
Fall 2006 Shell programming, part 2

If example

#!/bin/bash
2006 09 08 - demonstrate if / then / else
if ["x$1" != "x"] && [-f "$1"]
then

echo -n "Remove $1 (n)? "
read answer
if [$answer == "y"] || [$answer == "Y"] || [$answer == "yes"]
then

echo "Would remove"
else

echo "Would NOT remove"
fi

else
echo "Please specify a regular file"

fi

COP 4342

Fall 2006 Shell programming, part 2

If example

#!/bin/bash
2006 09 08 - demonstrate if / then / else
if ["x$1" == "x"]
then
echo "Please specify a regular filename!"
exit 1

elif [! -f "$1"]
then
echo "$1 is not a regular file!"
exit 1

else
echo -n "Remove $1 (n)? "
read answer
if [$answer == "y"] || [$answer == "Y"] || [$answer == "yes"]
then

COP 4342

Fall 2006 Shell programming, part 2

echo "Would remove"
else

echo "Would NOT remove"
fi

fi

COP 4342

Fall 2006 Shell programming, part 2

The case statement

case WORD in PATTERN1) COMMANDS ;; PATTERN2) COMMANDS

;; ... esac

The idea here is that WORD is tested against the

various PATTERNs listed, in order. The first match then

executes the associated COMMANDs.

COP 4342

Fall 2006 Shell programming, part 2

Case example

#!/bin/bash
2006 09 08 - case example
case $1 in
"yes")

echo "Thanks!"
exit 0
;;

"no")
echo "Okay!"
exit 1
;;

*)
echo "Please use either ’yes’ or ’no’ (case-sensitive)"
;;

esac;

COP 4342

Fall 2006 Shell programming, part 2

While/until loops

while list; do list; done;

until list; do list; done;

while executes the do list as long as the last command

in the list returns 0. until executes until the last

command in the list returns 0.

COP 4342

Fall 2006 Shell programming, part 2

while example

#!/bin/bash
2006 06 08 -- rdl
echo -n "Now ’finish’ ? "
read cmd
while test $cmd != "finish"
do

rm NONEXIST
echo "Status of \$? == $?"
echo -n "Now ’finish’ ? "
read cmd

done

COP 4342

Fall 2006 Shell programming, part 2

until example

#!/bin/bash
2006 06 08 -- rdl
echo -n "Now ’finish’ ? "
read cmd
until test $cmd == "finish"
do

rm NONEXIST
echo "Status of \$? == $?"
echo -n "Now ’finish’ ? "
read cmd

done

COP 4342

Fall 2006 Shell programming, part 2

Shifting the arguments

You can “shift” the argument list, eliminating the

current $1 and replacing it with the current $2, and

so forth:

COP 4342

Fall 2006 Shell programming, part 2

Shifting the arguments

#!/bin/bash
while [$# -gt 0]
do
echo "$# --> arguments == ’$@’"
shift;

done

COP 4342

Fall 2006 Shell programming, part 2

Shifting the arguments

[langley@sophie 2006-Fall]$./Script8.sh a b c d e f g h
8 --> arguments == ’a b c d e f g h’
7 --> arguments == ’b c d e f g h’
6 --> arguments == ’c d e f g h’
5 --> arguments == ’d e f g h’
4 --> arguments == ’e f g h’
3 --> arguments == ’f g h’
2 --> arguments == ’g h’
1 --> arguments == ’h’
[langley@sophie 2006-Fall]$

COP 4342

Fall 2006 Shell programming, part 2

exit

We have already talked about exit, but to reiterate

some points about exit:

☞ An exit status of zero should indicate success. It is a

good idea to use an explicit exit NUM in scripts.

☞ An exit status that is non-zero should indicate failure.

☞ C programs use exit(NUM) to return a status.

COP 4342

Fall 2006 Shell programming, part 2

exit example

#/bin/bash
2006 09 08 -- rdl Script9.sh
if ./Script10.sh
then
echo -n "Enter filename: "
read filename
echo "You entered ’$filename’"

else
echo "Okay, no filename needed."

fi

COP 4342

Fall 2006 Shell programming, part 2

exit example

#/bin/bash
2006 09 08 -- rdl Script9.sh
while /bin/true
do
echo -n "Should I ask for a filename? "
read answer
case $answer in

"no")
exit 1
;;

"yes")
exit 0
;;

*)
;;

COP 4342

Fall 2006 Shell programming, part 2

esac
done

COP 4342

Fall 2006 Shell programming, part 2

Regular expressions

Regular expressions are a convenient way to describe a

sequence of characters, and regular expressions are part

of such programs as emacs, awk, and perl.

COP 4342

Fall 2006 Shell programming, part 2

Regular expressions: operations

Concatenation: just place items adjacent, such ab, xyz,
or somechars

COP 4342

Fall 2006 Shell programming, part 2

Regular expressions: operations

Repetition: we use “*” to indicate repetition zero or

more times:

a*b == b, ab, aab, aaab, ...

COP 4342

Fall 2006 Shell programming, part 2

Regular expressions: operations

Special case of repetition: we can specify one or more

times with +:

a+b == ab, aab, aaab, ...

COP 4342

Fall 2006 Shell programming, part 2

Regular expressions: characters and classes

The dot “.” can indicate any character, such as

a.b == a1b, a2b, a3b, ...

COP 4342

Fall 2006 Shell programming, part 2

Regular expressions: characters and classes

To specify a class of characters, you can use the []

syntax:

[abc] == a, b, c

[a-d] == a, b, c, d

[â-z] == NOT a lower case character

[0-9] == 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

COP 4342

Fall 2006 Shell programming, part 2

Anchoring

You can “anchor” an expression to either the beginning

of a string or its end, or both. Use t̂o indicate the

beginning of a line, and $ to indicate the end:

âbc$ matches a line that consists exactly of abc

abc$ matches a line that ends in abc

âbc maches a lines that begins with abc

COP 4342

Fall 2006 Shell programming, part 2

Alternation and grouping

You can specify a group with round brackets “(“ and

“)”.

You can specify alternatives with a vertical “”

(abc)|(def) matches either abc or def

COP 4342

Fall 2006 Shell programming, part 2

Note on grouping

It also possible in many instances possible to make a

reference to whatever matched a group in round brackets.

COP 4342

Fall 2006 Shell programming, part 2

Check chapter 32 for more on regular
expressions

32.20 has a good summary of metacharacters for

different programs.

32.21 has a reference with many useful examples

COP 4342

Fall 2006 Shell programming, part 2

Using grep/egrep

You can use the grep program to find strings in files.

The “-i” option makes the search case-insensitive. If no

file or files are specified, then grep looks to stdin for

input. grep also adds “?” as a special character that

matches 0 or 1 instance of any character.

COP 4342

Fall 2006 Shell programming, part 2

Examples with grep/egrep

egrep [Ll]angley * # finds instances of ‘‘langley’’ or
‘‘Langley’’ in all files in the
current working directory

egrep -i she?p * # finds case-insensitive instances of
shep and she.p

egrep -c /bin/bash * # shows filename and
number of matches

COP 4342

Fall 2006 Shell programming, part 2

Popular options with grep/egrep

☞ -i → case-insensitive

☞ -c → display count of matching lines rather all

matching lines

☞ -v → invert the matching

☞ -H → always show filenames

☞ -h → always suppress filenames

COP 4342

Fall 2006 Shell programming, part 2

☞ -l → just show the filenames that have one or more

matches

COP 4342

Fall 2006 Shell programming, part 2

wc

You can use the wc program to count characters, words,

and lines:

wc -l * # count the number of lines in all files
wc -w * # count the number of words in all files
wc -c * # count the number of characters in all files
wc -lw * # count the number of words and lines in all files
wc * # count words, characters, and lines in all files

COP 4342

