
COP4342 - 2006 Fall
Assignment 6

Using emacs lisp, bison, and flex

Objectives: Learn how to write simple code in emacs lisp, bison, and
flex.

Instructions: Your assignment is to write two parsers, one in bison and
flex, and the other in emacs lisp.

The BNF grammar for the “language” to be parsed is:

<program> ::= "program" <id> <variablesSection> <functionsSection> <statementsSection> "end"

<variablesSection> ::= "variables" "{" <variableDeclaration>* "}"

<variableDeclaration> ::= <id> ":" <id> ";"

<functionsSection> ::= "functions" "{" <functionDeclaration>* "}"

<functionDeclaration> ::= "define" <id> ":" <id> "(" [<argsList>] ")" "{" <statement>* "}"

<argsList> ::= <argPair> | <argsList> "," <argPair>

<argPair> ::= <id> <id>

<statementsSection> ::= "statements" "{" <statement>* "}"

<statement> ::= "var" <variableDeclaration> | <whileLoop> | <ifStruct> | <subroutineCall> ";"

<whileLoop> ::= "while" "(" <subroutineCall> ")" "{" <statement>* "}"

<ifStruct> ::= "if" "(" <subroutineCall> ")" "{" <statement>* "}" ["else" "{" <statement>* "}]

<subroutineCall> ::= <id> "(" [<callArgsList>] ")"

<callArgsList> ::= <id> | <callArgsList> "," <id>

The program should send out “okay” if it successfully parses a file or “not
okay” if it finds an error.

Your parsers should be able to recognize all of the files located off the
class web page labelled “Verify Simple Parser”, and should fail on all of the
files located off the class web page labelled “Check Simple Parser”.

1

Bison/Lex: Create a Bison source file called assign6.y where you will
put the main program and all of the Bison parser production rules. Create a
Flex source file called assign6.l where you will put the lexical analyzer rules.

If your parser finds a syntax error, report what line was being parsed when
the syntax error was found. If your parse succeeds, print an “okay” message
which also reports how many lines were found in the file. For example, if the
parse succeeds, you should give a message like:

file is okay, 101 lines parsed

If the parse fails, you should give a message like:
file is not okay, syntax error found at line 91

Emacs: Create an emacs lisp source file called assign6.emacs. Your
parser should be a recursive descent parser, as discussed in class, since that
is the easiest type of parser to write in Lisp. The name of the parser func-
tion should be simple parser and it should be interactive. As part of that
interactivity, you should pull the file in every invocation of simple parser

with the find-file-other-window function, and make sure that your parse
always starts at the beginning of that buffer.

If the parse succeeds, use the message function to report “file is okay”.
Leave the character pointer at the end of the file.

If the parse fails, use the beep function and the message function to
report “file is not okay – problem is here” and leave the character pointer at
the point where the error occurred.

These predefined emacs lisp functions should be considered when you are
writing your parser, since this program can be completely written using just
them as a base for you to write your accompanying lisp functions:

and

beep

concat

defun

find-file-other-window

goto-char

interactive

looking-at

match-end

message

or

point-min

2

