
Fall 2006 Shell programming, part 2

If example

#!/bin/bash
# 2006 09 08 - demonstrate if / then / else
if [ "x$1" != "x" ] && [ -f "$1" ]
then

echo -n "Remove $1 (n)? "
read answer
if [ $answer == "y" ] || [ $answer == "Y" ] || [ $answer == "yes" ]
then

echo "Would remove"
else

echo "Would NOT remove"
fi

else
echo "Please specify a regular file"

fi
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If example

#!/bin/bash
# 2006 09 08 - demonstrate if / then / else
if [ "x$1" == "x" ]
then
echo "Please specify a regular filename!"
exit 1

elif [ ! -f "$1" ]
then
echo "$1 is not a regular file!"
exit 1

else
echo -n "Remove $1 (n)? "
read answer
if [ $answer == "y" ] || [ $answer == "Y" ] || [ $answer == "yes" ]
then
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echo "Would remove"
else

echo "Would NOT remove"
fi

fi
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The case statement

case WORD in PATTERN1 ) COMMANDS ;; PATTERN2 ) COMMANDS

;; ... esac

The idea here is that WORD is tested against the

various PATTERNs listed, in order. The first match then

executes the associated COMMANDs.
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Case example

#!/bin/bash
# 2006 09 08 - case example
case $1 in
"yes")

echo "Thanks!"
exit 0
;;

"no")
echo "Okay!"
exit 1
;;

*)
echo "Please use either ’yes’ or ’no’ (case-sensitive)"
;;

esac;
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While/until loops

while list; do list; done;

until list; do list; done;

while executes the do list as long as the last command

in the list returns 0. until executes until the last

command in the list returns 0.
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while example

#!/bin/bash
# 2006 06 08 -- rdl
echo -n "Now ’finish’ ? "
read cmd
while test $cmd != "finish"
do

rm NONEXIST
echo "Status of \$? == $?"
echo -n "Now ’finish’ ? "
read cmd

done
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until example

#!/bin/bash
# 2006 06 08 -- rdl
echo -n "Now ’finish’ ? "
read cmd
until test $cmd == "finish"
do

rm NONEXIST
echo "Status of \$? == $?"
echo -n "Now ’finish’ ? "
read cmd

done
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Shifting the arguments

You can “shift” the argument list, eliminating the

current $1 and replacing it with the current $2, and

so forth:
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Shifting the arguments

#!/bin/bash
while [ $# -gt 0 ]
do
echo "$# --> arguments == ’$@’"
shift;

done
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Shifting the arguments

[langley@sophie 2006-Fall]$ ./Script8.sh a b c d e f g h
8 --> arguments == ’a b c d e f g h’
7 --> arguments == ’b c d e f g h’
6 --> arguments == ’c d e f g h’
5 --> arguments == ’d e f g h’
4 --> arguments == ’e f g h’
3 --> arguments == ’f g h’
2 --> arguments == ’g h’
1 --> arguments == ’h’
[langley@sophie 2006-Fall]$
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exit

We have already talked about exit, but to reiterate

some points about exit:

☞ An exit status of zero should indicate success. It is a

good idea to use an explicit exit NUM in scripts.

☞ An exit status that is non-zero should indicate failure.

☞ C programs use exit(NUM) to return a status.
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exit example

#/bin/bash
# 2006 09 08 -- rdl Script9.sh
if ./Script10.sh
then
echo -n "Enter filename: "
read filename
echo "You entered ’$filename’"

else
echo "Okay, no filename needed."

fi
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exit example

#/bin/bash
# 2006 09 08 -- rdl Script9.sh
while /bin/true
do
echo -n "Should I ask for a filename? "
read answer
case $answer in

"no")
exit 1
;;

"yes")
exit 0
;;

*)
;;
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esac
done
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Regular expressions

Regular expressions are a convenient way to describe a

sequence of characters, and regular expressions are part

of such programs as emacs, awk, and perl.
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Regular expressions: operations

Concatenation: just place items adjacent, such ab, xyz,
or somechars
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Regular expressions: operations

Repetition: we use “*” to indicate repetition zero or

more times:

a*b == b, ab, aab, aaab, ...
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Regular expressions: operations

Special case of repetition: we can specify one or more

times with +:

a+b == ab, aab, aaab, ...
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Regular expressions: characters and classes

The dot “.” can indicate any character, such as

a.b == a1b, a2b, a3b, ...
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Regular expressions: characters and classes

To specify a class of characters, you can use the [ ]

syntax:

[abc] == a, b, c

[a-d] == a, b, c, d

[â-z] == NOT a lower case character

[0-9] == 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

COP 4342



Fall 2006 Shell programming, part 2

Anchoring

You can “anchor” an expression to either the beginning

of a string or its end, or both. Use t̂o indicate the

beginning of a line, and $ to indicate the end:

âbc$ matches a line that consists exactly of abc

abc$ matches a line that ends in abc

âbc maches a lines that begins with abc
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Alternation and grouping

You can specify a group with round brackets “(“ and

“)”.

You can specify alternatives with a vertical “”

(abc)|(def) matches either abc or def
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Note on grouping

It also possible in many instances possible to make a

reference to whatever matched a group in round brackets.
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Check chapter 32 for more on regular
expressions

32.20 has a good summary of metacharacters for

different programs.

32.21 has a reference with many useful examples
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Using grep/egrep

You can use the grep program to find strings in files.

The “-i” option makes the search case-insensitive. If no

file or files are specified, then grep looks to stdin for

input. grep also adds “?” as a special character that

matches 0 or 1 instance of any character.
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Examples with grep/egrep

egrep [Ll]angley * # finds instances of ‘‘langley’’ or
# ‘‘Langley’’ in all files in the
# current working directory

egrep -i she?p * # finds case-insensitive instances of
# shep and she.p

egrep -c /bin/bash * # shows filename and
# number of matches
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Popular options with grep/egrep

☞ -i → case-insensitive

☞ -c → display count of matching lines rather all

matching lines

☞ -v → invert the matching

☞ -H → always show filenames

☞ -h → always suppress filenames
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☞ -l → just show the filenames that have one or more

matches
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wc

You can use the wc program to count characters, words,

and lines:

wc -l * # count the number of lines in all files
wc -w * # count the number of words in all files
wc -c * # count the number of characters in all files
wc -lw * # count the number of words and lines in all files
wc * # count words, characters, and lines in all files
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