
If example

#!/bin/bash
2008 09 08 - demonstrate if / then / else
if ["x$1" != "x"] && [-f "$1"]
then

echo -n "Remove $1 (n)? "
read answer
if [$answer == "y"] || [$answer == "Y"] || [$answer == "yes"]
then

echo "Would remove"
else

echo "Would NOT remove"
fi

else
echo "Please specify a regular file"

fi

Unix Tools: Shells

If example

#!/bin/bash
2006 09 08 - demonstrate if / then / else
if ["x$1" == "x"]
then
echo "Please specify a regular filename!"
exit 1

elif [! -f "$1"]
then
echo "$1 is not a regular file!"
exit 1

Unix Tools: Shells

If example

else
echo -n "Remove $1 (n)? "
read answer
if [$answer == "y"] || [$answer == "Y"] || [$answer == "yes"]
then

echo "Would remove"
else

echo "Would NOT remove"
fi

fi

Unix Tools: Shells

The case statement

case WORD in
PATTERN1)
COMMANDS
;;

PATTERN2)
COMMANDS
;;

...
esac

The idea here is that WORD is tested against the various PATTERNs
listed, in order. The first match then executes the associated
COMMANDs.

Unix Tools: Shells

Case example

#!/bin/bash
2006 09 08 - case example
case $1 in
"yes")

echo "Thanks!"
exit 0
;;

"no")
echo "Okay!"
exit 1
;;

*)
echo "Please use either ’yes’ or ’no’ (case-sensitive)"
;;

esac;

Unix Tools: Shells

While/until loops

while list; do list; done;
until list; do list; done;

while executes the do list as long as the last command in the list
returns 0. until executes until the last command in the list
returns 0.

Unix Tools: Shells

while example

#!/bin/bash
2006 06 08 - rdl
echo -n "Now ’finish’ ? "
read cmd
while test $cmd != "finish"
do

rm NONEXIST
echo "Status of \$? == $?"
echo -n "Now ’finish’ ? "
read cmd

done

Unix Tools: Shells

until example

#!/bin/bash
2006 06 08 - rdl
echo -n "Now ’finish’ ? "
read cmd
until test $cmd == "finish"
do

rm NONEXIST
echo "Status of \$? == $?"
echo -n "Now ’finish’ ? "
read cmd

done

Unix Tools: Shells

Shifting the arguments

You can “shift” the argument list, eliminating the current $1 and
replacing it with the current $2, and so forth:

Unix Tools: Shells

Shifting the arguments

#!/bin/bash
while [$# -gt 0]
do
echo "$# -> arguments == ’$@’"
shift;

done

Unix Tools: Shells

Shifting the arguments

[langley@sophie 2006-Fall]$./Script8.sh a b c d e f g h
8 -> arguments == ’a b c d e f g h’
7 -> arguments == ’b c d e f g h’
6 -> arguments == ’c d e f g h’
5 -> arguments == ’d e f g h’
4 -> arguments == ’e f g h’
3 -> arguments == ’f g h’
2 -> arguments == ’g h’
1 -> arguments == ’h’
[langley@sophie 2006-Fall]$

Unix Tools: Shells

exit

We have already talked about exit, but to reiterate some points
about exit:

An exit status of zero should indicate success. It is a good idea
to use an explicit exit NUM in scripts.

An exit status that is non-zero should indicate failure.

C programs use exit(NUM) to return a status.

Unix Tools: Shells

exit example

#/bin/bash
2006 09 08 - rdl Script9.sh
if ./Script10.sh
then
echo -n "Enter filename: "
read filename
echo "You entered ’$filename’"

else
echo "Okay, no filename needed."

fi

Unix Tools: Shells

exit example

#/bin/bash
2006 09 08 - rdl Script9.sh
while /bin/true
do
echo -n "Should I ask for a filename? "
read answer
case $answer in

"no")
exit 1
;;

"yes")
exit 0
;;

*)
;;

esac
done

Unix Tools: Shells

Regular expressions

Regular expressions are a convenient way to describe a sequence of
characters, and regular expressions are part of such programs as
emacs, awk, and perl.

Unix Tools: Shells

Regular expressions: operations

Concatenation: just place items adjacent, such ab, xyz, or
somechars

Unix Tools: Shells

Regular expressions: operations

Repetition: we use “*” to indicate repetition zero or more times:
a*b == b, ab, aab, aaab, ...

Unix Tools: Shells

Regular expressions: operations

Special case of repetition: we can specify one or more times with +:
a+b == ab, aab, aaab, ...

Unix Tools: Shells

Regular expressions: characters and classes

The dot “.” can indicate any character, such as
a.b == a1b, a2b, a3b, ...

Unix Tools: Shells

Regular expressions: characters and classes

To specify a class of characters, you can use the [] syntax:
[abc] == a, b, c
[a-d] == a, b, c, d
[â-z] == NOT a lower case character
[0-9] == 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Unix Tools: Shells

Anchoring

You can “anchor” an expression to either the beginning of a string or
its end, or both. Use t̂o indicate the beginning of a line, and $ to
indicate the end:
âbc$ matches a line that consists exactly of abc
abc$ matches a line that ends in abc
âbc matches a line that begins with abc

Unix Tools: Shells

Alternation and grouping

You can specify a group with round brackets “(“ and “)”.
You can specify alternatives with a vertical “”
(abc)|(def) matches either abc or def

Unix Tools: Shells

Note on grouping

It also possible in many instances possible to make a reference to
whatever matched a group in round brackets.

Unix Tools: Shells

Check chapter 32 for more on regular expressions

32.20 has a good summary of metacharacters for different programs.
32.21 has a reference with many useful examples

Unix Tools: Shells

Using grep/egrep

You can use the grep program to find strings in files. The “-i” option
makes the search case-insensitive. If no file or files are specified, then
grep looks to stdin for input. grep also adds “?” as a special
character that matches 0 or 1 instance of any character.

Unix Tools: Shells

Examples with grep/egrep

egrep [Ll]angley * # finds instances of ‘‘langley” or
‘‘Langley” in all files in the
current working directory

egrep -i she?p * # finds case-insensitive instances of
shep and she.p

egrep -c /bin/bash * # shows filename and
number of matches

Unix Tools: Shells

Popular options with grep/egrep

-i→ case-insensitive

-c→ display count of matching lines rather all matching lines

-v→ invert the matching

-H→ always show filenames

-h→ always suppress filenames

-l→ just show the filenames that have one or more matches

Unix Tools: Shells

wc

You can use the wc program to count characters, words, and lines:

wc -l * # count the number of lines in all files
wc -w * # count the number of words in all files
wc -c * # count the number of characters in all files
wc -lw * # count the number of words and lines in all files
wc * # count words, characters, and lines in all files

Unix Tools: Shells

