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Abstract

This paper investigates the use of range images of faces for recognizing people. 3D scans of faces lead to range images that are linearly

projected to low-dimensional subspaces for use in a classifier, say a nearest neighbor classifier or a support vector machine, to label people.

Learning of subspaces is performed using an optimal component analysis, i.e. a stochastic optimization algorithm (on a Grassmann manifold)

to find a subspace that maximizes classifier performance on the training image set. Results are presented for face recognition using FSU face

database, and are compared with standard component anlyses such as PCA and ICA. This provides an efficient tool for analyzing certain

aspects of facial shapes while avoiding a difficult task of geometric surface modeling.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of recognizing humans using images of

their faces has become increasingly relevant in recent

times. A large number of papers and efforts have been

dedicated towards solving this problem. Depending on the

operational nature of imaging devices, they can capture

several aspects of humans faces, such as landmark

geometry, texture variations on faces, skin reflectance,

skin emissivity and facial shapes. An important issue is to

find an aspect that: (i) differentiates people consistently,

(ii) manifests itself well even in low-quality images, and

(iii) leads to efficient algorithms. A long-term strategy

should be to model all the physical factors that lead to

variability among face images, factors such as shapes,

textures (or reflectance functions), illumination models,

clutter, obscuration and motion relative to the camera.

This will address many of the challenges that arise in

current analysis when only a subset of these factors is

included in the model. In the meantime, one needs to

develop tools for representation, analysis and inferences
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for individual factors leading up to derivation of efficient

algorithms. Although majority of current research is

focused on appearance-based recognition of faces, using

visible spectrum images ([1–3]) and infrared images ([4,

5]); the shapes of the facial surfaces have not received a

similar attention. A statistical analysis of shapes of facial

surfaces, including specifications of shape spaces, metrics,

distributions, and testing, can prove to be an important

tool in facial recognition. The use of 3D shapes of faces

in recognition is rather recent and limited: [6] models the

geometry of facial shapes and skin reflectance to capture

face variation, [7,8] use features from 2D images and 3D

face scans to characterize a face, and [9] uses stereo data

to analyze 3D shape of faces. Current algorithms

involving 3D shape analysis lack efficiency and speed

for real-time applications, and there is a need to focus on

efficient, albeit approximate, methods.

An important question is: How to capture, represent,

and analyze shapes of facial surfaces? To capture or

measure facial surfaces, 3D scanning has proven to be a

widely acceptable tool. However, the choice of represen-

tation and analysis is much more difficult. If one can

represent facial surfaces as discrete meshes, then shape

analysis involves comparing discrete meshes modulo

shape preserving transformations such as rotation,

translation, and scaling. Although this approach seems

fundamental and appropriate, it remains to be investigated
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carefully. It is proving difficult to establish a framework,

where any two surfaces can be compared, matched, and

analyzed geometrically. One solution is to use landmark-

based approach for representing and analyzing shapes

([10]) although it is difficult to detect and register these

landmarks automatically. Another idea is to embed the

surfaces in R
3 and to compare them using diffeomorph-

isms of R
3 ([11]); a major limitation here is the

computational cost associated with diffeomorphisms.

Seeking efficient algorithms for real-time applications,

we form 2D range images of 3D facial surfaces, as

viewed from a specified direction and distance, and

compare the resulting images. Range images capture the

depths of facial surfaces in the direction perpendicular to

the image plane. Although range pixels relate to the

shapes of facial surfaces, they do not contain sufficient

information to completely characterize shapes. Despite

this lack of completeness in characterizing shapes, range

images allow us to use tools from image analysis in

comparing 3D objects. In this paper, we investigate the

use of range images in face recognition.

Using output of a 3D scanner, one can generate range

images of faces using range mapping and orthographic

projections. Once the range images are generated, they are

registered and pre-processed. Next question is how to

compare and analyze them in a statistical fashion. Linear

projections of images have frequently been used to reduce

image dimensions and provide efficient algorithms for face

recognition; examples include principal component analysis

(PCA) ([12,13]), independent component analysis (ICA)

([14]), Fisher’s discriminant analysis (FDA) ([15]), etc. The

use of principal components in analyzing 3D scans of faces

has also been studied previously ([6]). Although such linear

representations satisfy certain optimality criteria, they may

not necessarily be optimal for a specific application at hand

(for empirical evidence, see e.g. [15,16]). A recent paper

([17]) presents a technique for finding linear represen-

tations of images that are optimal for specific tasks and

specific datasets, i.e. instead of choosing standard projec-

tions, one chooses a projection that is matched to the given

problem. The search for optimal linear representation, or an

optimal subspace, is based on a stochastic optimization

process that maximizes a pre-specified performance

function over the set of all subspaces. Since this set of all

subspaces (known as a Grassmann manifold) is not a vector

space, the optimization process has to account for the curved

geometry of Grassmannian. In this paper, we investigate the

use of optimal component analysis in face recognition using

range images.

The remainder of this paper is organized as follows.

Formation and pre-processing of facial range images is

described in Section 2, and an algorithm for computing

optimal linear components is presented in Section 3. Some

experimental results using FSU face database are presented

in Section 4.
2. Range images of facial shapes

We start by describing the process of generating range

images from a 3D scanner data, their registration and other

pre-processing.

2.1. Generation of range images

There exist range scanners that can record and provide

geometries of 3D objects in form of range images directly.

However, some 3D scanners, including a Minolta vivid 700

scanner used in experiments presented here, output data

only in form of polygonal meshes. Therefore, one needs to

pre-process this data into range images before image-based

recognition techniques can be applied.

The dataset used in these experiments was collected in a

controlled imaging environment as shown in the top panel

of Fig. 1. Subjects were imaged in a closed room with fixed

uniform illumination and using markers to align their faces.

They were asked to stay in a predetermined position and

orientation with respect to the camera resulting in a rough,

global registration of facial surfaces. Each subject was asked

to form six different facial expressions: neutral, smile,

frown, angry, squint, and scared, and faces were scanned for

each case, as shown in the bottom panels of Fig. 1. To avoid

missing data, the subjects were asked to close their eyes

during scanning. The scanner outputs a discrete mesh, i.e. a

set of vertices in R
3 and edges connecting the neighboring

vertices to form triangles. Next we describe the formation of

range images from these triangulated meshes.

A range image is a rectangular array of pixels in an image

plane, with pixels values being proportional to the distance

(or depth) of the nearest surface in direction perpendicular

to the image plane. Although these depth values, or Z-

coordinates, are given for vertices present in the mesh, they

may not project uniformly to pixel locations in the image

plane, thus leaving holes in a range image. Our approach to

forming image is essentially range mapping: for each pixel

in the image, we traverse along a ray orthogonal to the

image plane and seek the triangle (in the mesh) nearest to

the image. Then, the Z-coordinate of the point of

intersection, between the ray and this triangle, provides

the pixel value. Since the Z-coordinate of this point may not

be explicitly available, we linearly interpolate between the

Z-coordinates of the vertices of that triangle.

For simplification, the actual implementation is reversed,

i.e. for each triangle in the mesh, we find pixels in the image

plane that are interior to the projection of that triangle using

the line crossing algorithm ([18]). Then, for each pixel

inside the projected triangle, we compute the Z-coordinate

using a linear interpolation of the Z-coordinates of three

vertices of that triangle. Care is taken to ensure that the

triangle (in the mesh) does not project to a straight line in the

image plane. In this way, each triangle in the mesh is

traversed and orthographically projected onto the image

plane. Finally, if multiple triangles assign values to the same



Fig. 1. Data capture. Subjects stay in a predetermined position and orientation with respect to the 3D scanner. Each subject was scanned for six different facial

expressions.
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pixel, then the smallest pixel value (denoting the nearest

triangle) is selected. After all triangles are traversed, most of

the triangles are assigned range values although some pixels

may be still left unassigned.
2.2. Registration of range images

Even though the data are captured in a controlled

environment, there are still some pose variations in the

scanned faces. Assuming that this variability is small, we try

to correct it using registration techniques in the image place.

All registrations are performed on the 2D range images,

avoiding the computational complexity associated with 3D

registration. In other words, we ignore the mismatches, if

any, in the direction orthogonal to the image plane. In the

image plane, we perform landmark-based registration for

rotation, translation, and depth variability, for each range

image. Since the use of landmarks here is simply for

registration of images, and not comparisons, the choice of

landmarks is relatively simple. We have chosen to register
Fig. 2. The asterisk indicates the tip of the nose and the white line indicates the b

(middle panel) rotational alignment. Right panel shows the mask imposed on ran
images using the tip and the bridge of the nose. In each

image, the nose tip is found as the pixel closest to the

camera, i.e. smallest range value. We choose the pixels with

the smallest intensities in several of the rows above the nose

tip, and fit a straight line through these pixels to discover the

bridge of the nose.

1. Translation in R
2. Each range image is translated in the

image plane so that the tip pixel is moved to the image

center. This process removes the translational varia-

bility.

2. Rotation. To force rotational alignment, the line

representing the bridge of the nose is made vertical as

shown in the left panels of Fig. 2. This removes the

rotational variability in the images.

3. Translation in Z-coordinate. Finally, the depth adjust-

ment restricts variability in the subject’s distance from

the camera during data collection. The pixel value at the

image center, i.e. the distance between the nose tip and

the camera, is forced to be the same value in all images.
ridge of the nose. Images show range images before (left panel) and after

ge images to crop periphery.



Fig. 3. Range images of same faces under different facial expressions. Top row shows subject 2, middle row shows subject 13 and bottom row shows subject 19.
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Through these steps, we obtain registered range images

of all subjects under all facial expressions.
2.3. Cropping rough areas

Although range images are now well aligned, there are

still sources of variability that we want to avoid. For

example, subjects’ hair if visible in the image leads to

unreliable data, and we want to remove them from the

image. Similarly, other parts such as ears, bottom of the

chin, etc. should also be removed to provide consistency.

(1) Cropping images. To remove undesired variability in

the peripheries, we simply mask the range image with a

filter shown in the right panel of Fig. 2. The basic idea is

to remove hair, chin, and other parts of faces that are not

scanned with high precision by the scanner. It must be

noted here that we have used the same filter on all

images and, for a population with large variations in

facial sizes, this may lead to irregular cropping. In

future, we plan to crop range images using filters that

are adaptive to facial sizes.

(2) Patching. It is possible to have pixel locations in range

images that do not have an assigned value, i.e. there

may be holes in the images. We patch a hole using

linear interpolation between the neighboring pixel

values, as long as they themselves are not holes.

This completes generation and pre-processing of range

images, and now they are ready for analysis. For later
computational efficiency, we downsample these images to

smaller sizes. Figs. 3 and 4 show some examples of the

resulting range images. The three rows in Fig. 3 show

examples of range images of people under different facial

expressions. The top row shows subject 2, the middle row

shows subject 13, and the bottom row shows subject 21,

under six facial expressions each. Fig. 4 shows range images

of first 24 subjects under the same—neutral—facial

expression.

In these range images, lighter pixels indicate parts of the

face closer to the camera while darker pixel values indicate

parts of the face away from the camera, and completely

black pixels indicate no data. Note that the imaging set-up

ensures that the tip of the nose is always nearest to the

camera.
3. Optimal component analysis

Next, we describe the use of these range images in

face recognition using optimal component analysis. Our

analysis of range images for face recognition is based on

linear projections of images to smaller subspaces, and a

statistical analysis of the resulting coefficients. In the

past, the choice of projection has proven to be an

important factor in the recognition performance. Instead

of choosing a standard projection, such as PCA, ICA, or

FDA, we tailor the choice of projection to this

application by choosing a projection that maximizes the

performance face recognition on the training data.



Fig. 4. Range images of first 24 subjects under the neutral facial expression.
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We start with a mathematical formulation of the

problem. Let U2R
n!k be an orthonormal basis of an k-

dimensional subspace of Rn, where n is the size of an image

and d is the required dimension of the optimal subspace

(generally n[k). For an image I, considered as a column

vector of size n, the vector of coefficients is given by

aðI;UÞZUTI2R
k. Images are compared via their coeffi-

cients under the metric dðI1; I2;UÞZ jjaðI1;UÞKaðI2;UÞjj,

where k$k denotes the 2-norm.

For finding optimal U, we need to select a classifier and a

recognition performance measure F. In this paper, we

choose a nearest neighbor classifier due to its simplicity and

popularity. However, other classifiers can easily be

substituted instead in this framework. Let there be C classes

to be recognized from the images; each class has mtrain

training images (denoted by Ic;1;.; Ic;mtrain
). In order to

utilize a gradient-based algorithm, F should have continu-

ous directional derivatives. To ensure that we define r(Ic,i,

U) to be the ratio of the between-class-minimum distance

and within-class minimum distance of a training image

from class c indexed by i in the leave-one out sense,

given by rðIc;i;UÞZ ðminc0sc;jdðIc;i; Ic0;j;UÞÞ=ðminjsid
ðIc;i; Ic;j;UÞC30Þ, where d(I1,I2;U) is defined earlier, and

30O0 is a small number to avoid division by zero. Then,

define F according to

FðUÞZ
1

Cmtrain

XC
cZ1

Xmtrain

iZ1

hðrðIc;i;UÞK1Þ; (1)

where h($) is a monotonically increasing and bounded

function. In our experiments, we have used

hðxÞZ1=ð1CexpðK2bxÞÞ, where b controls the smoothness

of F. Note that Ic,i is classified correctly in the leave-one out

sense according to the nearest neighbor rule under U if and

only if r(Ic,i, U)O1. It follows that F is precisely the leave-

one out recognition performance of the nearest neighbor

classifier when b/N.

Under this formulation, F(U)ZF(UH) for any k!k

orthogonal matrixH as the distance d(I1,I2;U)Zd(I1,I2;UH);

the choice of 2-norm in d(I1,I2;U) allows for this equality. In

other words, F depends on the subspace spanned by U but

not on the specific basis chosen to represent that subspace.

Therefore, our search for optimal representation(s) is on the

space of k-dimensional subspaces rather than on their bases.
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Let Gn;k be the set of all k-dimensional subspaces of Rn; it is

called a Grassmann manifold. It is a compact, connected

manifold of dimension k(nKk). An element of this

manifold, i.e. a subspace, can be represented either by a

basis (non-uniquely) or by a projection matrix (uniquely).

Choosing the former, let U be an orthonormal basis in R
n!k

such that span(U) is the given subspace of R
n. Let [U]

denote the set of all the orthonormal bases that span the

same subspace, i.e. ½U�Z fUHjH2R
k!k;HTHZ Ikg2Gn;k.

The problem of finding optimal linear subspaces for

recognition becomes an optimization problem:

½Û�Z argmax
½U�2Gn;k

Fð½U�Þ:

Since the set Gn;k is compact and F is a smooth function,

the optimizer ½Û� is well defined. ½Û�may not be unique, i.e.

it may be set-valued rather than being point-valued.

A recent paper [17] describes a numerical procedure for

approximating ½Û� using a stochastic gradient algorithm.

The basic idea is to construct a Markov chain that seeks high

F-valued points in Gn;k. It does so by using randomly

perturbed versions of the gradient directions to find

candidates for updating the chain; these candidates are

accepted and rejected according to a probability that

depends upon F. The algorithm is repeated here for reader

convenience.

Algorithm 1. MCMC simulated annealing: Let Xð0ÞZ
½U0�2Gn;k be any initial condition. Set tZ0.

(1) Calculate the directional derivative of F at Xt according

to:
AðXtÞZQT
t

Xk
iZ1

Xn
jZkC1

aijðXtÞEij

 !
2R

n!n and where

aijðXtÞZ limsY0
Fð½QT

t e
3Eij J�ÞKFðXtÞ

3

� �
2R:

(2)

Here J is an n!k matrix made up of the first k columns of

the n!n identity matrix andQt is an n!n orthogonal matrix

such that QT
t XtZJ. Given Xt, Qt can be found efficiently in

O(nk2) computations using Householder reflection as

described in [19]. Eij is an n!n skew-symmetric matrix

such that: for 1%i%k and k!j%n

Eijðu; vÞZ

1; if uZ i; vZ j

K1; if uZ j; vZ i

0; otherwise:

8><
>: (3)

(2) Generate k(nKk) independent realizations, wijs, from

standard normal density. Using the value of Xt,
calculate a candidate value Y according to:

dAt ZAðXtÞDC
ffiffiffiffiffiffiffiffiffi
2DT

p Xk
iZ1

Xn
jZkC1

wijEij;

Y ZQT
t expðDdAtÞJ;

(4)

The operation exp(DdAt) can be performed in O(nk2)

operations by exploiting the structure of sparse skew-

symmetric matrix dAt, as described in [19].

(3) Compute F(Y), F(Xt), and set dFZF(Y)KF(Xt).

(4) Set XtC1ZY with probability min{exp(dF/Tt),1}, else

set XtC1ZXt.

(5) Set TtC1ZTt/g, tZtC1, and go to Step 1.

Here gO1 is the cooling ratio for simulated annealing

with a typical value of 1.0025. This algorithm generates a

Markov chain {Xt} in Gn;k whose convergence properties

are briefly discussed in [17,20]. In this paper, we investigate

its application to range image analysis.
4. Experimental results

Although the original database consists of 82 subjects,

certain imaging errors have ruled out the use of a subset of

these images here. As a result, we have used only 67

subjects, at six different facial expressions each, in the

results described here. Two types of results are presented: (i)

improvement in recognition performance using Algorithm

1, and (ii) improvement in resulting average posterior

entropy using Algorithm 1.

4.1. Recognition performance

As the first result, we demonstrate the search for optimal

components by maximizing F on the training data using

Algorithm 1. In this experiment, the first three images of

each subject were considered as training, while the

remaining three were used for testing: mtestZ3, mtrainZ3,

and CZ67. As given in Eq. (1), in this paper the learning

process described in Algorithm 1 uses only the images in the

training set and the recognition performance is then

evaluated on the disjoint test set.

Fig. 5 shows some sample evolutions of Algorithm 1 to

find the optimal linear representations with nZ2501 and

kZ10. For each case, the top panels plot the evolution of

leave-one-out performance F(Xt) on the training data using

Xt as the projection. Although, the performance is optimized

on the training data, its value on the test data is more

important; we have evaluated the recognition performance

on the test data and have plotted in the corresponding lower

panels. The four cases columns differ in their initial

conditions: (a) uses PCA, (b) uses ICA, (c) uses first d

coordinate axes, and (d) uses a random subspace to initialize
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Fig. 5. Evolution of F(Xt) versus t under Algorithm 1 for different initial conditions. For each case, the top panel plots F on the training data while the lower

panel plots F on the test data. The initial conditions are as follows: (a) PCA basis, (b) ICA basis, (c) basis specified by first d Euclidean axes, and (d) a random

basis.

1 Obtained from http://svmlight.joachims.org.
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the algorithm. Here ICA is computed using the FastICA

algorithm proposed by [21]. As an example, consider case

(a): the PCA basis provides less than 60% recognition

performance on the training data and 77% recognition

performance on the test data. Under Algorithm 1, the

optimal performance for this training data evolves close to

100%, and the corresponding performance of this optimal

basis on the test data is found to be 99%. Similar

improvement in performances is observed for other starting

points. Experiments show that the optimal subspace is not

unique and starting from different initial conditions leads to

different final points in Gn;k. However, the recognition

performance for all these points is 99% or more, thus

implying multiple global maxima of F. Recognition

performances of optimal components on the test data for

different initial conditions are listed in Table 1.

Although optimal components are derived assuming a

nearest neighbor classifier, their performances on other

classifiers also show a consistent improvement. To
demonstrate this, we have computed the recognition

performance using a support vector machine after a linear

projection. In case the projection is based on standard

methods, i.e. PCA, ICA, etc., the performance is much

lower than the performance obtained using optimal

components. These results are also summarized in

Table 1. For different initial conditions, the table lists the

recognition performance on the test dataset under the two

classifiers: nearest neighbor and SVM. The SVM is

implemented based on the SVM-light package by Thorsten

Joachims.1 Here we use polynomial kernels with degree 2

and pairwise classification to handle multiple classes [22].

4.2. Posterior entropy

In addition to the recognition performance, we have also

studied the entropy of the posterior distribution on the

http://svmlight.joachims.org


Table 1

Recognition performance on the test data before and after using Algorithm 1

Initial F Optimal F

Initial condition NN class SVM class NN class SVM class

PCA 77.61 75.62 99.00 92.54

FDA 94.53 89.55 99.50 90.55

ICA 3.48 10.45 99.00 88.06

ICA2 72.64 69.15 99.00 92.04

RCA 71.14 62.19 99.00 94.03

AXIS 13.43 12.94 99.00 89.55
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subject space. Let P(cjI 0) denote the posterior probability of

a subject c given test image I 0 is

PðcjI 0ÞZ
1

Z
exp

Kfmin
mtrain

iZ1 dðI 0; Ic;iÞ
2g

�d2

� �
;

where �d Zmin
c

min
mtrain

iZ1
dðI 0; Ic;iÞ

� �
;

(5)
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Fig. 6. Evolution of the average entropy H(P) as the subspace changes
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and Z is the normalizer. The entropy associated with this

posterior is given by:

HðPjI 0ÞZK

ðC
cZ1

logðPðcjI 0ÞÞPðcjI 0Þ; (6)

and the average entropy is given by:
)
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according to Algorithm 1, under four different initial conditions.
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where I 0c;i denotes a test image.

Since the normalizing constant Z is not known, the

average entropy can only be computed within a constant.

A flatter posterior, with a larger entropy, can imply a

larger probability of error, while a posterior concentrated

around the correct subject, with a smaller entropy,

generally implies smaller error probabilities. Fig. 6

shows the evolutions of average posterior entropy as

Algorithm 1 progresses. The four plots correspond to the

four initial conditions as earlier.

Fig. 7 shows some examples of the posterior probabilities

before and after the optimization process. In each plot, the

broken line shows the initial posterior and the solid line

shows the final posterior. The concentration of solid lines

around a subject denotes both improved recognition and

reduced entropy. The first two cases are typical for our

experiments, while the last panel shows the worst case

result. In this case, the entropy actually goes up although the

recognition based on highest probability subject will still be

correct.
5. Summary

In this paper, we have described an efficient technique to

compare certain aspects of facial shapes using ideas from

image analysis. 3D scans of facial surfaces lead to 2D range

images, which are projected linearly onto a subspace that

maximizes ensuing recognition performance. This search

for optimal subspace is based on a stochastic gradient

algorithm on a Grassmann manifold, the set of all

subspaces. To demonstrate effectiveness of this approach,

experimental results from a FSU database of 67 people,

scanned under six facial expressions each, are presented.

Nearly perfect recognition performance is achieved for

several different initializations of Algorithm 1.

Although the recognition performance using these range

images is fairly high, it is difficult to predict the performance

in larger studies. One application that seems promising is to

use these range cameras in conjunction with the regular

video cameras to improve the joint recognition

performance.
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