
Flex and lexical analysis

October 25, 2016

Flex and lexical analysis

From the area of compilers, we get a host of tools to convert text
files into programs. The first part of that process is often called
lexical analysis, particularly for such languages as C.

A good tool for creating lexical analyzers is flex, based on the older
lex program. Both take a specification file and create an analyzer,
usually called lex.yy.c.

Flex is reasonably compatible with the UTF-8 encoding for
Unicode.

Terminology

I A token is a minimal group of characters having collective
meaning.

I A lexeme is an actual character sequence forming a specific
instance of a token, such “book”.

I A pattern is a rule expressed as a regular expression (or even
an extended regex) describing how a particular token can be
formed. For example, a common convention for variable name
tokens is [A-Za-z][A-Za-z 0-9]*.

I Characters between tokens are generally called whitespace;
these include spaces, tabs, newlines, and formfeeds.

Attributes for tokens

One common characteristic of standard lexical analysis (but
certainly not universal) is the assignment of types; another is
passing attributes to the caller.

Upon recognizing a numerical constant, for instance, the scanner
might pass back the the type (e.g., integer), the lexeme string, and
the value as an C int.

Upon recognizing an identifier, the lexer might pass back the type
(e.g., identifier), the lexeme string, and a pointer to information
about the identifier.

General approaches to lexical analysis

Use a tool, like flex or re2c. (Example: code)

Write a one-off analyzer in your favorite programming language.
(Most common strategy these days.) For example, you can use
libc’s strtok() function. (Example: code)

Write a one-analyzer in assembly. (Usually done for bootstrapping
purposes, though lexical analysis in assembly against a mmap(2)
can be an exceedingly fast technique.)

Flex

While it might be found in some libc’s, you might also have to link
explicitly with -lfl.

The lexer function is called yylex(), and it is quite easy to interface
with bison/yacc.

*.l file --> flex --> lex.yy.c

lex.yy.c --> C compiler --> lexical analyzer

input stream --> lexical analyzer --> actions taken when rules applied

Using Flex

Flex source structure:

{ definitions }

%%

{ rules }

%%

{ user subroutines }

Definitions

I Declaration of ordinary C variables and whatnot.

I flex definitions

Rules

The form of rules are

regularexpression action

The actions are C code.

Flex’s regular expressions

s literal string s

\c character c literally

[s] character class

^ beginning of line

[^s] characters not in character class

s? s occurs zero or one time

Flex’s regular expressions

. any character except newline

s* zero or occurrences of s

s+ one or more occurrences of s

r|s r or s

{s} grouping

$ end of line

s{m,n} m through n occurrences of s

Examples

a* zero or more a’s

.* zero or more of any char except newline

.+ one or more characters

[a-z] a lower-case letter

[a-zA-Z] any letter

[^a-zA-Z] not a letter

Examples

a.b a followed by any char then followed by b

rs|tu rs or tu

a(b|c)d abd or acd

^start "start" at the beginning of line

END$ the characters END followed by end-of-line

Flex actions

Actions are just C code. If it is compound, or requires more than a
single line, enclose with curly braces.

Examples:

[a-z]+ printf("found word\n");

[A-Z[a-z]* { printf("found capitalized word:\n");

printf(" ’%s’\n",yytext);

}

Flex definitions

The form is simply

name definition

The name is just a word beginning with a letter (or underscore, but
I don’t recommend those) followed by zero or more letters,
underscores, or dashes. The definition actually from the first
non-whitespace character to the end of line. You can refer to it via
{name}, which will expand to your definition.

Flex definitions

For example:

DIGIT [0-9]

{DIGIT}*\.{DIGIT}+

is equivalent to

([0-9])*\.([0-9])+

Flex example

%{ int num_lines = 0;

int num_chars = 0;

%}

%%

\n {++num_lines; ++num_chars;}

. {++num_chars;}

%%

int main(int argc, char **argv)

{

yylex();

printf("# of lines = %d, # of chars = %d\n",

num_lines, num_chars);

}

code

Another example

digits [0-9]

ltr [a-zA-Z]

alphanum [a-zA-Z0-9]

%%

(-|\+)*{digits}+ printf("found number: ’%s’\n",yytext);

{ltr}(_|{alphanum})* printf("found identifier: ’%s’\n",yytext);

\. printf("found character: {%s}\n",yytext);

. { /* ignore others */ }

%%

int main(int argc, char **argv)

{

yylex();

}

code

