
Shell Programming Topics

Creating Shell Scripts

Globbing

Aliases, Variables/Arguments, and Expressions

Unix Tools: Shells

Shell Programming Topics

Shells, data, and debugging

Structuring control flow

Exit status

Unix Tools: Shells

Shell Programming Topics

Not (just) globbing: regular expressions
grep, awk, perl all also support regular expressions

Unix Tools: Shells

Advantages of shell scripts

Can very easily automate a group of tasks, especially those with
i/o that are related

Can very easily leverage powerful Unix tools

Unix Tools: Shells

Disadvantages of shell scripts

Shell scripts execute slowly.

Advanced programming techniques aren’t a feature of shell
programming. Abstraction and encapsulation are poorly
supported.

Unix Tools: Shells

What shell to use

For programming, most people have preferred sh and its
derivatives such as bash.

We will use bash for programming, although we will also talk
about csh when appropriate in command shells.

Unix Tools: Shells

What shell to use

In the past, many people have preferred csh and tcsh as command
line shells; however, it appears that bash is now preferred since its
support for command line editing is quite strong and it also is quite
useful for shell programming.

Unix Tools: Shells

What shell to use

There is also program busybox which is also worth knowing about.
It is a shell — and a lot more. The binary itself includes many other
programs such as head, tail, ps, top, find,
crontab, and tar as built-ins.

Unix Tools: Shells

Finding more information

man bash

man {alias, bg, bind, break, builtin, cd,
command, compgen, ...}
info bash

Google bash

Unix Tools: Shells

Creating a script

By convention, we use an extension of .sh for shell scripts.
The first line needs to be

#!/bin/bash
#!/bin/sh
#!/bin/csh
#!/sbin/bash

Unix Tools: Shells

Creating a script

Now you should put some comments:

2008 09 06 - original version by rdl
2008 09 07 - updated ‘‘text” by rdl
#
this shell program is used to confabulate
the obfuscated
#

Unix Tools: Shells

Using echo

The program (and builtin) echo is useful for sending a given
string or strings to stdout.

$ echo a b c
a b c
$ echo "a b c"
a b c
$ echo "$SHELL a b c"
/bin/bash a b c

Unix Tools: Shells

Using echo

The program (and builtin) echo is useful for sending a given
string or strings to stdout.

$ echo "$SHELL a b c"
/bin/bash a b c
$ echo $SHELL a b c
/bin/bash a b c
$ echo ’$SHELL a b c’
$SHELL a b c

Unix Tools: Shells

Shell variables

Do not have to be declared: just use them. (If you want to, you
can declare them with declare; generally only useful to make
variables read-only.)

Can be assigned a value, or can just have a blank value

Can dereferenced with a “$”

Unix Tools: Shells

Shell variables

Examples:

$ a=b
$ b=$a
$ echo "a = $a , b = $b"
a = b , b = b

Unix Tools: Shells

reading values from the command line

From the man page for bash:

‘‘One line is read from the
standard input, . . . and the
first word is assigned to the
first name, the second word to
the second name, and so on, with
leftover words and their interven-
ing separators assigned to the
last name. If there are fewer
words read from the input stream
than names, the remaining names
are assigned empty values. The
characters in IFS are used to
split the line into words.”

Unix Tools: Shells

read example

$ read a b c d e f
apple beta cherry delta eta figs and more
$ echo "$a - $b - \
$c - $d - $e - $f"

apple - beta - cherry - delta - eta - figs and more

Unix Tools: Shells

read example

It is also good to note that you can also specify that items are to go
into an array rather than just individually named variables with the -a
ARRAYNAME option.
For example:

$ read -a arr
a b c d e f g h
$ for i in 0 1 2 3 4 5 6 7
> do
> echo ${arr[$i]} # note the odd syntax
> done
a
b
c
d
e
f
g
h Unix Tools: Shells

Command line parameters

When you call a shell script, command line parameters are
automatically setup with $1, $2, etc...

$./Script1.sh abc def ghi
first 3 args: ’abc’ ’def’ ’ghi’

$0 refers to the name of the command (the first item)

Unix Tools: Shells

More on command line arguments

$# refers to the number of command line arguments.

$@ refers to the all of the command lines arguments in one
string.

Example:

$./Script2.sh abc def ghi jkl
There are 4 arguments: abc def ghi jkl

Unix Tools: Shells

Debugging tips

The options -x and -v are very helpful. You can either add
them to the initial #! line, or you can call the shell at the
command line:

bash -xv Script1.sh abc def

Unix Tools: Shells

Debugging tips example

$ bash -xv Script1.sh ls asd asdf asdf
#!/bin/bash

2006 09 06 - Small test script

echo "first 3 args: ’$1’ ’$2’ ’$3’"
+ echo ’first 3 args: ’\”ls’\” ’\”asd’\” ’\”asdf’\”’
first 3 args: ’ls’ ’asd’ ’asdf’
echo "cmd: ’$0’"
+ echo ’cmd: ’\”Script1.sh’\”’
cmd: ’Script1.sh’
$ bash -x Script1.sh ls asd asdf asdf
+ echo ’first 3 args: ’\”ls’\” ’\”asd’\” ’\”asdf’\”’
first 3 args: ’ls’ ’asd’ ’asdf’
+ echo ’cmd: ’\”Script1.sh’\”’
cmd: ’Script1.sh’

Unix Tools: Shells

Testing

You can test with square brackets:

$ [$ -e /etc/hosts $] $

You can also test with test:

test -e /etc/hosts

Unix Tools: Shells

Testing

Example:

$ if test -e /etc/hosts
> then
> echo exists
> fi
exists
$ if [-e /etc/hosts]
> then
> echo exists
> fi
exists

Unix Tools: Shells

File testing conditions

You can readily check various file status items:

[-d DIR] # True if
directory DIR exists.

[-e SOMETHING] # True if
file or directory
SOMETHING exists.

Unix Tools: Shells

File testing conditions

[-f FILE] # True if regular
file FILE exists.

[-r SOMETHING] # True if file or
directory SOMETHING
exists and is readable.

[-s SOMETHING] # True if file or
directory SOMETHING
exists and
has a size greater than zero.

[-x SOMETHING] # True if file or directory
SOMETHING exists and
is ‘‘executable” by this user.

Unix Tools: Shells

Numeric tests

You can readily check various numeric values:

[0 -eq 1] # equality
[1 -ne 1] # inequality
[1 -lt 1] # less than
[1 -gt 1] # greater than
[1 -le 1] # less than or equal
[1 -ge 0] # great than or equal

Unix Tools: Shells

String tests

You can readily check various numeric values:

[-z STRING] # is the string STRING zero length?
[-n STRING] # is the string STRING non-zero length?
[STR1 == STR2] # ‘‘bash” equality;

POSIX prefers ‘‘=”
[STR1 != STR2] # inequality
[STR1 < STR2] # less than
[STR1 > STR2] # greater than

Note that it is a very good idea to “” quote any string variables;
otherwise, the corresponding blank in if [$var1 != “today”
] becomes if [!= “today”] !

Unix Tools: Shells

exit

You can explicitly exit a shell with exit, which can take an
argument which will give the exit status of the process. (If you
don’t specify the optional value, the exit status for the whole
shell will take the value of the last command to execute.)

$ bash
$ exit 3
exit
$ echo $?
3

Unix Tools: Shells

if / then

We can write if / then statements like:

if condition
then

[... statements ...]
fi

Unix Tools: Shells

Quoting

Single quotes stop any globbing or variable expansion within
them, and create a single token (i.e., whitespace within the
quotes is not treated as a separator character.)

Double quotes allow globbing and variable expansion within
them, and create a single token (i.e., whitespace within the
quotes is not treated as a separator character.)

You can use the backslash to quote any single character.

Unix Tools: Shells

Quoting examples

animal=”horse”
echo $animal #prints: horse
echo ’$animal’ #prints: $animal
echo ‘‘$animal” #prints: horse
cost=2000
echo ’cost: $cost’ #prints: cost: $cost
echo ‘‘chost: $cost” #prints: cost: 2000
echo ‘‘cost: \$cost” #prints: cost: $cost
echo ‘‘cost: \$$cost” #prints: cost: $2000

Unix Tools: Shells

Multiple conditions

[$1 -eq $2] && [-e /etc/hosts]
[$1 -eq $2] || [-d /etc]

Unix Tools: Shells

General if/then/else

if condition
then
[... statements ...]

elif condition
then
[... statements ...]

[... more elifs ...]
else
[... statements ...]

fi

Unix Tools: Shells

