
Regular expressions and case insensitivity

As previously mentioned, you can make matching case insensitive
with the i flag:
/\b[Uu][Nn][Ii][Xx]\b/; # explicitly giving case folding

/\bunix\b/i; # using ‘‘i’’ flag to fold code

Unix Tools: Perl 5

Really matching any character with “.”

As mentioned before, usually the “.” (dot, period, full stop) matches
any character except newline. You make it match newline with the s
flag:
/"(.|\n)*"/; # match any quoted string, even with newlines embedded

/"(.*)"/s; # same meaning, using ‘‘s’’ flag

N.B. – I like to use the flags ///six; as a personal default set of
flags with Perl regular expressions.

Unix Tools: Perl 5

Going global with the “g” flag

You can make your matching global with the g flag. For ordinary
matches, this means making them stateful: Perl will remember where
you left off with each reinvocation of the match unless you change the
value of the variable, which will reset the match.

Unix Tools: Perl 5

Going global with the “g” flag

#!/usr/bin/perl -w
2006 09 29 - rdl Script36.pl
shows the //g as stateful...
while(<>)
{

while(/[A-Z]{2,}/g)
{

print "$&\n" if (defined($&));
}

}

Unix Tools: Perl 5

Interpolating variables in patterns

You can even specify a variable inside of a pattern – but you want to
make sure that it gives a legitimate regular expression.

Unix Tools: Perl 5

Interpolating variables in patterns

my $var1 = "[A-Z]*";
if("AB" =~ /$var1/)
{

print "$&";
}
else
{

print "nopers";
}
yields
AB

Unix Tools: Perl 5

Regular expressions and substitution

The s/.../.../ form can be used to make substitutions in the
specified string.

If paired delimiters are used, then you have to use two pairs of
the delimiters.

g after the last delimiter indicates to replace more than just the
first occurrence.

The substitution can be bound to a string. Otherwise it makes the
substitutions in $_.

The operation returns the number of replacements performed,
which can be more than one with the ’g’ option.

Unix Tools: Perl 5

Examples

#!/usr/bin/perl -w
2006 09 29 - rdl Script37.pl
shows s///g... by removing acronyms
use strict;
while(<>)
{

s/([A-Z]{2,})//g;
print;

}

Unix Tools: Perl 5

Examples

s/\bfigure (\d+)/Figure $1/ # capitalize references to figures
s{//(.*)}{/*$1*/} # use old style C comments
s!\bif(!if (! # put a blank
s(!)(.) # tone down that message
s[!][.]g # replace all occurrences of ’!’ with ’.’

Unix Tools: Perl 5

Case shifting

You can use \U and \L to change follows them to upper and lower
case:

Unix Tools: Perl 5

Case shifting

$text = " the acm and the ieee are the best! ";
$text =~ s/acm|ieee/\U$&/g;
print "$text\n";
yields
the ACM and the IEEE are the best!

Unix Tools: Perl 5

Case shifting

$text = "CDA 1001 and COP 3101

are good classes, but COP 4342 is better!";
$text =~ s/\b(COP|CDA) \d+/\L$&/g;
print "$text\n";
yields
cda 1001 and cop 3101

are good classes, but cop 4342 is better!

Unix Tools: Perl 5

Using tr/// (also known as y///)

In Perl you can also convert one set of characters to another using
the tr/.../.../ form. (Or if you like, you can use y///.)

Much like the program tr, you specify two lists of characters,
the first to be substituted, and the second what to substitute.

tr returns the number of items substituted (or deleted.)

The modifer d deletes characters not replaced.

The modifer s “squashes” any repeated characters.

Unix Tools: Perl 5

Examples (from the perlop man page)

$ARGV[1] =~ tr/A-Z/a-z/; # canonicalize to lower case
$cnt = tr/*/*/; # count the stars in $_
$cnt = $sky =~ tr/*/*/; # count the stars in $sky
$cnt = tr/0-9//; # count the digits in $_

Unix Tools: Perl 5

More examples

get rid of redundant blanks in $_
tr/ //s;

replace [and { with (in $text
$text =~ tr/[{/(/;

Unix Tools: Perl 5

Using split

The split function breaks up a string according to a specified
separator pattern and generates a list of the substrings.

Unix Tools: Perl 5

Using substring

For example:
$line = " This sentence contains five words. ";
@fields = split / /, $line;
map { print "$count --> $fields[$count]\n"; $count++; } @fields;
yields
-->

1 --> This
2 --> sentence
3 --> contains
4 --> five
5 --> words.

Unix Tools: Perl 5

Using the join function

The join function does the reverse of the split function: it takes a
list and converts to a string.
However, it is different in that it doesn’t take a pattern as its first
argument, it just takes a string:
@fields = qw/ apples pears cantaloupes cherries /;
$line = join "<-->", @fields;
print "$line\n";
yields
apples<-->pears<-->cantaloupes<-->cherries

Unix Tools: Perl 5

Filehandles

[Also see man perlfaq5 for more detail on this subject.]
A filehandle is an I/O connection between your process and some
device or file. Perl output is buffered.
Perl has three predefined filehandles: STDIN, STDOUT, and
STDERR.

Unix Tools: Perl 5

Filehandles

Unlike other variables, you don’t declare filehandles. The convention
is to use all uppercase letters for filehandle names. (Especially
important if you deal with anonymous filehandles!)
The open operator takes two arguments, a filehandle name and a
connection (e.g. filename). The connection can start with "" indicate
read, write, and append access.

Unix Tools: Perl 5

Closing filehandles

The close operator closes a filehandle. This causes any remaining
output data associated with this filehandle to be flushed to the file.
Perl automatically closes filehandles at the end of a process, or if you
reopen it.

Unix Tools: Perl 5

Examples

close IN; # closes the IN filehandle
close OUT; # closes the OUT filehandle
close LOG; # closes the LOG filehandle

Unix Tools: Perl 5

Testing open

You can check the status of opening a file by examining the result of
the open operation. It returns a true value if it succeeded, and a false
one if it failed.

Unix Tools: Perl 5

Reopening a filehandle

You can reopen a standard filename. This allows you to perform input
or output in a normal fashion, but to redirect the I/O from/to a file
within the Perl program.

Unix Tools: Perl 5

