
Fall 2006 Shell programming, part 3

touch

Touch is usually a program, but it can be a shell built-in

such as with busybox.

The touch program by default changes the access and

modification times for the files listed as arguments. If the

file does not exist, it is created as a zero length file (unless

you use the -c option.)

You can also set either or both of the times to arbitrary

values, such as with the -t, -d, -B, and -F options.

COP 4342

Fall 2006 Shell programming, part 3

Backquotes and textual substitution

If you surround a command with backquotes, the

standard output of the command is substituted for the

quoted material.

For instance,

[langley@sophie 2006-Fall]$ echo ‘ls 0*tex‘
01-introduction.tex 02-processes.tex 03-shells1.tex 03-shells2.tex 04-shells3.tex
[langley@sophie 2006-Fall]$ echo ‘egrep -l Langley *‘
03-shells2.tex Syllabus-Fall.html Syllabus-Fall.html.1 Syllabus Summer.html
[langley@sophie 2006-Fall]$ now=‘date‘
[langley@sophie 2006-Fall]$ echo $now
Mon Sep 11 09:55:09 EDT 2006

COP 4342

Fall 2006 Shell programming, part 3

Backquotes and textual substitution

if [‘wc -l < /etc/hosts‘ -lt 10]; then echo "lt"; fi
use ‘‘<’’ to prevent filename from

COP 4342

Fall 2006 Shell programming, part 3

xargs

xargs COMMAND -n N [INITIAL-ARGUMENTS]

xargs reads from stdin to obtain arguments for the

COMMAND. You may specify initial arguments with the

COMMAND. If you specify -n N, then only up to N

arguments are given to any invocation of COMMAND.

For instance,

[langley@sophie 2006-Fall]$ cat /etc/hosts | xargs -n 1 ping -c 1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.075 ms

COP 4342

Fall 2006 Shell programming, part 3

--- 127.0.0.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.075/0.075/0.075/0.000 ms, pipe 2
PING localhost.localdomain (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0 ttl=64 time=0.060 ms

--- localhost.localdomain ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.060/0.060/0.060/0.000 ms, pipe 2
PING localhost.localdomain (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0 ttl=64 time=0.071 ms

COP 4342

Fall 2006 Shell programming, part 3

The for statement

for name in LIST0 ; do LIST1 ; done
for name ; do LIST1 ; done # useful for scripts
for ((EXPR1 ; EXPR2 ; EXPR3)) ; do LIST1 ; done

In the last form, EXPR? are evaluated as arithmetic

expressions.

COP 4342

Fall 2006 Shell programming, part 3

The for statement

[langley@sophie 2006-Fall]$ for ((ip = 0 ; ip < 5 ; ip = ip+1)) do echo $ip ; done
0
1
2
3
4

COP 4342

Fall 2006 Shell programming, part 3

The for statement

for i in ‘cat /etc/hosts‘
do
ping -c 1 $i

done

COP 4342

Fall 2006 Shell programming, part 3

break and continue statements

break terminates the current loop immediately and

goes on to the next statement after the loop. continue
starts the next iteration of a loop.

COP 4342

Fall 2006 Shell programming, part 3

break and continue statements

For example,

for name in *
do
if [-f ‘‘$name’’]
then

echo ‘‘skipping $name’’
continue

else
echo ‘‘process $name’’

fi
done

COP 4342

Fall 2006 Shell programming, part 3

expr

You can use expr to evaluate arithmetic statements,

some regular expression matching, and some string

manipulation. (You can also use either bc or dc for

more complex arithmetic expressions.)

COP 4342

Fall 2006 Shell programming, part 3

expr

files=10
dirs=‘expr $files + 5‘
limit=15
if [‘expr $files + $dirs‘ < $limit’’]
then
echo ‘‘okay’’

else
echo ‘‘too many!’’

fi

COP 4342

Fall 2006 Shell programming, part 3

awk

One of the more powerful programs found on Unix

machines is awk, and its updated versions, nawk and

gawk.

It is most useful for handling text information that is

separated into a series of uniform records. The most

common one that it handles is records of one line, divided

by either column numbers or by a field separator. For

instance, handling the password file is a snap with awk.

COP 4342

Fall 2006 Shell programming, part 3

awk

The password file on a Unix machine looks something

like:

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin

COP 4342

Fall 2006 Shell programming, part 3

awk

You can quickly get a list of usernames into a single

string variable with:

[langley@sophie 2006-Fall]$ usernames=‘awk -F: ’{print $1}’ /etc/passwd‘
[langley@sophie 2006-Fall]$ echo $usernames
root bin daemon adm lp sync shutdown halt mail
[langley@sophie 2006-Fall]$ usernames=‘awk ’{print $1}’ FS=: /etc/passwd‘
[langley@sophie 2006-Fall]$ echo $usernames
root bin daemon adm lp sync shutdown halt mail

COP 4342

Fall 2006 Shell programming, part 3

awk

Fundamentally, awk scripts consist of a series of pairs:

PATTERN { ACTION }

COP 4342

Fall 2006 Shell programming, part 3

awk

where the PATTERN can be a

☞ /regular expression/

☞ relational expression

☞ pattern-matching expression

☞ BEGIN or END

COP 4342

Fall 2006 Shell programming, part 3

awk

By default, the record separator is a newline so awk
works on a line-by-line basis by default.

If no PATTERN is specified, then the ACTION is always

taken for each record.

If no ACTION specified, then the each records that

matches a pattern is written to stdout.

COP 4342

Fall 2006 Shell programming, part 3

awk

You can specify that an ACTION can take place before

any records are read with the keyword BEGIN for the

PATTERN.

You can specify that an ACTION can take place after all

records are read with the keyword END for the PATTERN.

With PATTERNs, you can also negate (with !) them,

logically “and” two PATTERNs (with &&), and logically

“or” two PATTERNs (with).

COP 4342

Fall 2006 Shell programming, part 3

awk

Some examples of regular expressions in awk:

[langley@sophie 2006-Fall]$ awk ’/[Ll]angley/ {print $0}’ /etc/passwd
langley:x:500:500:Randolph Langley:/home/langley:/bin/bash
[langley@sophie 2006-Fall]$ awk ’/^#/’ /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.

COP 4342

Fall 2006 Shell programming, part 3

awk

☞ $0 refers to the whole record, $N refers to the Nth

field in a record

☞ NF refers to the number of fields in a record

(example, awk -F: ’END print NF’ /etc/passwd
tells you that there are seven fields used in the password

file.)

☞ NR refers to which record (by default, line) you are

currently at.

COP 4342

Fall 2006 Shell programming, part 3

awk

Some examples of relational expressions:

$1 == ‘‘lane’’ # does the first field equal the string ‘‘lane’’?
$1 == $7 # are fields one and seven equal?
NR > 1000 # have we processed more than 1000 records?
NF > 10 # does this record have more than 10 fields?
NF > 5 && $1 = ‘‘me’’ # compound test
/if/&&/up/ # does the record contain both strings if and up?

COP 4342

Fall 2006 Shell programming, part 3

awk

You can also check a given field against a regular

expression:

$1 ~ /D[Rr]\./ # does the first field contain a Dr. or DR.?
$1 !~ /#/ # does the first field have a # in it?

COP 4342

Fall 2006 Shell programming, part 3

awk

ACTIONs are specified with { }. You can use semicolons

to separate statements with the braces (although newlines

work also). Popular statements are print, if {} else
{}, and system.

awk is very powerful! Henry Spencer wrote an assembler

in awk.

COP 4342

Fall 2006 Shell programming, part 3

awk example scripts

{ print $1, $2 } # print the first two fields of each record

$0 !~ /^$/ # print all non-empty lines

$2 > 0 && $2 < 10 { print $2 } # print field 2 if it is 0 < $2 < 10

BEGIN {FS=’’:’’
sum = 0} # sum field 3 and print the sum
{sum += $3}
END {print sum}

COP 4342

Fall 2006 Shell programming, part 3

The tr utility

Allows you to delete, replace, or “squeeze” characters

from standard input. The -d option deletes the characters

specified in the first argument; -s squeeze removes all

repetitions of characters in the first argument with a

single instance of the character. The normal mode is

to substitute characters from the first argument with

characters from the second argument.

COP 4342

Fall 2006 Shell programming, part 3

The tr utility

[langley@sophie 2006-Fall]$ cat /etc/hosts
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
128.186.120.8 sophie.cs.fsu.edu
127.0.0.1 a.as-us.falkag.net
127.0.0.1 clk.atdmt.com
[langley@sophie 2006-Fall]$ cat /etc/hosts | tr ’a-z’ ’A-Z’
DO NOT REMOVE THE FOLLOWING LINE, OR VARIOUS PROGRAMS
THAT REQUIRE NETWORK FUNCTIONALITY WILL FAIL.
127.0.0.1 LOCALHOST.LOCALDOMAIN LOCALHOST
128.186.120.8 SOPHIE.CS.FSU.EDU
127.0.0.1 A.AS-US.FALKAG.NET
127.0.0.1 CLK.ATDMT.COM

COP 4342

