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File testing

Like BASH, file tests exist in Perl (source: man
perlfunc):

-r File is readable by effective uid/gid.
-w File is writable by effective uid/gid.
-x File is executable by effective uid/gid.
-o File is owned by effective uid.

-R File is readable by real uid/gid.
-W File is writable by real uid/gid.
-X File is executable by real uid/gid.
-O File is owned by real uid.
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-e File exists.
-z File has zero size (is empty).
-s File has nonzero size (returns size in bytes).

-f File is a plain file.
-d File is a directory.
-l File is a symbolic link.
-p File is a named pipe (FIFO), or Filehandle is a pipe.

-S File is a socket.
-b File is a block special file.
-c File is a character special file.
-t Filehandle is opened to a tty.

-u File has setuid bit set.
-g File has setgid bit set.
-k File has sticky bit set.
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-T File is an ASCII text file (heuristic guess).
-B File is a "binary" file (opposite of -T).

-M Script start time minus file modification time, in days.
-A Same for access time.
-C Same for inode change time (Unix, may differ for other platforms)
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Using file status

You can use file status like this, for instance, as pre-test:

while (<>) {
chomp;
next unless -f $_; # ignore specials
#...

}
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Using file status

Or you can use them as a post-test:

if(! open(FH, $fn))
{
if(! -e "$fn")
{
die "File $fn doesn’t exist.";

}
if(! -r "$fn")
{
die "File $fn isn’t readable.";

}
if(-d "$fn")
{
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die "$fn is a directory, not a regular file.";
}
die "$fn could not be opened.";

}
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Subroutines in Perl

You can declare subroutines in Perl with sub, and call

them with the & syntax:

my @list = qw( /etc/hosts /etc/resolv.conf /etc/init.d );
map ( &filecheck , @list) ;

sub filecheck
{

if(-f "$_")
{

print "$_ is a regular file\n";
}
else
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{
print "$_ is not a regular file\n";

}
}
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Subroutine arguments

To send arguments to a subroutine, just use a list after

the subroutine invocation, just as you do with built-in

functions in Perl.

Arguments are received in the @_ array:

#!/usr/bin/perl -w
# 2006 10 04 - rdl Script39.pl
# shows subroutine argument lists
use strict;
my $val = max(10,20,30,40,11,99);
print "max = $val\n";

COP 4342



Fall 2006 Perl 07

sub max
{

print "Using $_[0] as first value...\n";
my $memory = shift(@_);
foreach(@_)
{

if($_ > $memory)
{

$memory = $_;
}

}
return $memory;

}
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Using my variables in subroutines

You can locally define variables for a subroutine with

my:

sub func
{
my $ct = @_;
...;

}

The variable $ct is defined only within the subroutine

func.
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sort() and map()

The built-ins functions sort() and map() can accept

a subroutine rather than just an anonymous block:

@list = qw/ 1 100 11 10 /;
@default = sort(@list);
@mysort = sort {&mysort} @list;
print "default sort: @default\n";
print "mysort: @mysort\n";
sub mysort
{
return $a <=> $b;

}
# yields
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default sort: 1 10 100 11
mysort: 1 10 11 100

As you can see, sort() sends along two special,

predefined variables, $a and $b.
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cmp and friends

As discussed earlier, <=> returns a result of -1,0,1 if the

left hand value is respectively numerically less than, equal

to, or greater than the right hand value.

cmp returns the same, but uses lexical rather numerical

ordering.
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grep

A very similar operator is grep, which only returns a

list of the items that matched an expression (sort and

map should always return a list exactly as long as the input

list.)

For example:

@out = grep {$_ % 2} qw/1 2 3 4 5 6 7 8 9 10/;
print "@out\n";
# yields
1 3 5 7 9
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Notice that the block item should return 0 for non-

matching items.
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Directory operations

chdir $DIRNAME; # change directory to $DIRNAME

glob $PATTERN; # return a list of matching patterns
# example:
@list = glob "*.pl";
print "@list \n";
Script16.pl Script18.pl Script19.pl Script20.pl Script21.pl [...]
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Manipulating files and directories

unlink $FN1, $FN2, ...; # remove a hard or soft link to files

rename $FN1, $FN2; # rename $FN1 to new name $FN2

mkdir $DN1; # create directory with umask default permissions

rmdir $DN1, $DN2, ...; # remove directories

chmod perms, $FDN1; # change permissions
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Traversing a directory with opendir and
readdir

You can pull in the contents of a directory with opendir

and readdir:

opendir(DH,"/tmp");
@filenams = readdir(DH);
closedir(DH);
print "@filenams\n";
# yields
.s.PGSQL.5432.lock .. mapping-root ssh-WCWcZf4199 xses-langley.joHONt . OSL_PIPE_500_SingleOfficeIPC_36797680ef98b40ff1a5752ef8e2fca .X0-lock gconfd-langley keyring-mB9Mau .X11-unix .ICE-unix .gdm_socket .font-unix xyz .s.PGSQL.5432 orbit-langley xyz1 mapping-langley
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Calling other processes

In Perl, you have four convenient ways to call

(sub)processes: the backtick function, the system()
function, fork()/exec(), and open().

The backtick function is the most convenient one for

handling most output from subprocesses. For example

@lines = ‘head -10 /etc/hosts‘;
print "@lines\n";

You can do this type of output very similarly with open,
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but open also allows you do conveniently send input to

subprocesses.

exec() lets you change the present process to another

executable; generally, this is done with a fork() to create

a new child subprocess first.

The system() subroutine is a short-cut way of writing

fork/exec. Handinding input and output, just as with

fork/exec is not particularly convenient.
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