error. For the same setting, our method gives On|ydistr|but|on of gray values. A cooccurrence matrlx_ con3|sts
misclassified patch, resulting in 0.22% classification error. [ the number of occurrences of a gray level pair with a
the second experiment, the training set is reduced to one patefcified distance apart. This can be viewed as a special case
per texture image. The result in [1] using the Kullback distan@ #-gon statistics proposed by Julesz [20], [22]. Because the
gives twenty-three misclassified patches. Our result gives ofi§occurrence matrix cannot be used directly as texture features,
four misclassified patches. This comparison demonstrates ghBumber of texture features were subsequently computed from

spectral histogram may be necessary in order to capture ¢
plex texture appearance.

superior discrimination ability of the spectral histogram. ~ the cooccurrence matrix [17]. It is easy to see that the cooccur-
rence matrix can also be defined as responses of a specifically
V. DISCUSSION designed gradient filter and thus a spectral histogram using

gradient filters provides cooccurrence matrix features.
The class of geometrical methods is based on the assumption
This paper focuses on texture classification using spectral hilsat a texture consists of repeated texture elements, such as the
tograms with a fixed set of filters. As we mentioned earlienne shown Fig. 2(b). After the texture elements are identified,

A. Relations to Existing Approaches
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geometrical properties of the element distribution can be ustn. Under the spectral histogram representation, the distinc-
to characterize textures [40]. As shown in Fig. 2(b), the specttain between texture and nontexture images becomes unneces-
histogram can characterize the texture element as well as its dizry. While the spectral histogram here is used primarily for tex-
tribution without knowing the texture element. This provides tures with roughly repeated patterns, our study elsewhere sug-
more elegant way to characterize textures with repeated textgests that the spectral histogram can also be applied to classify

elements.

faces and 3-D objects [25], [26], consistent with a recent study

Model based methods include Markov random fields [6], [7hn object recognition using multidimensional histograms [36].

[9], [15], [38], [44]. This class of methods can not only de-

scribe the texture through model parameters, which are learned
from observed textures, but also synthesize it through sampling
In [44], for example, Zhuet al. proposed a FRAME model
and showed that the model provides a unified framework fg(rg
Markov random field models. In a limiting case, Wtal.[42]

VI. CONCLUSION

We have demonstrated that the spectral histogram provides
a sufficient feature statistic for texture classification. The

-statistic between spectral histograms provides a robust
distance measure for comparing textures. We have proposed a

proved the equivalence of a model specified by features sygh. sejection algorithm for texture classification. With a wide
as spectral histogram [43] and a Gibbs model, a special c§fge of integration scales and test-to-training ratios, we have
of which is shown in [12]. This relation shows that the spectrghained satisfactory classification results on natural texture
histogram provides an equivalent way of specifying a MarkQyatasets. Our comparison shows that the spectral histogram
random field, which avoids the parameter learning necessaryf,q,rproves the classification performance significantly. By

a Markov random field model.
Signal processing methods try to characterize textures

fE)P;J(;nting out the relations between existing texture features and
spectral histogram, we suggest that the latter may provide a

filter responses directly. Many of these models have begRified image feature statistic.

studied and compared in [34], including Laws filters, ring
and wedge filters, Gabor filters, wavelet transforms, packets,
frames, discrete cosine transforms, quadrature mirror filters,
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characterize and discriminate texture structures. This dem
strates that an integration of different filter responses such as

the spectral histogram proposed here, is probably necessary
while the specific form of filters is not critical [24]. (1]

B. Integration of Filter Responses [2]

Itis easy to see that a filter's response is inhomogeneous evep
to a homogeneous texture image. An inevitable issue common
to all filter-based approaches is to form a feature which charac{*!
terizes a texture region. To reduce the inhomogeneity of filter s
responses, spatial smoothing is commonly used [3], [29], [34].
The proposed spectral histogram model resolves this issue usin§!
histograms of filter responses within a spatial window. For a
spatial window substantially larger than the size of basic ele-[7]
ments in a texture, the spectral histogram is intrinsically insen-
sitive to precise locations of texture elements. This is consisten
with a study on human texture discrimination [21]. Because of
this property, two images do not need to be aligned in order tol®]
be compared using spectral histograms. More importantly, be-
cause of the stochastic nature of textures, images of the samg;
texture type may not be aligned, an example of which is shown
in Fig. 2(b). While both images in Fig. 2(b) consist of crossed!!]
with similar distribution, two images cannot be aligned under;
simple transforms. The misalignment of textures can be a se-
rious problem for approaches that use filter responses direct\IX3
as features for texture classification, such as those studied ]
[34]. [14]

Note that the spectral histogram is defined on any type of im-
ages. Piece-wise constant images with additive Gaussian noiﬁg]
are a special case whose spectral histogram has a unique pat-

&lgorlthm.
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