
Fall 2006 Perl 05

printf

☞ printf in Perl is very similar to that of C.

☞ printf is most useful when when printing scalars. Its

first (non-filehandle) argument is the format string, and

any other arguments are treated as a list of scalars:
printf "%s %s %s %s", ("abc", "def") , ("ghi", "jkl");
# yields
abc def ghi jkl

COP 4342



Fall 2006 Perl 05

printf

☞ Some of the common format attributes are

➳ %[-][N]s → format a string scalar, N indicates

maximum characters expected for justification, -

indicates to left-justify rather than default right-justify.

➳ %[-|0][N]d → format a numerical scalar as integer,

N indicates maximum expected for justification, “-”

indicates to left-justify, “0” indicates zero-fill (using

both “-” and “0” results in left-justify, no zero-fill.)

➳ %[-|0]N.Mf → format a numerical scalar as floating

COP 4342



Fall 2006 Perl 05

point. “N” gives the total length of the output, and

“M” give places after the decimal. After the decimal is

usually zero-filled out (you can toggle this off by putting

“0” before “M”.) “0” before N will zero-fill the left-hand

side; “-” will left-justify the expression.

COP 4342



Fall 2006 Perl 05

Examples of printf()

printf "%7d\n", 123;
# yields

123

printf "%10s %-10s\n","abc","def";
# yields

abc def

COP 4342



Fall 2006 Perl 05

Examples of printf()

printf "%10.5f %010.5f %-10.5f\n",12.1,12.1,12.1;
# yields
12.10000 0012.10000 12.10000

$a = 10;
printf "%0${a}d\n", $a;
# yields
0000000010

COP 4342



Fall 2006 Perl 05

Perl regular expressions

☞ Much information can be found at man perlre.

☞ Perl builds support for regular expressions as a part of

the language like awk but to a greater degree. Most

languages instead simply give access to a library of

regular expressions (C, PHP, Javascript, and C++, for

instance, all go this route.)

☞ Perl regular expressions can be used in conditionals,

COP 4342



Fall 2006 Perl 05

where if you find a match then it evaluates to true, and

if no match, false.
$_ = "howdy and hello are common";
if(/hello/)
{

print "Hello was found!\n";
}
else
{

print "Hello was NOT found\n";
}
# yields
Hello was found!

COP 4342



Fall 2006 Perl 05

What do Perl patterns consist of?

☞ Literal characters to be matched directly

☞ “.” (period, full stop) matches any one character

(except newline unless coerced to do so)

☞ “*” (asterisk) matches the preceding item zero or more

times

☞ “+” (plus) matches the preceding item one or more

times

COP 4342



Fall 2006 Perl 05

☞ “?” (question mark) matches the preceding item zero

or one time

☞ “(” and “)” (parentheses) are used for grouping

☞ “” (pipe) expresses alternation

☞ “[” and “]” (square brackets) express a range, match

one character in that range

COP 4342



Fall 2006 Perl 05

Examples of Perl patterns

/abc/ Matches “abc”

/a.c/ Matches “a” followed by any character (except newline) and then a “c”

/ab?c/ Matches “ac” or “abc”

/ab*c/ Matches “a” followed by zero or more “b” and then a “c”

/abcd/ Matches “abd” or “acd”

/a(bc)+d Matches “a” followed by one or more “b” or “c”, and then a “d”

/a[bcd]e/ Matches “abe”, “ace”, or “ade”

/a[a-zA-Z0-9]c/ Matches “a” followed one alphanumeric followed by “c”

/a[∧a-zA-Z]/ Matches “a” followed by anything other than alphabetic character

COP 4342



Fall 2006 Perl 05

Character class shortcuts

You can use the following as shortcuts to represent

character classes:

\d A digit (i.e., 0-9)
\w A word character (i.e., [0-9a-zA-Z ])
\s A whitespace character (i.e., [\f\t\n ])
\D Not a digit (i.e., [∧0-9])
\W Not a word (i.e., [∧0-9a-zA-Z ])
\S Not whitespace

COP 4342



Fall 2006 Perl 05

General quantification

You can specify numbers of repetitions using a curly

bracket syntax:

a{1,3} # ‘‘a’’, ‘‘aa’’, or ‘‘aaa’’
a{2} # ‘‘aa’’
a{2,} # two or more ‘‘a’’

COP 4342



Fall 2006 Perl 05

Anchors

Perl regular expression syntax lets you work with context

by defining a number of “anchors”: \A, ∧, \Z, $, \b.

/\ba/ Matches if “a” appears at the beginning of a word

/\Aa$/ Matches if “a” appears at the end of a line

/\Aa\Z/ Matches if a line is exactly “a”

/∧Aa$/ Matches if a line is exactly “a”

COP 4342



Fall 2006 Perl 05

Remembering substring matches

☞ Parentheses are also used to remember substring

matches.

☞ Backreferences can be used within the pattern to refer

to already matched bits.

☞ Memory variables can be used after the pattern has

been matched against.

COP 4342



Fall 2006 Perl 05

Backreferences

☞ A backreference looks like \1, \2, etc.

☞ It refers to an already matched memory reference.

☞ Count the left parentheses to determine the back

reference number.

COP 4342



Fall 2006 Perl 05

Backreference examples

/(a|b)\1/ # match ‘‘aa’’ or ‘‘bb’’
/((a|b)c)\1/ # match ‘‘acac’’ or ‘‘bcbc’’
/((a|b)c)\2/ # match ‘‘aba’’ or ‘‘bcb’’
/(.)\1/ # match any doubled characters except newline
/\b(\w+)\s+\b\1\s/ # match any doubled words
/([’"])(.*)\1/ # match strings enclosed by single or double quotes

COP 4342



Fall 2006 Perl 05

Remember, perl matching is by default
greedy

For example, consider the last backreference example:

$_ = "asfasdf ’asdlfkjasdf ’ werklwerj’";
if(/([’"])(.*)\1/)
{
print "matches $2\n";

}
# yields
matches asdlfkjasdf ’ werklwerj

COP 4342



Fall 2006 Perl 05

Memory variables

☞ A memory variable has the form $1, $2, etc.

☞ It indicates a match from a grouping operator, just as

back reference does, but after the regular expression has

been executed.
$_ = " the larder ";
if(/\s+(\w+)\s+/)
{

print "match = ’$1’\n";
}
# yields
match = ’the’

COP 4342



Fall 2006 Perl 05

Regular expression “binding” operators

Up to this point, we have considered only operations

against $ .

Any scalar can be tested against with the =~ and !~
operators.

"STRING" =~ /PATTERN/;

"STRING" !~ /PATTERN/;

COP 4342



Fall 2006 Perl 05

Examples

$line = "not an exit line";
if($line !~ /^exit$/)
{

print "$line\n";
}
# yields
not an exit line

# skip over blank lines...
if($line =~ /$^/)
{
next;

}\

COP 4342



Fall 2006 Perl 05

Automatic match variables

You don’t have to necessarily use explicit backreferences

and memory variables. Perl also gives you three default

variables that can be used after the application of any

regular expression; they refer to the portion of the string

matched by the whole regular expression.

$‘ refers to the portion of the string before the match
$& refers to the match itself
$’ refers to the portion of the string after the match

COP 4342



Fall 2006 Perl 05

Example of automatic match variables

$_ = "this is a test";
/is/;
print "before: < $‘ > \n";
print "after: < $’ > \n";
print "match: < $& > \n";
# yields
before: < th >
after: < is a test >
match: < is >

COP 4342



Fall 2006 Perl 05

Example of automatic match variables

#!/usr/bin/perl -w
# 2006 09 27 - rdl Script34.pl // change = to =:
use strict;
while(<>)
{
/=/;
print "$‘=:$’\n";

}

COP 4342



Fall 2006 Perl 05

Other delimiters: Using the “m”

You can use other delimiters (some are paired items)

rather than just a slash, but you must use the “m” to

indicate this. (See man perlop for a good discussion.)

For instance:

m/.../ m{...} m[...] m(...)
m!...! m,..., m∧...∧ m#...#

COP 4342



Fall 2006 Perl 05

Example

# not so readable way to look for a URL reference
if ($s =~ /http:\/\//)

# better
if ($s =~ m^http://^ )

COP 4342



Fall 2006 Perl 05

Option modifiers

There are a number of modifiers that you can apply to

your regular expression pattern:

Modifier Description
________ ___________

i case insensitive
s treat string as a single line
g find all occurrences

COP 4342


