
Fall 2006 Perl 07

File testing

Like BASH, file tests exist in Perl (source: man
perlfunc):

-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.
-x File is executable by effective uid/gid.
-o File is owned by effective uid.

-R File is readable by real uid/gid.
-W File is writable by real uid/gid.
-X File is executable by real uid/gid.
-O File is owned by real uid.

COP 4342

Fall 2006 Perl 07

-e File exists.
-z File has zero size (is empty).
-s File has nonzero size (returns size in bytes).

-f File is a plain file.
-d File is a directory.
-l File is a symbolic link.
-p File is a named pipe (FIFO), or Filehandle is a pipe.

-S File is a socket.
-b File is a block special file.
-c File is a character special file.
-t Filehandle is opened to a tty.

-u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.

COP 4342

Fall 2006 Perl 07

-T File is an ASCII text file (heuristic guess).
-B File is a "binary" file (opposite of -T).

-M Script start time minus file modification time, in days.
-A Same for access time.
-C Same for inode change time (Unix, may differ for other platforms)

COP 4342

Fall 2006 Perl 07

Using file status

You can use file status like this, for instance, as pre-test:

while (<>) {
chomp;
next unless -f $_; # ignore specials
#...

}

COP 4342

Fall 2006 Perl 07

Using file status

Or you can use them as a post-test:

if(! open(FH, $fn))
{
if(! -e "$fn")
{
die "File $fn doesn’t exist.";

}
if(! -r "$fn")
{
die "File $fn isn’t readable.";

}
if(-d "$fn")
{

COP 4342

Fall 2006 Perl 07

die "$fn is a directory, not a regular file.";
}
die "$fn could not be opened.";

}

COP 4342

Fall 2006 Perl 07

Subroutines in Perl

You can declare subroutines in Perl with sub, and call

them with the & syntax:

my @list = qw(/etc/hosts /etc/resolv.conf /etc/init.d);
map (&filecheck , @list) ;

sub filecheck
{

if(-f "$_")
{

print "$_ is a regular file\n";
}
else

COP 4342

Fall 2006 Perl 07

{
print "$_ is not a regular file\n";

}
}

COP 4342

Fall 2006 Perl 07

Subroutine arguments

To send arguments to a subroutine, just use a list after

the subroutine invocation, just as you do with built-in

functions in Perl.

Arguments are received in the @_ array:

#!/usr/bin/perl -w
2006 10 04 - rdl Script39.pl
shows subroutine argument lists
use strict;
my $val = max(10,20,30,40,11,99);
print "max = $val\n";

COP 4342

Fall 2006 Perl 07

sub max
{

print "Using $_[0] as first value...\n";
my $memory = shift(@_);
foreach(@_)
{

if($_ > $memory)
{

$memory = $_;
}

}
return $memory;

}

COP 4342

Fall 2006 Perl 07

Using my variables in subroutines

You can locally define variables for a subroutine with

my:

sub func
{
my $ct = @_;
...;

}

The variable $ct is defined only within the subroutine

func.

COP 4342

Fall 2006 Perl 07

sort() and map()

The built-ins functions sort() and map() can accept

a subroutine rather than just an anonymous block:

@list = qw/ 1 100 11 10 /;
@default = sort(@list);
@mysort = sort {&mysort} @list;
print "default sort: @default\n";
print "mysort: @mysort\n";
sub mysort
{
return $a <=> $b;

}
yields

COP 4342

Fall 2006 Perl 07

default sort: 1 10 100 11
mysort: 1 10 11 100

As you can see, sort() sends along two special,

predefined variables, $a and $b.

COP 4342

Fall 2006 Perl 07

cmp and friends

As discussed earlier, <=> returns a result of -1,0,1 if the

left hand value is respectively numerically less than, equal

to, or greater than the right hand value.

cmp returns the same, but uses lexical rather numerical

ordering.

COP 4342

Fall 2006 Perl 07

grep

A very similar operator is grep, which only returns a

list of the items that matched an expression (sort and

map should always return a list exactly as long as the input

list.)

For example:

@out = grep {$_ % 2} qw/1 2 3 4 5 6 7 8 9 10/;
print "@out\n";
yields
1 3 5 7 9

COP 4342

Fall 2006 Perl 07

Notice that the block item should return 0 for non-

matching items.

COP 4342

Fall 2006 Perl 07

Directory operations

chdir $DIRNAME; # change directory to $DIRNAME

glob $PATTERN; # return a list of matching patterns
example:
@list = glob "*.pl";
print "@list \n";
Script16.pl Script18.pl Script19.pl Script20.pl Script21.pl [...]

COP 4342

Fall 2006 Perl 07

Manipulating files and directories

unlink $FN1, $FN2, ...; # remove a hard or soft link to files

rename $FN1, $FN2; # rename $FN1 to new name $FN2

mkdir $DN1; # create directory with umask default permissions

rmdir $DN1, $DN2, ...; # remove directories

chmod perms, $FDN1; # change permissions

COP 4342

Fall 2006 Perl 07

Traversing a directory with opendir and
readdir

You can pull in the contents of a directory with opendir

and readdir:

opendir(DH,"/tmp");
@filenams = readdir(DH);
closedir(DH);
print "@filenams\n";
yields
.s.PGSQL.5432.lock .. mapping-root ssh-WCWcZf4199 xses-langley.joHONt . OSL_PIPE_500_SingleOfficeIPC_36797680ef98b40ff1a5752ef8e2fca .X0-lock gconfd-langley keyring-mB9Mau .X11-unix .ICE-unix .gdm_socket .font-unix xyz .s.PGSQL.5432 orbit-langley xyz1 mapping-langley

COP 4342

Fall 2006 Perl 07

Calling other processes

In Perl, you have four convenient ways to call

(sub)processes: the backtick function, the system()
function, fork()/exec(), and open().

The backtick function is the most convenient one for

handling most output from subprocesses. For example

@lines = ‘head -10 /etc/hosts‘;
print "@lines\n";

You can do this type of output very similarly with open,

COP 4342

Fall 2006 Perl 07

but open also allows you do conveniently send input to

subprocesses.

exec() lets you change the present process to another

executable; generally, this is done with a fork() to create

a new child subprocess first.

The system() subroutine is a short-cut way of writing

fork/exec. Handinding input and output, just as with

fork/exec is not particularly convenient.

COP 4342

