
touch

Touch is usually a program, but it can be a shell built-in such as with
busybox.
The touch program by default changes the access and modification
times for the files listed as arguments. If the file does not exist, it is
created as a zero length file (unless you use the -c option.)
You can also set either or both of the times to arbitrary values, such as
with the -t, -d, -B, and -F options.

Unix Tools: Shells, part 3

Backquotes and textual substitution

If you surround a command with backquotes, the standard output of
the command is substituted for the quoted material.
For instance,
$ echo ‘ls 0*tex‘
01-introduction.tex 02-processes.tex 03-shells1.tex

03-shells2.tex 04-shells3.tex
$ echo ‘egrep -l Langley *‘
03-shells2.tex Syllabus-Fall.html Syllabus-Fall.html.1

Syllabus Summer.html
$ now=‘date‘
$ echo $now
Mon Sep 18 09:55:09 EDT 2008

Unix Tools: Shells, part 3

Backquotes and textual substitution

if [‘wc -l < /etc/hosts‘ -lt 10]; then echo "lt"; fi
use ‘‘<’’ to prevent filename from

Unix Tools: Shells, part 3

xargs

xargs COMMAND -n N [INITIAL-ARGUMENTS]

xargs reads from stdin to obtain arguments for the COMMAND.
You may specify initial arguments with the COMMAND. If you
specify -n N, then only up to N arguments are given to any
invocation of COMMAND. For instance...

Unix Tools: Shells, part 3

xargs

$ cat /etc/hosts | xargs -n 1 ping -c 1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.075 ms

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.075/0.075/0.075/0.000 ms, pipe 2
PING localhost.localdomain (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0

ttl=64 time=0.060 ms

--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.060/0.060/0.060/0.000 ms, pipe 2
PING localhost.localdomain (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0

ttl=64 time=0.071 ms

Unix Tools: Shells, part 3

The for statement

for name in LIST0 ; do LIST1 ; done
for name ; do LIST1 ; done # useful for scripts
for ((EXPR1 ; EXPR2 ; EXPR3)) ; do LIST1 ; done

In the last form, EXPR? are evaluated as arithmetic expressions.

Unix Tools: Shells, part 3

The for statement

$ for ((ip = 0 ; ip < 5 ; ip = ip+1)) do echo $ip ; done
0
1
2
3
4

Unix Tools: Shells, part 3

The for statement

for i in ‘cat /etc/hosts‘
do

ping -c 1 $i
done

Unix Tools: Shells, part 3

break and continue statements

break terminates the current loop immediately and goes on to the
next statement after the loop. continue starts the next iteration of a
loop.

Unix Tools: Shells, part 3

break and continue statements

For example,
for name in *
do

if [-f ‘‘$name’’]
then

echo ‘‘skipping $name’’
continue

else
echo ‘‘process $name’’

fi
done

Unix Tools: Shells, part 3

expr

You can use expr to evaluate arithmetic statements, some regular
expression matching, and some string manipulation. (You can also
use either bc or dc for more complex arithmetic expressions.)

Unix Tools: Shells, part 3

expr

files=10
dirs=‘expr $files + 5‘
limit=15
if [‘expr $files + $dirs‘ < $limit’’]
then
echo ‘‘okay’’

else
echo ‘‘too many!’’

fi

Unix Tools: Shells, part 3

awk

One of the more powerful programs found on Unix machines is awk,
and its updated versions, nawk and gawk.
It is most useful for handling text information that is separated into a
series of uniform records. The most common one that it handles is
records of one line, divided by either column numbers or by a field
separator. For instance, handling the password file is a snap with awk.

Unix Tools: Shells, part 3

awk

The password file on a Unix machine looks something like:
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

Unix Tools: Shells, part 3

awk

You can quickly get a list of usernames into a single string variable
with:
$ usernames=‘awk -F: ’{print $1}’ /etc/passwd‘
$ echo $usernames
root bin daemon adm lp sync shutdown halt mail
$ usernames=‘awk ’{print $1}’ FS=: /etc/passwd‘
$ echo $usernames
root bin daemon adm lp sync shutdown halt mail

Unix Tools: Shells, part 3

awk

Fundamentally, awk scripts consist of a series of pairs:
PATTERN { ACTION }

Unix Tools: Shells, part 3

awk

where the PATTERN can be a

/regular expression/

relational expression

pattern-matching expression

BEGIN or END

Unix Tools: Shells, part 3

awk

By default, the record separator is a newline so awk works on a
line-by-line basis by default.
If no PATTERN is specified, then the ACTION is always taken for
each record.
If no ACTION specified, then the each records that matches a pattern
is written to stdout.

Unix Tools: Shells, part 3

awk

You can specify that an ACTION can take place before any records
are read with the keyword BEGIN for the PATTERN.
You can specify that an ACTION can take place after all records are
read with the keyword END for the PATTERN.
With PATTERNs, you can also negate (with !) them, logically “and”
two PATTERNs (with &&), and logically “or” two PATTERNs (with

).

Unix Tools: Shells, part 3

awk

Some examples of regular expressions in awk:
$ awk ’/[Ll]angley/ {print $0}’ /etc/passwd
langley:x:500:500:Randolph Langley:/home/langley:/bin/bash
$ awk ’/^#/’ /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.

Unix Tools: Shells, part 3

awk

$0 refers to the whole record, $N refers to the Nth field in a
record

NF refers to the number of fields in a record (example, awk
-F: ’END print NF’ /etc/passwd tells you that there
are seven fields used in the password file.)

NR refers to which record (by default, line) you are currently at.

Unix Tools: Shells, part 3

awk

Some examples of relational expressions:
$1 == ‘‘lane’’ # does the first field equal the string ‘‘lane’’?
$1 == $7 # are fields one and seven equal?
NR > 1000 # have we processed more than 1000 records?
NF > 10 # does this record have more than 10 fields?
NF > 5 && $1 = ‘‘me’’ # compound test
/if/&&/up/ # does the record contain both strings if and up?

Unix Tools: Shells, part 3

awk

You can also check a given field against a regular expression:
$1 ~ /D[Rr]\./ # does the first field contain a Dr. or DR.?
$1 !~ /#/ # does the first field have a # in it?

Unix Tools: Shells, part 3

awk

ACTIONs are specified with { }. You can use semicolons to separate
statements with the braces (although newlines work also). Popular
statements are print, if {} else {}, and system.
awk is very powerful! Henry Spencer wrote an assembler in awk.

Unix Tools: Shells, part 3

awk example scripts

{ print $1, $2 } # print the first two fields of each record

$0 !~ /^$/ # print all non-empty lines

$2 > 0 && $2 < 10 { print $2 } # print field 2 if it is 0 < $2 < 10

BEGIN {FS=’’:’’
sum = 0} # sum field 3 and print the sum
{sum += $3}
END {print sum}

Unix Tools: Shells, part 3

The tr utility

Allows you to delete, replace, or “squeeze” characters from standard
input. The -d option deletes the characters specified in the first
argument; -s squeeze removes all repetitions of characters in the first
argument with a single instance of the character. The normal mode is
to substitute characters from the first argument with characters from
the second argument.

Unix Tools: Shells, part 3

The tr utility

$ cat /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
128.186.120.8 sophie.cs.fsu.edu
127.0.0.1 a.as-us.falkag.net
127.0.0.1 clk.atdmt.com
$ cat /etc/hosts | tr ’a-z’ ’A-Z’
DO NOT REMOVE THE FOLLOWING LINE, OR VARIOUS PROGRAMS
THAT REQUIRE NETWORK FUNCTIONALITY WILL FAIL.
127.0.0.1 LOCALHOST.LOCALDOMAIN LOCALHOST
128.186.120.8 SOPHIE.CS.FSU.EDU
127.0.0.1 A.AS-US.FALKAG.NET
127.0.0.1 CLK.ATDMT.COM

Unix Tools: Shells, part 3

