
Accessing array elements

Accessing array elements in Perl is syntactically similar to C.

Perhaps somewhat counterintuitively, you use $a[<num>] to
specify a scalar element of an array named @a.

The index <num> is evaluated as a numeric expression.

By default, the first index in an array is 0.

Unix Tools: Perl 3

Examples of arracy access

$a[0] = 1; # assign numeric constant
$a[1] = "string"; # assign string constant
print $m[$a]; # access via variable
$a[$c] = $b[$d]; # copy elements
$a[$i] = $b[$i]; #
$a[$i+$j] = 0; # expressions are okay
$a[$i]++; # increment element

Unix Tools: Perl 3

Assign list literals

You can assign a list literal to an array or to a list of scalars:
($a, $b, $c) = (1, 2, 3); # $a = 1, $b = 2, $c = 3
($m, $n) = ($n, $m); # works!
@nums = (1..10); # $nums[0]=1, $nums[1]=2, ...
($x,$y,$z) = (1,2) # $x=1, $y=2, $z is undef
@t = (); # t is defined with no elements
($a[1],$a[0])=($a[0],$a[1]); # swap works!
@kudomono = (’apple’,’orange’); # list with 2 elements
@kudomono = qw/ apple orange /; # ditto

Unix Tools: Perl 3

Array-wide access

Sometimes you can do an operation on an entire array. Use the
@array name:
@x = @y; # copy array y to x
@y = 1..1000; # parentheses are not requisite
@lines = <STDIN> # very useful!
print @lines; # works in Perl 5, not 4

Unix Tools: Perl 3

Printing entire arrays

If an array is simply printed, it comes out something like
@a = (’a’,’b’,’c’,’d’);
print @a;
abcd

If an array is interpolated in a string, you get spaces: @a =
(’a’,’b’,’c’,’d’); print "@a"; a b c d

Unix Tools: Perl 3

Arrays in a scalar context

Generally, if you specify an array in a scalar context, the value
returned is the number of elements in the array.
@array1 = (’a’, 3, ’b’, 4, ’c’, 5); # assign array1 the values of list
@array2 = @array1; # assign array2 the values of array1
$m = @array2; # $m now has value 6
$n = $m + @array1 # $n now has value 12

Unix Tools: Perl 3

Using a scalar in an array context

If you assign an array a scalar value, that array will be just a one
element array:
$m = 1;
@arr = $m; # @arr == (1);
@yup = "apple"; # @yup == ("apple");
@arr = (undef); # @arr == (undef);
@arr = (); # @arr is now empty, not an array with one undef value!

Unix Tools: Perl 3

Size of arrays

Perl arrays can be any size up to the amount of memory available for
the process. The number of elements can vary during execution.
my @fruit; # has zero elements
$fruit[0] = "apple"; # now has one element
$fruit[1] = "orange"; # now has two elements
$frist[99] = ’plum’; # now has 100 elements, most of which are undef

Unix Tools: Perl 3

Last element index

Perl has a special scalar form $#arrayname that returns a scalar
value that is equal to the index of the last element in the array.
for($i = 0; $i<=$#arr1; $i++)
{

print "$arr1[$i]\n";
}

Unix Tools: Perl 3

Last element index use

You can also use this special scalar form to truncate an array:
@arr = (1..100); # arr has 100 elements...
$#arr = 9; # now it has 10
print "@arr";
1 2 3 4 5 6 7 8 9 10

Unix Tools: Perl 3

Using negative array indices

A negative array index is treated as being relative to the end of the
array:
@arr = 1..100;
print $arr[-1]; # similar to using $arr[$#arr]
100
print $arr[-2];
99

Unix Tools: Perl 3

Arrays as stacks

Arrays can be used as stacks, and Perl has built-ins that are
useful for manipulating arrays as stacks: push, pop,
shift, and unshift.

push takes two arguments: an array to push onto, and what is to
pushed on. If the new elment is an array, then the elements of
that array are appended to the original array as scalars.

A push puts the new element(s) at the end of the original array.

A pop removes the last element from the array specified.

Unix Tools: Perl 3

Examples of push and pop

push @nums, $i;
push @ans, "yes";
push @a, 1..5;
push @a, @b; # appends the elements of b to a
push @a, (1, 3, 5);
pop @a;
push(@a,pop(@b)); # moves the last element of b to end of a
@a = (); @b = (); push(@b,pop(@a)) # b now has one undef value

Unix Tools: Perl 3

shift and unshift

shift removes the first element from an array

unshift inserts an element at the beginning of an array

Unix Tools: Perl 3

Examples of shift and unshift

@a = 1..10;
unshift @a,99; # now @a == (99,1,2,3,4,5,6,7,8,9)
unshift @a,(’a’,’b’) # now @a == (’a’,’b’,99,1,2,3,4,5,6,7,8,9)
$x = shift @a; # now $x == ’a’

Unix Tools: Perl 3

foreach control structure

You can use foreach to process each element of an array or list.
It follows the form:
foreach $SCAlAR (@ARRAY or LIST)
{

<statement list>
}

(You can also map for similar processing.)

Unix Tools: Perl 3

foreach examples

foreach $a (@a)
{

print "$a\n";
}
map {print "$_\n";} @a;

foreach $item (qw/ apple pear lemon /)
{

push @fruits,$item;
}
map {push @fruits, $_} qw/ apple pear lemon/;

Unix Tools: Perl 3

The default variable $_
$_

is the default variable (and is used in the previous map() examples).
It is used as a default when at various times, such as when reading
input, writing output, and in the foreach and map constructions.

Unix Tools: Perl 3

The default variable $_

while(<STDIN>)
{

print;
}

$sum = 0;
foreach(@arr)
{

$sum += $_;
}

map { $sum += $_} @arr;

Unix Tools: Perl 3

Input from the “diamond” operator

Reading from <> causes a program to read from the files specified on
the command line or stdin if no files are specified.

Unix Tools: Perl 3

Example of diamond operator

#!/usr/bin/perl -w
2006 09 22 - rdl script23.pl
while(<>)
{

print;
}

You can either use ./Script23.pl < /etc/hosts or
./Script23.pl /etc/hosts /etc/resolv.conf.

Unix Tools: Perl 3

The @ARGV array

There is a builtin array called @ARGV which contains the command
lines arguments passed in by the calling program.
Note that $ARGV[0] is the first argument, not the name of the Perl
program being invoked

Unix Tools: Perl 3

