
Fall 2006 Setting up your environment

Setting up your environment

☞ Environment variables – these variables are passed to

child processes

☞ Aliases – modify the meaning of “commands”

☞ History – a record of your shell commands

☞ Command completion – lets you save keystrokes

COP 4342

Fall 2006 Setting up your environment

Environmental variables

☞ Environmental variables are passed to child processes

at invocation. (The child process can of course ignore

them if it likes.)

☞ Children cannot modify parent’s environmental

variables – any modification by a child process are

local to the child and any children it might create.

COP 4342

Fall 2006 Setting up your environment

Environmental variables

☞ The traditional C “main” is usually defined something

like:

int main(int argc, char *argv[], char *envp[])

COP 4342

Fall 2006 Setting up your environment

Setting environmental variables

CSH/TCSH: setenv VARIABLE VALUE

BASH: export VARIABLE=VALUE

old SH: VARIABLE=VALUE ; export VARIABLE

Note: there are a few special variables such as path
and home that CSH/TCSH autosynchronizes between the

two values.

COP 4342

Fall 2006 Setting up your environment

Setting environmental variables

[langley@sophie 2006-Fall]$export VAR1=value
[langley@sophie 2006-Fall]$ bash
[langley@sophie 2006-Fall]$ echo $VAR1
value
[langley@sophie 2006-Fall]$ exit
exit
[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ echo $VAR1
value

COP 4342

Fall 2006 Setting up your environment

Setting environmental variables

[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ setenv VAR2 bigvalue
[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ echo $VAR2
bigvalue
[langley@sophie 2006-Fall]$ exit
[langley@sophie 2006-Fall]$ exit
[langley@sophie 2006-Fall]$ bash
[langley@sophie 2006-Fall]$ echo $VAR2
bigvalue

COP 4342

Fall 2006 Setting up your environment

Unsetting environmental variables

CSH/TCSH: unsetenv VAR

SH/BASH: unset VAR

You can also leave it as local variable in bask with

export -n VAR.

COP 4342

Fall 2006 Setting up your environment

Unsetting environmental variables

[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ setenv VAR99 testvar
[langley@sophie 2006-Fall]$ csh
[langley@sophie 2006-Fall]$ echo $VAR99
testvar
[langley@sophie 2006-Fall]$ unsetenv VAR99
[langley@sophie 2006-Fall]$ echo $VAR99
VAR99: Undefined variable.
[langley@sophie 2006-Fall]$ exit
[langley@sophie 2006-Fall]$ exit
[langley@sophie 2006-Fall]$ echo $VAR99
testvar

COP 4342

Fall 2006 Setting up your environment

Unsetting environmental variables

[langley@sophie 2006-Fall]$ export VAR50=test
[langley@sophie 2006-Fall]$ bash
[langley@sophie 2006-Fall]$ echo $VAR50
test
[langley@sophie 2006-Fall]$ unset VAR50
[langley@sophie 2006-Fall]$ echo $VAR50

[langley@sophie 2006-Fall]$ exit
exit
[langley@sophie 2006-Fall]$ echo $VAR50
test
[langley@sophie 2006-Fall]$ export -n VAR50
[langley@sophie 2006-Fall]$ echo $VAR50
test
[langley@sophie 2006-Fall]$ bash

COP 4342

Fall 2006 Setting up your environment

[langley@sophie 2006-Fall]$ echo $VAR50

COP 4342

Fall 2006 Setting up your environment

Displaying your environment

BASH: env, printenv, set, declare -x, typeset
-x

CSH: env, printenv, setenv

COP 4342

Fall 2006 Setting up your environment

Predefined environmental variables

What is “predefined” is not so much the value of the

variable as its name and its normal use.

☞ PATH : a list of directories to visit. They are delimited

with “:”. Note that csh/tcsh “autosynchronize” this

variable.

☞ EDITOR : the default editor to start when you run a

program that involves editing a file, such as crontab
-e.

COP 4342

Fall 2006 Setting up your environment

☞ PRINTER : the default printer to send to.

☞ PWD : your present working directory.

☞ HOME : your home directory.

☞ SHELL : the path to your current shell. (Be cautious

with this one: in some shells, it is instead shell).

☞ USER : your username.

☞ TERM : your terminal type.

☞ DISPLAY : used by programs to find the X server to

COP 4342

Fall 2006 Setting up your environment

display their windows.

COP 4342

Fall 2006 Setting up your environment

Aliases

An alias allows you to abbreviate a command. For

instance, instead of using /bin/ls -al, you might

abbreviate it to ll with:

SH/BASH: alias ll=‘‘/bin/ls -al’’

CSH/TCSH: alias ll ‘‘/bin/ls -al’’

COP 4342

Fall 2006 Setting up your environment

Removing aliases

You can remove an alias with unalias.

Example:

unalias ll

COP 4342

Fall 2006 Setting up your environment

which, whatis, whereis, locate

The program (or built-in) which simply gives you the

path to the named executable as it would be interpreted

by your shell invoking that executable, and is created by

examining your path.

The program locate looks in a database for all

accessible files in the filesystem that contain the substring

you specify. You can also specify a regular expression,

such as

locate -r ’ab.*ls’

COP 4342

Fall 2006 Setting up your environment

The program whatis will give you the description line

from the man page for the command you specify. (N.B.:

You can also search the man page descriptions with man
-k keyword.)

The program whereis will give you both the path to

the executable named and the page to its manpage.

COP 4342

Fall 2006 Setting up your environment

Setting your prompt

SH/BASH: PS1=’% ’

CSH/TCSH: set prompt=’% ’

COP 4342

Fall 2006 Setting up your environment

“Sourcing” commands

Because ordinarily running a shell script means first

forking a child process and then exec-ing the script in that

child shell, it is not possible to modify the current shell’s

environmental variables from just running a script.

Instead, we do what is called “sourcing” the script,

which means simply executing its commands (such as

setting environmental variables) inside the current shell

process.

COP 4342

Fall 2006 Setting up your environment

CSH/TCSH: source FILE

SH/BASH: . FILE

N.B.: modern versions of bash also support the source
built-in.

COP 4342

Fall 2006 Setting up your environment

.login , .profile

When you login, your user shell is started with -l. For

sh/bash, this means that shell will source your .profile
file; for csh/tcsh, this means sourcing your .login file.

Typically, you would want your environmental variables

in that file, and any other one-time commands that you

want to do when logging in, such as checking for new

email.

COP 4342

Fall 2006 Setting up your environment

Shell .*rc files

For each shell that you start, generally a series of “run

command” files, abbreviated as “rc” will be sourced. In

these you can set up aliases and variables that you want

for every shell (including those that are not interactive,

such as those running under a crontab.)

BASH: .bashrc

CSH: .cshrc

There is also a .tschrc for tcsh. History, sh did not

COP 4342

Fall 2006 Setting up your environment

look for configuration files except when invoked as a login

shell.

COP 4342

Fall 2006 Setting up your environment

.*rc files in general

In general, many program use .*rc files. Some will ask

you to setup the file; some will create it for you. Some

want a whole directory.

☞ .gvimrc

☞ .procmailrc

☞ .gtkrc

☞ .xfigrc

COP 4342

Fall 2006 Setting up your environment

☞ .acrorc

COP 4342

Fall 2006 Setting up your environment

.gvimrc

☞ Set the background

☞ Set the size and type of the font

☞ Set the size of the window in characters

☞ Turn on or off syntax highlighting

COP 4342

Fall 2006 Setting up your environment

.procmailrc

The syntax is quite obscure, but you can apply arbitrary

rules to your incoming email via your .procmailrc file.

COP 4342

Fall 2006 Setting up your environment

.procmailrc example

DOMAIN="<$1>"
RECIPIENT="<$2>"
WHATSIT="<$3>"
VERBOSE=on
LOGFILE=/tmp/procmail2.log
LOGABSTRACT=all
ROOTHOMEDIR=/home/vmail-users
ROOTINBOXDIR=/var/spool/vbox

:0
* RECIPIENT ?? ()\/[^<]*@
* MATCH ?? ()\/.*[^@]
{

USER=$MATCH
}

COP 4342

Fall 2006 Setting up your environment

:0 a
* DOMAIN ?? ()\/[^<].*[^>]
{

DOMAINNOBRACKET=$MATCH
}

:0 a
${ROOTINBOXDIR}/${DOMAINNOBRACKET}/${USER}

COP 4342

Fall 2006 Setting up your environment

Shell history

You can modify the number of lines kept in your history:

bash: HISTSIZE=SOMENUMBER

csh/tcsh: set history=SOMENUMBER

Your shell history lets you do many things: search

commands that you ran in the past, re-execute commands,

modify them, or save them off (bash lets you do the latter

automatically in your .bash history file.)

COP 4342

Fall 2006 Setting up your environment

Command history substitution

☞ !! → repeat last command

☞ âb̂ → repeat last command, but change a to b

☞ !-N → repeat the command N back in your history

☞ history → display the history

☞ history N → display the last N lines of history

☞ !N → repeat command N

COP 4342

Fall 2006 Setting up your environment

☞ !STRING→ repeat the last command that started with

STRING.

COP 4342

Fall 2006 Setting up your environment

Using previous command arguments

☞ !$ → refers to the last argument of the previous

command

☞ !caret → refers to the first argument of the previous

command

☞ !*→ refers to the all of the arguments of the previous

command

☞ !:n* → refers to the arguments N through the last

COP 4342

Fall 2006 Setting up your environment

argument of the previous command

COP 4342

Fall 2006 Setting up your environment

Command line manipulation

You can use the arrow keys to move through your

history, and back and forth on command lines.

With bash, you can use the default emacs key-bindings

for thing such as end-of-line (ctrl-e) and beginning-of-line

(ctrl-b).

COP 4342

Fall 2006 Setting up your environment

Complete word function

If you are in the first word of a command, you can find

all the matching commands up to that point with a TAB

character.

If you are else in the line, you can use the TAB character

to show all matching filenames in the current working

directory, or if you have started an absolute path, then

matching items down the path.

COP 4342

