
Fall 2006 Program Development 7

make

My description of the program make is that it

+ takes a set of rules describing dependencies and

+ describing creation of new files

in order to satisfy the requirements for the “creation” of

some target.

COP 4342

Fall 2006 Program Development 7

make

Another description from Chapter 1 of the Gnu Make

manual:

The make utility automatically determines
which pieces of a large program need to be
recompiled, and issues commands to recompile
them.

COP 4342

Fall 2006 Program Development 7

Invoking make

There are several options that are generally useful with

make:

-f MAKEFILE # specify an alternative makefile to the defaults of
’GNUmakefile’, ’Makefile’, or ’makefile’

-k # continue for other targets even after an error

-i # completely ignore errors

-d # print debugging information

-j [N] # fork off children to handle tasks. If N is
specified, create no more than N children

COP 4342

Fall 2006 Program Development 7

-C DIR # change directory to DIR before starting the make process

-s # silent mode, don’t echo commands

COP 4342

Fall 2006 Program Development 7

Makefiles

Makefiles use rules to determine their actions. The

rules look like:

target: [prerequisites]
-TAB- action
-TAB- action
-TAB- ...

COP 4342

Fall 2006 Program Development 7

Targets

Targets usually either specify a file that is to be made

via this rule or just identify the rules for execution (often

called a “phony” target.)

Targets may also be implicit.

COP 4342

Fall 2006 Program Development 7

Prerequisites

These generally define the files that the target depends

on, and the general idea is that if any of those have a

modified (or creation) time later than the target, then

actions for the rule will be executed to create a new

version of the target (which you should try to make sure

has a new modified or created time.)

COP 4342

Fall 2006 Program Development 7

Actions

These generally define the actions that are needed to

create the target from the prerequisites. These actions

are largely executions of discrete programs such as gcc,
make (yes, recursion is quite common), ld, bison, flex,
and so on. Rules must consist of consecutive lines that

start with a TAB character. Since these are usually

interpreted as shell commands, you can do things such as

multi-lines (but use the backslash to make sure that the

“single-linedness” of your construction is clear):

COP 4342

Fall 2006 Program Development 7

for name in dir1 dir2 dir3 \
do ; \

${MAKE} $name ; \
done

COP 4342

Fall 2006 Program Development 7

Actions

There are also actual make conditionals which are

interpreted by make and not by the shell; these look

like

COP 4342

Fall 2006 Program Development 7

ifeq (ARG1,ARG2)
...
endif

ifdef (ARG1)
...
endif

COP 4342

Fall 2006 Program Development 7

Setting ordinary variables

You can use “=” and “?=” to set ordinary variables:

CFLAGS ?= -g -O3 # conditionally set ${CFLAGS} to
‘‘-g -O3’’ iff it is not
already defined

CC = /usr/bin/gcc ${CFLAGS} # unconditionally set ${CC} to
‘‘/usr/bin/cc’’

COP 4342

Fall 2006 Program Development 7

Pattern rules

One of the nice things that you can do with make is

create “pattern rules”.

These are rules that let you abstract a pattern from a

set of similar rules, and use that pattern in lieu of explicitly

naming all of those rules.

For instance,

COP 4342

Fall 2006 Program Development 7

%.o : %.c
cc -c $< -o $@ # $@ refers to the

target, $< refers to
the *first* (and only)
prerequisite

COP 4342

Fall 2006 Program Development 7

Automatic variables

$@ # the target of the rule

$< # the first prerequisite

$^ # all of the prerequisites

$? # all of the prerequisites that are newer than the target file

$* # the ‘‘stem’’ only; essentially, this is the complement of the static portion
of the target definition... see Makefile-auto

COP 4342

Fall 2006 Program Development 7

Example Makefiles

targets: 01-introduction-out.pdf 02-processes-out.pdf \
03-shells1-out.pdf 03-shells2-out.pdf 04-shells3-out.pdf \
05-shells4-out.pdf 06-environment-out.pdf 07-perl01-out.pdf \
08-perl02-out.pdf 09-perl03-out.pdf 10-perl04-out.pdf \
11-perl05-out.pdf 12-perl06-out.pdf 13-perl07-out.pdf \
14-programdevel-out.pdf 15-programdevel02-out.pdf \
16-programdevel03-out.pdf 17-programdevel04-out.pdf \
18-programdevel05-out.pdf 19-programdevel06-out.pdf \
20-programdevel07-out.pdf structure-out.pdf

%-out.pdf: %.tex
pdflatex $<
gij -jar pp4p.jar $*.pdf $*-out.pdf

COP 4342

Fall 2006 Program Development 7

Example Makefiles

%.c:
echo $*

COP 4342

