
56 ; L O G I N : V O L . 3 1 , N O . 2

R A N D O L P H L A N G L E Y

auditing superuser
usage
Randolph Langley is a member of the Computer
Science Department faculty at Florida State
University. Prior to this, he has worked both in the
financial industry and for the Supercomputer
Computations Research Institute.

langley@cs.fsu.edu

I M A G I N E B E I N G T H E M A N A G E R O F A
UNIX group who, after receiving a tele-
phone call that a user cannot access his
NFS home directory, happens to find the
following lines in the shell history file for
the root account:

ps -elf | grep -i portmap
kill -TERM 2193
portmap -dlv

It appears that somebody was trying to debug the
portmapper, but when was this done? Who did it?
Is it the cause of the current problem, or was it
someone working on this problem?

While in this case it might be merely desirable to
know more about these lines—after all, you can
just do a ps to find out if the portmap program is
running and start it if it is not—it is sometimes
necessary to maintain records of who does what
on some production systems. Programs such as
sudo [1] and op [2] provide a means to control
the who and, to a lesser degree, the what, but
determining more exactly what was actually done
can still be a challenge.

One method of meeting this challenge, sudoscript
[3], was presented in Howard Owen’s August
2002 ;login: article The Problem of PORCMOLSULB.
It wraps the execution of a shell by sudo [1] with
a script session.1 While this is certainly a viable
approach, modifying script seemed to me the more
natural approach.2 I wanted to add a remote log-
ging capability since this allows one to both cen-
tralize logging and provide some fraction more
capability in the event of a break-in via sudo
(although certainly a knowledgeable cracker
should be able to stop this logging quite quickly).
Modifying script seemed the most direct way to
provide such logging.

Rationale

In large organizations, the responsibility for sys-
tem security and its monitoring has natural divi-
sions: system administrators, their managers, the
computer security group, and technology auditing
all have different roles in preserving and monitor-
ing system security. Division of responsibility also
helps maintain accountability in the overall sys-
tem. To divide responsibility, information technol-
ogy controls should exist at every level, eliminat-
ing any single point of trust.

; LO G I N : A P R I L 2 0 0 6 AU D ITI N G S U P E R U S E R U S AG E 57

Traditionally, however, with UNIX system administration there has been an
imbalance in accountability for superuser activities by system administra-
tors. While important advances such as SELinux [4] introduce new and
useful capability in the form of mandatory access controls in imposing lim-
its, in an audit or forensic situation, tracking superuser actions typically
has meant following whatever logs were available from shells and from
what can be inferred from reading various system logs. Shell logs typically
are not configured to keep timestamps (though many shells do have that
option, such as bash [5]). Shell logs keep a record, not of the actual key-
strokes but, rather, the command line that was eventually entered; shell
logs do not keep track of the output from commands; they don’t have the
ability to automatically forward information to other machines designed to
maintain security information.

While a machine such as a honeypot may have a designed-in system for
fine-grained tracking of user interaction at a very low level, such as hon-
eynet’s use of sebek [6]—typically as a hidden kernel module since such
logging should not be obvious to the intruder—such modifications are not
desirable in a typical production system.

Although the program is commonly used in order to improve accountabili-
ty, it also provides other benefits, such as limiting the number of people
who need direct access to a superuser password. In addition, it provides
some measure of limiting use of privilege by providing a means of allowing
certain programs to be executed by a given user.

From a management perspective, simply knowing who did what can be
invaluable, such as when tracking down ad hoc changes that were made in
the heat of problem resolution but were not put into the boot-time config-
uration. For a technology auditor, superior tracking of superuser privilege
allows the auditors to have a more informed opinion of operations. For a
security officer who may be looking through the logs for security lapses,
having better and more accurate logs of actions by superusers may be
desirable.

Changes to script.c

While quite a bit of this can be done by simply configuring a C or Perl
wrapper around script3 for a standard sudo setup, (such as Owen’s Perl
script sudoscript [3]), I think that setup is less than optimal. I thought it
would be nice if session information could be stored on a common, hard-
ened server; additionally, I thought it would be nice not to have a C or Perl
wrapper around script; finally, it would be nice to be able to customize
other aspects of the process, such as the exact environmental variables
passed just as the wrapper script sudoscript does. It doesn’t need to have
the setuid bit set since it is going to be invoked by sudo, so on its own it
shouldn’t be a security hazard; the recommended permission is to have it
only executable (not readable or writable) by owner, and having root own
it.

To effect this, I customized script to

Write session transcripts to /var/log/super-trans, with each session in a separate
file identified by the start time and the PID of the process.

Write a keystroke log to syslogd (with the idea that syslog is configured to
send these securely to another machine). The default setting currently is to
use the facility LOCAL2, although there is a runtime option -F to let you
(numerically) specify another facility.

58 ; L O G I N : V O L . 3 1 , N O . 2

Keep it fairly small and redistributable (it can be linked with dietlibc to create
a statically linked binary that is under 50k on a CentOS 4.2 distribution
using gcc 3.4.4.)

To install suroot, all you need to do is compile suroot.c (available at
http://www.cs.fsu.edu/~langley/suroot), place it in (for instance)
/usr/local/bin owned by root and with permissions 0100 (execute bit only
for root; it doesn’t need to be suid), install one hard link per sudo user (for
tracking purposes), and add a line to /etc/sudoers.

For instance, if after you install the binary in /usr/local/bin you want to let
user1 use it, you would add this hard link:

ln /usr/local/bin/suroot /usr/local/bin/suroot-user1

and add the following line to /etc/sudoers:

user1 server1=/usr/local/bin/suroot-user1

The program suroot is simply a modification of script and keeps script’s
model. Here’s how both script and suroot work, using three processes: (1)
the original process, which is used for keyboard input (parent_p); (2) a
child process, which is used for handling the output to the transcript
(child_p); and (3) a grandchild (child of the child) process which is our
shell (gchild_p).

Prior to creating child_p or gchild_p, we have parent_p clear all environ-
mental variables except for TERM and HOME, and obtain a pseudo-termi-
nal, either by the BSD standard openpty(3) or, if it isn’t available, by
searching for a free /dev/pty[p-s][0-9a-f] device.

Just before the gchild_p has a successful exec() to a shell process, its stdin,
stdout, and stderr file descriptors aredup2()’ed over to the slave side of the
pseudo-terminal. The current version of suroot uses a hard-coded
/bin/bash as its shell; the shell is invoked with both the options -i (interac-
tive) and -l (treat this as a login shell).

The child_p process has been modified slightly so that the transcript file is
now always located in /var/log/super-trans/, and is named first by when the
child_process started and then by its PID. For example, the filename
/var/log/super-trans/2006-01-20-18:06:38-021592 indicates that it was cre-
ated on January 1, 2006, by process 21592.

To effect the system logging of keystrokes, the doinput() routine has been
augmented with two new buffers: svbuf1 and svbuf2. The buffer svbuf1
records the raw input; if the process is in a default printable mode (non-
printable characters are mapped into some visually attractive version, such
as ASCII 010 being rendered as C-h), the printable contents of svbuf1 are
copied into svbuf2. If raw characters are keystroke-logged, then, one would
need to make sure that the receiving syslogd will be happy to receive them.

I like to statically link binaries such as this for three reasons:

With a security application, I like to be certain that I am not using the wrong
shared library; despite the care that sudo takes to make sure that all shared
library paths are cleared from the environment (most importantly, of
course, LD_LIBRARY_PATH), I am still leery of them.

The functions that it is calling are simply not likely to be updated by any libc,
so why bother to keep looking dynamically for updated versions of those
functions every time that it runs?

If you statically link with a small libc such as dietlibc [7], the resulting static
binary is not much larger than the dynamic version.

However, static linking is not as easy these days as it might be in light of

; LO G I N : A P R I L 2 0 0 6 AU D ITI N G S U P E R U S E R U S AG E 59

the nss_* situation. I wanted to use glibc’s getpwuid() to get home directory
information; however, glibc’s getpwuid() is now entangled with nss_*,
which cannot be statically linked. I didn’t want to write my own parser for
the password file since, historically, this simple activity has been implicated
in various security lapses, and I was already adding two new buffers that
could potentially allow buffer overflows.

So I decided to go with a smaller, more compact libc that doesn’t share this
problem. For Linux I chose dietlibc, since I knew that it was complete
enough to use for a full distribution (the Linux distribution DietLinux [8]
is wholly built with dietlibc). I haven’t managed yet to get suroot to stati-
cally link on Solaris. The implication here would be that somehow this
would be started with UID 0 and a path such as LD_LIBRARY_PATH
would somehow not be wiped out when the code removes all environmen-
tal variables except for TERM.

What are the limitations of this approach? The first is that this is only
meant to directly run administrative code. It’s not a general setup since it
doesn’t try to solve the problems of handling general users, such as those
not in /etc/passwd or creating transcripts for non-root users (presently,
transcripts are only created in /var/log/super-trans, which is only root
writable). While both of these are addressable, there is a third problem
(and one applicable also to the root account): the keystroke logging is not
intelligent enough to detect the entry of a password, and will happily log
any such that are typed.

R E F E R E N C E S

[1] Todd Miller, Chris Jepeway, Aaron Spangler, Jeff Nieusma, and Dave
Hieb, Sudo Main Page, http://www.courtesan.com/sudo.

[2] Tom Christiansen and Dave Koblas, The op Wiki,
https://svn.swapoff.org/op.

[3] Howard Owen, “The Problem of PORCMOLSULB,” ;login:, vol. 27, no.
4, August 2002.

[4] NSA, “Security Enhanced Linux,” http://www.nsa.gov/selinux.

[5] Chet Ramey and Brian Fox, GNU Bash Reference Manual (Network The-
ory Ltd, 2003).

[6] The Honeynet Project, About the Project, http://www.honeynet.org.

[7] Felix von Leitner, “diet lib c—a libc optimized for small size,”
http://www.fefe.de/dietlibc/.

[8] Bernd Wachter, “Aardvarks DietLinux,” http://www.dietlinux.org.

F O OTN OTE S :

1. I would like to properly credit the program script to someone, but my
detective skills have not sufficed to find the original author.

2. Just to make the sequence of events clear, I had done the main modifica-
tions to script before I was aware of sudoscript.

3. script.c can be found in the RedHat source RPM util-linux-2.12a-
16.EL4.6.src.rpm.

