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Texture Classification Using Spectral Histograms
Xiuwen Liu, Senior Member, IEEE,and DeLiang Wang, Senior Member, IEEE

Abstract—Based on a local spatial/frequency representation,we
employ a spectral histogram as a feature statistic for texture clas-
sification. The spectral histogram consists of marginal distribu-
tions of responses of a bank of filters and encodes implicitly the
local structure of images through the filtering stage and the global
appearance through the histogram stage. The distance between
two spectral histograms is measured using 2-statistic. The spec-
tral histogram with the associated distance measure exhibits sev-
eral properties that are necessary for texture classification. A filter
selection algorithm is proposed to maximize classification perfor-
mance of a given dataset. Our classification experiments using nat-
ural texture images reveal that the spectral histogram representa-
tion provides a robust feature statistic for textures and generalizes
well. Comparisons show that our method produces a marked im-
provement in classification performance. Finally we point out the
relationships between existing texture features and the spectral his-
togram, suggesting that the latter may provide a unified texture
feature.

Index Terms—Filtering, spectral histogram, texture analysis,
texture classification.

I. INTRODUCTION

T EXTURE classification is a fundamental problem in com-
puter vision with a wide variety of applications [40]. Two

fundamental issues in texture classification are how to charac-
terize textures using derived features and and how to define a
robust distance/similarity measure between textures, which re-
main elusive despite considerable efforts in the literature [34].
Because images of the same underlying texture can vary signif-
icantly, textural features must be invariant to (large) image vari-
ations and at the same time sensitive to intrinsic spatial struc-
tures that define textures. Because there is no obvious feature
common for all texture images, texture features are often pro-
posed based on assumptions for mathematical convenience or
task-specific heuristics (see [35], [40] for reviews). For example,
geometric properties based on the texture elements are often
used for textures with periodic structures [39]. Early features
including cooccurrence matrices [17] and Markov random field
models [7] have limited expressive power because the analysis
of spatial interaction is limited to a relatively small neighbor-
hood. As a result, the adequacy of these features for character-
izing various textures is rarely checked.
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On the other hand, studies on the human visual system sug-
gest that it transforms a retinal image into a local spatial/fre-
quency representation [4], [10], which can be computationally
simulated by convolving the input image with a bank of fil-
ters with tuned frequencies and orientations. The mathematical
framework for the local spatial/frequency representation was
laid out by Gabor [13] and extended by Daughman [8]. Re-
cently, this theory has also been confirmed by deriving sim-
ilar feature detectors from natural images [33]. These advances
have inspired much research in texture classification based on
filtering (see [34] for a review). In this framework, a texture
image is transformed into feature vectors by filtering the input
image using a bank of filters, followed by some nonlinearity
and smoothing steps [34]. The nonlinearity is necessary for tex-
ture classification, since, otherwise, filter responses cannot dis-
criminate textures with the same mean intensity (see, e.g., Malik
and Perona [29]); the smoothing is necessary since the filter re-
sponses are not homogeneous even within a homogeneous tex-
ture region. While the nonlinearity and smoothing steps are crit-
ical for texture classification, current research focuses instead
on the filtering stage, i.e., deriving optimal filters for texture
classification based on certain optimization criteria. As a result,
while both the theoretical and numerical aspects of filter design
for texture classification are well studied [30], the recent com-
prehensive study by Randen and Husoy [34] showed that the
texture classification performance is very limited for real tex-
tures. This study clearly leads to the need for studying statistic
features beyond the filtering stage for texture classification.

Recently, Heeger and Bergen [18] proposed a texture syn-
thesis algorithm that can match texture appearance. The algo-
rithm transforms a random noise image into one with similar
appearance to a given target image by matching independently
the histograms of image pyramids constructed from the random
and target images. The success of synthesizing natural textures
based on histograms has motivated considerable research [43],
[44]. Zhuet al. [44] proposed a theory for learning probability
models by matching histograms based on a maximum entropy
principle. Zhuet al. [43] studied efficient sampling algorithms
for matching histograms. While these synthesis methods pro-
vide features to characterize a single texture, the effectiveness
of these features for texture classification is not known as a good
synthesis model does not imply a good classification model (see
Section III). Also, while these synthesis methods are proposed
to model homogeneous textures, natural textures are rarely ho-
mogeneous due to deformations and other variations; these vari-
ations require a robust distance measure between textures so
that the distance between images of the same texture is small
and that among images from different textures is large. Further-
more, as the features depend on the choice of filters, there is no
systematic algorithm to choose filters for texture classification.
In addition, texture classification is often done based on rela-
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tively small image windows and the effect of the window size
on histogram-based representations needs to be studied.

Motivated by the research on texture synthesis, we propose
a local spectral histogram, consisting of marginal distributions
of responses from a bank of filters for an image window, as a
feature statistic for texture classification. We define a distance
between two image windows as the-statistic of their spectral
histograms, which exhibits nonlinearity that is consistent with
the human texture perception [27]. Our work presented else-
where [27] demonstrates that this proposed model provides a
satisfactory account for a systematic set of human texture dis-
crimination data. We propose a filter selection algorithm to op-
timize the classification performance of a given dataset. We re-
port that the spectral histogram produces good classification re-
sults. A systematic comparison with other methods documented
in [34] demonstrates that our approach yields far better results.

This paper is organized as follows. Section II introduces the
local spectral histogram model and discusses its properties for
texture classification. Section III presents a filter selection al-
gorithm and shows the classification results on a natural tex-
ture dataset. Section IV compares our method with existing ap-
proaches. Section V discusses the relations of the spectral his-
togram model with previous ones and some related issues. Sec-
tion VI concludes the paper.

II. L OCAL SPECTRAL HISTOGRAM

A. Definition

Given an image window and a bank of filters
, 1 we compute, for each filter , a sub-band

image through linear convolution.2 That is,
, at pixel location ,

where a circular boundary condition is used. For , we de-
fine the marginal distribution, or histogram as

(1)

where is the Dirac delta function. We then define the spectral
histogram with respect to the chosen filters as

(2)

Here, the concatenation of different histograms assumes the in-
dependence among different filters; under the independence as-
sumption, the distance between two image windows is simpli-
fied to the sum of the distance between the corresponding his-
tograms of each filter as shown in (3). This is justified for nat-
ural images since edge-like filters are empirically shown to be
the independent components of natural images [2]. The spec-
tral histogram of an image or an image window is essentially
a vector consisting of marginal distributions of filter responses
and integrates responses of different filters to form a texture fea-
ture. The size of the input image window is calledintegration

1We require that jF (~u)j > 0 for any�. In other words,F must
have some nonzero coefficients.

2In this work, we restrict the definition of the spectral histogram to linear
filters, even through nonlinear filters such as the power spectrum of filter pairs
can also be included.

scale. Because the marginal distribution of each filter response
is a probability distribution, we define a distance between two
spectral histograms and as

(3)

where -statistic is a first-order approximation of the
Kullback-Leibler divergence and used widely to compare
histograms.

B. Properties

The spectral histogram integrates responses of different filters
and provides a normalized feature statistic to compare images
of different sizes. Some of its properties are discussed below.

Property 1: A spectral histogram is translation invariant.
This property is easy to see from the definition of the spec-

tral histogram. Because filter responses depend only on relative
locations of pixels, the absolute position of an image window
does not affect its spectral histogram. This is essential for any
texture model to characterize texture appearance.

Property 2: A spectral histogram is a nonlinear operator.
In other words, the spectral histogram of images does not sat-

isfy the linearity conditions due to the histogram operation given
in (1). As discussed earlier, some form of nonlinearity is neces-
sary for texture classification and the intrinsic nonlinearity of
the spectral histogram model makes an additional nonlinearity
step not needed while it is necessary for other filtering-based
methods [34]. For nonconstant filters, the nonlinearity of the
spectral histogram can also be caused by the dependency among
pixel values, and this makes the spectral histogram sensitive to
texture structures.

Property 3: With sufficient filters, a spectral histogram can
uniquely represent any image up to a translation.

To show this, let be an image defined on a finite lattice
. If , , the proposition holds. Assume that

, we choose two filters, the intensity filter
and , , where . It is

sufficient to show that , an image defined on the finite lattice
, is equivalent to up to a translation if

and , . If , must be a
permutation of in terms of the group of pixels. For , the
maximum response of the filter is bounded

due to Cauchy-Schwartz’ inequality. The maximum is achieved
when . Similarly, if is a permutation of and

, , must be equivalent to up to a translation to
achieve the same maximum response.
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Fig. 1. A typical image that satisfiesH = H with different filters. The size of the images is 128� 128. Here the filters correspond to the ones in Table I for
texture classification. (a) A texture image. (b) Three filters. (c) Five filters. (d) Seven filters. (e) Forty filters. (f) Three filters without theintensity filter. (g) Six
filters without the intensity filter. (h) Thirty-nine filters without the intensity filter.

Fig. 2. Different types of images characterized by spectral histograms. Top row shows observed images and the bottom row the corresponding typical image
that shares the same spectral histogram. (a) A gray-level image consisting of two piece-wise constant regions with additive Gaussian noise. (b) A synthetic texture
consisting of cross elements. (c) A stochastic image. (d) An image with periodic structures.

While this property does not provide a practical way to choose
filters, it shows that the marginal distributions are sufficient
to characterize the joint distributions implicitly defined by an
image and thus justifies the sufficiency of using only marginal
distributions in the spectral histogram. In practice, this property
is approximated by using a large number of filters. Intuitively,
each filter provides some constraints on the images that can sat-
isfy . With constraints imposed by sufficiently many
filters, the solution to the equation would converge
to the observed image up to a translation. Fig. 1 gives an illus-
tration. With more filters, the images that share the observed
spectral histogram become more similar to the observed.

Property 4: All the images sharing a spectral histogram de-
fine an equivalent class.

Essentially, spectral histograms divide all the images into
equivalent classes [43]. Extensive simulations suggest that
the spectral histogram is sufficient in characterizing texture
appearance [24], [43] when filters are chosen properly. In other
words, all the images with the same spectral histogram are
perceptually similar in that perceptually similar textures are
synthesized by matching the spectral histogram. The top row
of Fig. 2 shows four texture images and the bottom row shows
corresponding typical images by satisfying the constraints

, where is an image, its spectral histogram,
and the spectral histogram of the observed image. Due to
the high dimensionality of, the constraints have to be satisfied
through stochastic simulation because traditional deterministic
searching methods are computationally not feasible. These
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examples shown in Fig. 2 were generated using a Gibbs sampler
[14], [43]. In Fig. 2(a), the spectral histogram captures the
perceptual appearance of both regions. Given that the circular
boundary is used, the synthesized image matches closely the
observed image. Fig. 2(b) shows a synthetic texture image,
where the spectral histogram captures the texture element and
its density. Fig. 2(c) and (d) show that the spectral histograms
of two stochastic textures capture their perceptual appearance
well.

C. Implementation Issues

Because a spectral histogram is defined with respect to a bank
of filters, the first implementation issue is what filters should be
used so that various textures can be modeled effectively. Here
we use four different types of filters suggested from the studies
of visual perception and the empirical studies of independent
components of natural images [2], [33], [44].

1) The intensity filter, which is the function and captures
the intensity value at a given pixel.

2) Difference or gradient filters. We use four of them:
, ,

, .

3) Laplacian of Gaussian filters:

(4)

where determines the scale of the filter and
is the variance of the Gaussian function. These filters are
referred to as .

4) The Gabor filters with both sine and cosine components:

(5)

where is a scale. The cosine and sine components of
these filters are referred to as and ,
respectively.

These filters provide efficient ways of extracting spatial struc-
tures at different orientations and frequencies and empirically
have shown to be effective for different kinds of textures (see
Fig. 2 for some examples). Given these families of filters, the
optimal ones for classification of a given set of textures depend
on the characteristics of the input textures; they are selected by
a filter selection algorithm presented in Section III-A.

Another implementation issue is how to quantize and esti-
mate the histogram of a filtered image. In theory, the histogram
is an approximation of the underlying distribution of filter re-
sponses. With sufficient data and sufficient number of histogram
bins, the histogram can represent the underlying distribution
with arbitrary accuracy. For texture classification, the integra-
tion scale we use is often small and only a limited number of
samples is available to compute the histogram. In order to have
a good approximation of the underlying distribution, we have
to choose the number of bins and where the bins should be. In
our implementation, the number of bins is specified as a param-
eter for each filter. When the number of bins is given, we find
the average of minimum and maximum filter responses from
training images and divide the filter response range into the

given number of bins evenly. Given the histogram bin number
and bin ranges, a direct implementation of (1) can have a large
variance, which can cause a large error for the-distance be-
tween marginal distributions. To overcome this problem, we use
Parzen windows [11] to estimate the marginal distribution based
on the filter responses, given by

(6)

Here, is a kernel function (Gaussian kernel is used in this
paper), and and are the minimum and maximum values of
the given bin. While (6) provides a better estimate of the mar-
ginal distribution, it is computationally expensive. We approxi-
mate (6) by the following two steps. First we sample the function
at the middle value of each bin and then smooth the samples.
The smoothing is implemented by applying a small Gaussian
kernel for a specified number of times determined by the scale
of the Gaussian kernel. This provides a more reliable estimation
of the marginal distribution and thus more accurate-distance
between two spectral histograms.

Alternatively, one can adopt a parametric model and then es-
timate the model parameters from the training samples. A par-
ticular two-parameter distribution model [16] provides a good
approximation for histograms of filter responses for a variety of
real images, which leads to analytical probability models of nat-
ural images [37].

III. T EXTURE CLASSIFICATION

We apply spectral histograms and-statistic as a distance
measure to texture classification. Given a database withtex-
ture types, we represent each typeby the average spectral
histogram of available training samples, defined as

(7)

where is a training sample of texture type and is
the total number of training samples for type. Because our
primary goal is to demonstrate the effectiveness of the spectral
histogram as a texture feature, we use aminimum-distanceclas-
sifier for a new sample , given by

(8)

Other classification approaches can also be applied [11] and is-
sues related to the choice of classifiers are not discussed in this
paper. In the spectral histogram framework, to measure the gain
using a particular set of filters, we define classification gain
as

(9)

where is the classification error rate, is the total
number of classes in the database, and thus is the expected
correct classification rate based on a random decision.
measures the effectiveness of filters inmore objectively than

because is closely related to . Here we use
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Fig. 3. Filter selection algorithm. Here,B is the subset of the filters that has
not been chosen,S is the subset that has been chosen, and� a threshold. Initially
B consists of all the available filters andS an empty set.

to emphasize that the classification gain depends on the
filters in . Because the spectral histogram representation de-
pends critically on the filters used, we present our filter selec-
tion algorithm first and then our classification results on a nat-
ural texture dataset.

A. Filter Selection

As demonstrated in Fig. 1, the particular set of images that
is characterized by a spectral histogram critically depends on
the filters used. In one extreme, no filter is used and all images
are admitted in the set. In the other extreme, when infinitely
many filters are used, only the original image and its transla-
tions are admitted. In addition, for a given set of textures, some
of the filters are more effective than others. To address these is-
sues, we propose a method that selects a subset of filters from
a large filter bank by optimizing the classification performance
of training samples [41]. To estimate the classification perfor-
mance, we divide the available samples into a training set
(used to train the chosen classifier), and a validation set(used
to estimate the performance), known as cross-validation [11].
Specifically, for a given set of filters , we calculate
using (7) for each texture class using the samples inand then
we classify the samples in with (8) and calculate the classi-
fication gain using (9). To be computationally efficient,
we use a greedy algorithm. In other words, we choose filters one
by one so that the next one has the maximum with the
ones already chosen. The filter selection algorithm is shown in
Fig. 3. The computational complexity of the algorithm depends
on the complexity of calculating and (the number of
filters in ). For the minimum distance classifier used in this
paper, the complexity is , where
is the time to compute , and to compute
given .

To demonstrate the effectiveness of the filter selection algo-
rithm, we use a texture database that consists of 40 Brodatz tex-
ture images, 10 of which are shown in Fig. 4. Initially there are
40 filters. Table I shows the classification gain along with the
computation time for classification with respect to the number

of filters. Here, the computation time is the time for classifying
test images relative to that of using only the intensity filter. For
texture classification, it is often desirable to use only derivative
filters. The last three columns in Table I show the result without
the intensity filter. As Table I shows, the filter selection algo-
rithm essentially chooses the most effective filters. The row with
a star shows the filters chosen automatically for optimal classifi-
cation, whose performances are better than those of all the avail-
able filters. This illustrates clearly a key difference between tex-
ture classification and texture synthesis. As Fig. 2 shows, more
filters clearly give better synthesis results. However, more fil-
ters may not improve the classification performance and in fact
may give worse performance. In this particular case, while the
difference in classification gain between the optimal choice and
all the available filters is not significant, the difference in com-
putation time is very significant, which can be critical for some
applications.

B. Classification Experiments

We apply our classification method to the 40-texture dataset
shown in Fig. 4. This dataset is challenging because there are
significant variations within some textures and some of them are
very similar to each other. At a given integration scale, we parti-
tion the images into nonoverlapping samples, which are then di-
vided into disjoint training and testing set. Here seven filters in-
cluding the intensity, , , ,

, , and , are selected
automatically by the filter selection algorithm (see Table I) and
are used to compute the spectral histogram.

Fig. 5(a) shows the classification gain with respect to the in-
tegration scale on the 40-texture dataset using the seven filters.
To avoid the bias due to the particular images in the training
and test set, we randomly divide the total samples into disjoint
training and test set and we repeat the classification experiment
100 times and collect the average, best, and worst performance.
Here 1/2 of the available samples are used for for training and
the remaining ones for testing. This result shows several im-
portant aspects of texture classification. 1) It shows clearly that
a reasonable integration scale is needed in order to discrimi-
nate textures as the texture structures have certain spatial extent.
Here the average classification gain at integration scale 88 is
21.34 (corresponding to a classification error of 46.64%), and
it improves to 35.86 (corresponding to a classification error of
10.35%) at integration scale 2424. 2) Given a reasonable in-
tergration scale, the spectral histogram provides a robust fea-
ture statistic for classification. The average classification gain
at integration scales of 3232 or larger is better than 37 (cor-
responding to an error less than 7.5%). If we allow the correct
one within the three closest classes, the classification error is
less than 1% for all the 100 trials. Given the significant varia-
tions within textures and similarities between textures, the per-
formance is sigficantly better than exisiting filter-based methods
(see Section IV for comparisons). 3) It shows also that the spec-
tral histogram is not sensitive to particular images in the training
and test sets as the best and worst are close to the average of 100
trials. At integration scale 24 24, the average gain is 35.86, the
worst 35.50, and the best 36.36.
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Fig. 4. Ten of the 40 textures used in the classification experiments. The input image size is 256� 256. These images are available at http://www-dbv.cs.
uni-bonn.de/image/texture.tar.gz.

TABLE I
CLASSIFICATION GAIN AND COMPUTATION TIME WITH RESPECT TOFILTERS CHOSEN BY THEFILTER SELECTION ALGORITHM

Fig. 5. Classification result for the 40-texture dataset. (a) The average (solid),
best (dash-dotted) and worst (dotted) classification gain of 100 trials with
randomly divided training and test set with respect to the integration scale.
(b) The classification gain with respect to test-to-training sample ratio. Solid
line—integration scale 32� 32; dashed line—integration scale 24� 24.

To demonstrate the generalization capability of the spectral
histogram, Fig. 5(b) shows the classification gain at two inte-
gration scales with respect to the test-to-training sample ratio. In
both cases, the classification gain does not change much for ra-
tios between 1:1 and 12:1. This confirms the generalization ca-
pability of spectral histograms in characterizing texture images.

To provide numerical justifications of the proposed repre-
sentation, we have compared the spectral histogram with other
commonly used features and distance measures. Fig. 6(a) shows

Fig. 6. Comparison of different features and distance measures of the 40
texture dataset. (a) Classification gain for different features. Dashed line—
intensity mean; dash-dotted line—intensity mean and variance; dotted line—
intensity histogram; solid line—spectral histogram of the seven filters.
(b) Classification gain for commonly used distance measures for histograms.
Solid line—� -statistic; dotted line—L -norm; dashed line—L -norm; dash-
dotted—Kullback-Leibler divergence.

the classification gain for features commonly used for inten-
sity images, including the mean value, combination of mean
and variance values, and intensity histogram. As we can see
from Fig. 6(a), the mean and Gaussian models are not sufficient
for characterizing those images and generate worst results. The
comparison shows that the smoothing stage commonly used in
texture classification methods [34] is not optimal; the distribu-
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Fig. 7. Ten-texture image groups used in [34]. The image size is 128� 128. (a) The images in Fig. 11(h) of [34]. (b) The images in Fig. 11(i) of [34].

tion of local features is far more effective in discriminating tex-
tures. This is also consistent with the comparisons shown in the
next section. Fig. 6(b) compares several commonly used dis-
tance measures for histograms, includingnorm, norm,
Kullback-Leibler divergence, and -statistic. For texture clas-
sification using spectral histograms, Fig. 6(b) shows that dif-
ferent measures give very similar results, suggesting that spec-
tral histograms is insensitive to a particular form of distance
measure.

IV. COMPARISONWITH EXISTING APPROACHES

Several comparative studies about texture features have been
conducted. Ohanian and Dubes [31] studied the performance
of various texture features, including fractal features, cooccur-
rence features, Markov random field features, and Gabor fea-
tures. However, the evaluation was done only on four classes
of images and the conclusion may not be generalized. Ojala
et al. [32] did a similar study on joint occurrences of feature
pairs using nine texture images and the ones in [31]. Recently,
Randen and Husoy [34] did an extensive comparative study for
texture classification on cooccurrence methods, Law’s texture
measures, different filtering-based methods, and a neural net-
work approach [19]. They used a supervised classifier of Ko-
honen [23] for most of their experiments. The filter responses
at each pixel form a vector and the texture classification is to
classify feature vectors. Because filters have a spatial extent, the
receptive field of a vector overlaps heavily with the neighboring
ones. We have applied our method to the same images with the
same experimental settings. We use an integration scale 3232

and the filters are chosen automatically from the 40 filters using
the filter selection algorithm. We use a separate set of images for
training and a separate set of images for testing as in [34].3 The
results for the two most challenging groups of texture images,
shown in Fig. 7(a) and (b), are summarized in Table II, where
the average performance and the best in tables 3, 6, 8, and 9 in
[34] are shown. For these two groups, due to the inhomogeneity
and large variations, texture types in local windows given by
the integration scale are perceptually close and they require a
very accurate texture model for classification. In addition, sepa-
rate images are used for training and this creates additional dif-
ficulties for methods that cannot generalize well to new data.
The classification gains of all the methods studied in [34] are
shown in Fig. 8(a) and (b). Our method is significantly better
than the best performance in [34]. Furthermore, the most errors
of our method are from the texture pairs that are perceptually
very similar. If we consider the two closest textures as correct,
our method gives a classification gain of 9.50 and 9.58 respec-
tively, corresponding to 95.0% and 95.8% correct classification
rate. This comparison clearly suggests that classification based
on filtering output is inadequate for characterizing texture ap-
pearance and an integration after filtering must be done. Our
comparison strongly indicates that some representation like the

3In [34], windows that include different texture types are used to test tex-
ture boundary accuracy of classification methods. Due to the uncertainty prin-
ciple [5], there is an intrinsic tradeoff between classification performance and
boundary accuracy. Since a considerable integration scale is needed to charac-
terize a texture (see Figs. 5 and 6), test windows are confined within a single
texture here. With spectral histogram representations, the boundary localization
is achieved by building a more accurate probability model after initial classifi-
cation [28].
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Fig. 8. The classification gain for all the methods in [34] for Fig. 7(a) and (b)
respectively. In each plot, each data point represents one result in tables 3, 6,
8, and 9 of [34] and the dashed line is the result of the proposed classification
method.

TABLE II
CLASSIFICATION GAINS OF METHODS SHOWN IN [34] AND THE

PROPOSEDMETHOD

spectral histogram may be necessary in order to capture com-
plex texture appearance.

To further illustrate our method, we have done a comparison
with a method proposed by Azencottet al. [1]. In [1], a texture
feature vector is proposed based on the spectral density of win-
dowed Fourier filters, e.g., Gabor filters, and a distance between
two textures is defined as a symmetrized Kullback distance be-
tween computed vectors. A minimum distance classifier is also
used for texture classification. For an unbiased comparison, we
use the same settings used in [1]. Each input texture image with
the size of 128 128 is divided in 49 image patches with size
32 32 and thus adjacent patches are overlapped. We use the
same seven filters as in the previous section to compute spec-
tral histogram. The 16 texture images used in [1] are shown in
Fig. 9; therefore there are 784 image patches in total.

Two classification experiments were reported in [1]. In the
first experiment, the 49 patches of each image were divided into
a training set of 21 patches and a test set of 28 patches. The
result in [1] gives six misclassified patches, i.e., 1.34% classi-
fication error. For the same setting, our method gives only 1
misclassified patch, resulting in 0.22% classification error. In
the second experiment, the training set is reduced to one patch
per texture image. The result in [1] using the Kullback distance
gives twenty-three misclassified patches. Our result gives only
four misclassified patches. This comparison demonstrates the
superior discrimination ability of the spectral histogram.

V. DISCUSSION

A. Relations to Existing Approaches

This paper focuses on texture classification using spectral his-
tograms with a fixed set of filters. As we mentioned earlier,

Fig. 9. Sixteen texture images used in [1]. Images in the first row are generated
from Gaussian random fields, and remaining rows are from the Brodatz album.
The image size is 128� 128.

one can choose different filters to define different features. In
this section, we point out the relations between the spectral his-
togram and other existing methods.

Before we discuss specific features for textures, we point out
that uniform regions are simply a special case under the spectral
histogram, thus the spectral histogram provides a unified feature
for texture as well as nontexture images. However, textures are
often studied separately from intensity images and texture fea-
tures from other approaches may not be applicable to uniform
images [6].

Texture analysis has been studied extensively and many
methods have been proposed. Tuceryan and Jain [40] classified
existing approaches into four categories, namely statistical
methods, geometrical methods, model based methods, and
signal processing methods. We discuss the relationships be-
tween each category and our proposed method.

Statistical methods, including cooccurrence matrices [17],
autocorrelation features [40], and our method here, are based
on the observation that a texture is defined by the spatial
distribution of gray values. A cooccurrence matrix consists
of the number of occurrences of a gray level pair with a
specified distance apart. This can be viewed as a special case
of -gon statistics proposed by Julesz [20], [22]. Because the
cooccurrence matrix cannot be used directly as texture features,
a number of texture features were subsequently computed from
the cooccurrence matrix [17]. It is easy to see that the cooccur-
rence matrix can also be defined as responses of a specifically
designed gradient filter and thus a spectral histogram using
gradient filters provides cooccurrence matrix features.

The class of geometrical methods is based on the assumption
that a texture consists of repeated texture elements, such as the
one shown Fig. 2(b). After the texture elements are identified,
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geometrical properties of the element distribution can be used
to characterize textures [40]. As shown in Fig. 2(b), the spectral
histogram can characterize the texture element as well as its dis-
tribution without knowing the texture element. This provides a
more elegant way to characterize textures with repeated texture
elements.

Model based methods include Markov random fields [6], [7],
[9], [15], [38], [44]. This class of methods can not only de-
scribe the texture through model parameters, which are learned
from observed textures, but also synthesize it through sampling.
In [44], for example, Zhuet al. proposed a FRAME model
and showed that the model provides a unified framework for
Markov random field models. In a limiting case, Wuet al. [42]
proved the equivalence of a model specified by features such
as spectral histogram [43] and a Gibbs model, a special case
of which is shown in [12]. This relation shows that the spectral
histogram provides an equivalent way of specifying a Markov
random field, which avoids the parameter learning necessary for
a Markov random field model.

Signal processing methods try to characterize textures by
filter responses directly. Many of these models have been
studied and compared in [34], including Laws filters, ring
and wedge filters, Gabor filters, wavelet transforms, packets,
frames, discrete cosine transforms, quadrature mirror filters,
and a number of optimized filters for texture classification
(see the references wherein). Even though the filters in many
of those approaches were carefully designed and chosen, our
comparison shows that this class of methods is inadequate to
characterize and discriminate texture structures. This demon-
strates that an integration of different filter responses such as
the spectral histogram proposed here, is probably necessary
while the specific form of filters is not critical [24].

B. Integration of Filter Responses

It is easy to see that a filter’s response is inhomogeneous even
to a homogeneous texture image. An inevitable issue common
to all filter-based approaches is to form a feature which charac-
terizes a texture region. To reduce the inhomogeneity of filter
responses, spatial smoothing is commonly used [3], [29], [34].
The proposed spectral histogram model resolves this issue using
histograms of filter responses within a spatial window. For a
spatial window substantially larger than the size of basic ele-
ments in a texture, the spectral histogram is intrinsically insen-
sitive to precise locations of texture elements. This is consistent
with a study on human texture discrimination [21]. Because of
this property, two images do not need to be aligned in order to
be compared using spectral histograms. More importantly, be-
cause of the stochastic nature of textures, images of the same
texture type may not be aligned, an example of which is shown
in Fig. 2(b). While both images in Fig. 2(b) consist of crosses
with similar distribution, two images cannot be aligned under
simple transforms. The misalignment of textures can be a se-
rious problem for approaches that use filter responses directly
as features for texture classification, such as those studied in
[34].

Note that the spectral histogram is defined on any type of im-
ages. Piece-wise constant images with additive Gaussian noise
are a special case whose spectral histogram has a unique pat-

tern. Under the spectral histogram representation, the distinc-
tion between texture and nontexture images becomes unneces-
sary. While the spectral histogram here is used primarily for tex-
tures with roughly repeated patterns, our study elsewhere sug-
gests that the spectral histogram can also be applied to classify
faces and 3-D objects [25], [26], consistent with a recent study
on object recognition using multidimensional histograms [36].

VI. CONCLUSION

We have demonstrated that the spectral histogram provides
a sufficient feature statistic for texture classification. The

-statistic between spectral histograms provides a robust
distance measure for comparing textures. We have proposed a
filter selection algorithm for texture classification. With a wide
range of integration scales and test-to-training ratios, we have
obtained satisfactory classification results on natural texture
datasets. Our comparison shows that the spectral histogram
improves the classification performance significantly. By
pointing out the relations between existing texture features and
the spectral histogram, we suggest that the latter may provide a
unified image feature statistic.
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