
make

My description of the program make is that it

takes a set of rules describing dependencies and

describing creation of new files

in order to satisfy the requirements for the “creation” of some target.

Unix Tools: Program Development 6

make

Another description from Chapter 1 of the Gnu Make manual:
The make utility automatically
determines which pieces of a
large program need to be
recompiled, and issues commands
to recompile them.

Unix Tools: Program Development 6

Invoking make

There are several options that are generally useful with make:
-f MAKEFILE # specify an alternative makefile to the defaults of

’GNUmakefile’, ’Makefile’, or ’makefile’
-k # continue for other targets even after an error

-i # completely ignore errors

-d # print debugging information

-j [N] # fork off children to handle tasks. If N is
specified, create no more than N children

-C DIR # change directory to DIR before starting the make process

-s # silent mode, don’t echo commands

Unix Tools: Program Development 6

Makefiles

Makefiles use rules to determine their actions. The rules look like:
target: [prerequisites]

-TAB- action
-TAB- action
-TAB- ...

Unix Tools: Program Development 6

Targets

Targets usually either specify a file that is to be made via this rule or
just identify the rules for execution (often called a “phony” target.)
Targets may also be implicit.

Unix Tools: Program Development 6

Prerequisites

These generally define the files that the target depends on, and the
general idea is that if any of those have a modified (or creation) time
later than the target, then actions for the rule will be executed to create
a new version of the target (which you should try to make sure has a
new modified or created time.)

Unix Tools: Program Development 6

Actions

These generally define the actions that are needed to create the target
from the prerequisites. These actions are largely executions of
discrete programs such as gcc, make (yes, recursion is quite
common), ld, bison, flex, and so on. Rules must consist of
consecutive lines that start with a TAB character. Since these are
usually interpreted as shell commands, you can do things such as
multi-lines (but use the backslash to make sure that the
“single-linedness” of your construction is clear):
for name in dir1 dir2 dir3 \
do ; \

${MAKE} $name ; \
done

Unix Tools: Program Development 6

Actions

There are also actual make conditionals which are interpreted by
make and not by the shell; these look like
ifeq (ARG1,ARG2)
...
endif

ifdef (ARG1)
...
endif

Unix Tools: Program Development 6

Setting ordinary variables

You can use “=” and “?=” to set ordinary variables:
CFLAGS ?= -g -O3 # conditionally set ${CFLAGS} to

‘‘-g -O3’’ iff it is not
already defined

CC = /usr/bin/gcc ${CFLAGS} # unconditionally set ${CC} to
‘‘/usr/bin/cc’’

Unix Tools: Program Development 6

Pattern rules

One of the nice things that you can do with make is create “pattern
rules”.
These are rules that let you abstract a pattern from a set of similar
rules, and use that pattern in lieu of explicitly naming all of those
rules.
For instance,
%.o : %.c

cc -c $< -o $@ # $@ refers to the
target, $< refers to
the *first* (and only)
prerequisite

Unix Tools: Program Development 6

Automatic variables

$@ # the target of the rule

$< # the first prerequisite

$^ # all of the prerequisites

$? # all of the prerequisites that are newer than the target file

$* # the ‘‘stem’’ only; essentially, this is the complement of the static portion
of the target definition... see Makefile-auto

Unix Tools: Program Development 6

Example Makefiles

targets: 01-introduction-out.pdf 02-processes-out.pdf \
03-shells1-out.pdf 03-shells2-out.pdf 04-shells3-out.pdf \
05-shells4-out.pdf 06-environment-out.pdf 07-perl01-out.pdf \
08-perl02-out.pdf 09-perl03-out.pdf 10-perl04-out.pdf \
11-perl05-out.pdf 12-perl06-out.pdf 13-perl07-out.pdf \
14-programdevel-out.pdf 15-programdevel02-out.pdf \
16-programdevel03-out.pdf 17-programdevel04-out.pdf \
18-programdevel05-out.pdf 19-programdevel06-out.pdf \
20-programdevel07-out.pdf structure-out.pdf

%-out.pdf: %.tex
pdflatex $<
gij -jar pp4p.jar $*.pdf $*-out.pdf

Unix Tools: Program Development 6

Example Makefiles

%.c:
echo $*

Unix Tools: Program Development 6

