
Fall 2008 Building blocks

Numerical tools

There are a large number of tools available for Unix
machines:

+ Desktop tools such as bc, dc, and Pari/GP

+ Computer Algebra Systems such as maxima

+ Numerical tools library: GMP and Pari/GP

+ Visualization via gnuplot and graphviz

1

Fall 2008 Building blocks

bc and dc

bc is a calculator. Normally, it works with integers,
but you can set it the number of decimal places with
the scale variable:

[langley@sophie 2006-Fall]$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
1/6
0
scale=20

2

Fall 2008 Building blocks

1/6
.16666666666666666666

3

Fall 2008 Building blocks

bc

You can also do quick base conversions with bc:

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
obase=16
ibase=10
16
10
quit
$ bc
bc 1.06

4

Fall 2008 Building blocks

Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
ibase=10
obase=16
15
F
quit

5

Fall 2008 Building blocks

bc

bc uses traditional infix notation:

$ bc
bc 1.06
Copyright 1991-1994, 1997, 1998, 2000 Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type ‘warranty’.
12 + 34
46
12 * 34
408
34 / 12
2
99 - 12

6

Fall 2008 Building blocks

87
56 % 14
0
3 ˆ 3
27

7

Fall 2008 Building blocks

bc

bc also allows small programs to be written:

a=0
while(a < 10)
{

a = a+1;
print a * a , "\n";

}

1
4
9
16
25

8

Fall 2008 Building blocks

36
49
64
81
100

9

Fall 2008 Building blocks

bc

bc supports the following statement types:

+ Simple expressions, such as 3 * 5

+ Assignment, such a = a - 1

+ if/then

+ while

10

Fall 2008 Building blocks

+ Compound statements between { }

+ C-style for: for(EXP1 ; EXP2 ; EXP3)

+ break and continue

+ Function definition and return with define and
return

11

Fall 2008 Building blocks

bc

Math functions available when started with -l:

s(x) # sine of x in radians
c(x) # cosine of x in radians
a(x) # arctangent of x in radians
l(x) # natural logarithm of x
e(x) # e to x
sqrt(x) # square root of x (doesn’t actually need -l option)

12

Fall 2008 Building blocks

dc

The program dc is desk calculator much like bc in
calculator mode, but is uses Reverse Polish Notation
(RPN) rather than infix notation. Unlike bc, dc doesn’t
support complex statements and programming.

13

Fall 2008 Building blocks

dc

[langley@sophie 2006-Fall]$ dc
34 99
f
99
34
55 88
f
88
55
99
34
+

*
*

14

Fall 2008 Building blocks

f
481338
quit

15

Fall 2008 Building blocks

dc

dc commands:

p # print the top value from the stack
n # print the top value from the stack and pop it off
f # print the entire stack
+ # adds the top two values from the stack and pushes the result
- # substracts the first value on the stack from the second, pops them

off, and pushes the result

* # pops top two values from stack, pushes multiplication result onto stack
/ # pops top two values from stack, pushes division result back on stack
˜ # pops top two values from stack, pushes both division and remainder

back on stack

16

Fall 2008 Building blocks

GP/Pari

GP/Pari is a much featureful calculator than bc.
It handles integers, reals, exact rationals, complex
numbers, vectors, and more. It does modular
arithmetic natively. It can some equation simplification,
and it has a number of number theoretical functions
such as gcd().

17

Fall 2008 Building blocks

GP/Pari

Starting GP/Pari at a shell prompt is easy:

$ gp
GP/PARI CALCULATOR Version 2.1.7 (released)

i686 running linux (ix86 kernel) 32-bit version
(readline v4.3 enabled, extended help available)

Copyright (C) 2002 The PARI Group
PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER.
Type ? for help, \q to quit.
Type ?12 for how to get moral (and possibly technical) support.

realprecision = 28 significant digits
seriesprecision = 16 significant terms
format = g0.28

parisize = 4000000, primelimit = 500000
? simplify((a+1)*(a-1))
%1 = aˆ2 - 1
? ??

18

Fall 2008 Building blocks

You can also start it inside of Emacs with M-x gp if
the appropriate pari.el file is available on your machine.
The details are in the GP/Pari manual which you can
pull up with ?? emacs.

19

Fall 2008 Building blocks

Using gp

gp also uses simple infix notation, like bc:

? 12 + 24
%2 = 36
?

20

Fall 2008 Building blocks

Using gp

Notice that each result is numbered. You can use
that notation to refer to a result:

? 12 + 24
%43 = 36
? %43 * 14
%44 = 504
?

(You can refer to just % for the previous result.)

21

Fall 2008 Building blocks

Builtin functions in GP

There are a very large number of functions builtin to
GP. You can them with ordinary prefix notation:

? gcd(1019986919288111313171891231912376299117891237171129910217,
2198699771571875111911119160590951112121701191107)
%42 = 319
? factor(1001)
%3 =
[7 1]

[11 1]

[13 1]

22

Fall 2008 Building blocks

? factor(540)
%45 =
[2 2]

[3 3]

[5 1]
?

23

Fall 2008 Building blocks

Some useful builtin functions in GP

gcd # greatest common divisor
factor # factorization
simplify # simplify a one-variable polynomial

24

Fall 2008 Building blocks

Debugging

You can turn on copious debugging in GP with \g20:

? \g20
debug = 20

? factor(1209401294012940192034901249012490124014212414124102411241111)
Miller-Rabin: testing base 1000288896
IFAC: cracking composite

34338877624535303177265598981012930047607660148829727
IFAC: checking for pure square
OddPwrs: is 34338877624535303177265598981012930047607660148829727

...a 3rd, 5th, or 7th power?
modulo: resid. (remaining possibilities)

211: 79 (3rd 1, 5th 0, 7th 0)

25

Fall 2008 Building blocks

209: 98 (3rd 0, 5th 0, 7th 0)
IFAC: trying Pollard-Brent rho method first
Rho: searching small factor of 175-bit integer
Rho: using Xˆ2-11 for up to 4770 rounds of 32 iterations
Rho: time = 100 ms, 768 rounds
Rho: fast forward phase (256 rounds of 64)...
Rho: time = 50 ms, 1028 rounds, back to normal mode
Rho: time = 30 ms, 1280 rounds
Rho: time = 40 ms, 1536 rounds
Rho: fast forward phase (512 rounds of 64)...
Rho: time = 120 ms, 2052 rounds, back to normal mode
Rho: time = 30 ms, 2304 rounds
Rho: time = 30 ms, 2560 rounds
Rho: time = 40 ms, 2816 rounds
Rho: time = 30 ms, 3072 rounds
Rho: fast forward phase (1024 rounds of 64)...
Rho: time = 230 ms, 4100 rounds, back to normal mode
Rho: time = 40 ms, 4352 rounds
Rho: time = 40 ms, 4608 rounds
Rho: time = 20 ms, Pollard-Brent giving up.

26

Fall 2008 Building blocks

IFAC: trying Shanks’ SQUFOF, will fail silently if input
is too large for it.

IFAC: trying Lenstra-Montgomery ECM
ECM: working on 8 curves at a time; initializing for up to 3 rounds...
ECM: time = 0 ms
ECM: dsn = 4, B1 = 700, B2 = 77000, gss = 128*420
ECM: time = 200 ms, B1 phase done, p = 701, setting up for B2

(got [2]Q...[10]Q)
(got [p]Q, p = 709 = 79 mod 210)
(got initial helix)

ECM: time = 10 ms, entering B2 phase, p = 913
ECM: finishing curves 4...7

(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 27799)

ECM: finishing curves 0...3
(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 27799)

ECM: time = 140 ms

27

Fall 2008 Building blocks

ECM: dsn = 6, B1 = 900, B2 = 99000, gss = 128*420
ECM: time = 260 ms, B1 phase done, p = 907, setting up for B2

(got [2]Q...[10]Q)
(got [p]Q, p = 911 = 71 mod 210)
(got initial helix)

ECM: time = 0 ms, entering B2 phase, p = 1117
ECM: finishing curves 4...7

(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 28001)
(giant step at p = 81761)

ECM: finishing curves 0...3
(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 28001)
(giant step at p = 81761)

ECM: time = 190 ms
ECM: dsn = 8, B1 = 1150, B2 = 126500, gss = 128*420
ECM: time = 320 ms, B1 phase done, p = 1151, setting up for B2

(got [2]Q...[10]Q)

28

Fall 2008 Building blocks

(got [p]Q, p = 1153 = 103 mod 210)
(got initial helix)

ECM: time = 10 ms, entering B2 phase, p = 1361
ECM: finishing curves 4...7

(extracted precomputed helix / baby step entries)
(baby step table complete)
(giant step at p = 28277)
(giant step at p = 82003)

ECM: finishing curves 0...3
(extracted precomputed helix / baby step entries)
(baby step table complete)

ECM: time = 110 ms, p <= 28229,
found factor = 31705445367881

IFAC: cofactor = 1083059304989990299718013026798727465767
Miller-Rabin: testing base 768462011
Miller-Rabin: testing base 892785826
Miller-Rabin: testing base 739165157
Miller-Rabin: testing base 1874708212
Miller-Rabin: testing base 1732294655
Miller-Rabin: testing base 1648543222

29

Fall 2008 Building blocks

Miller-Rabin: testing base 659912585
Miller-Rabin: testing base 370113064
Miller-Rabin: testing base 670592259
Miller-Rabin: testing base 481073162
IFAC: factor 1083059304989990299718013026798727465767

is prime
Miller-Rabin: testing base 1340817133
Miller-Rabin: testing base 353959964
Miller-Rabin: testing base 1730244551
Miller-Rabin: testing base 1484512990
Miller-Rabin: testing base 1728249361
Miller-Rabin: testing base 22662352
Miller-Rabin: testing base 905839691
Miller-Rabin: testing base 2098523762
Miller-Rabin: testing base 1062164725
Miller-Rabin: testing base 1715475524
IFAC: factor 31705445367881

is prime
IFAC: prime 31705445367881

appears with exponent = 1

30

Fall 2008 Building blocks

IFAC: main loop: 1 factor left
IFAC: prime 1083059304989990299718013026798727465767

appears with exponent = 1
IFAC: main loop: this was the last factor
IFAC: found 2 large prime (power) factors.
%4 =
[5441 1]

[6473 1]

[31705445367881 1]

[1083059304989990299718013026798727465767 1]

?

31

Fall 2008 Building blocks

GP/Pari

Getting help is easy. The most comprehensive help
comes from firing up the manual pages with ??. You
can choose a specific topic with ?? TOPIC such as
?? gcd.

32

