
Fall 2006 Shell programming

Shell Programming Topics

☞ Creating Shell Scripts

☞ Globbing

☞ Aliases, Variables/Arguments, and Expressions

COP 4342

Fall 2006 Shell programming

Shell Programming Topics

☞ Shells, data, and debugging

☞ Structuring control flow

☞ Exit status

COP 4342

Fall 2006 Shell programming

Shell Programming Topics

☞ Not (just) globbing: regular expressions

➳ grep, awk, perl all use regular expressions

COP 4342

Fall 2006 Shell programming

Advantages of shell scripts

☞ Can very easily automate a group of tasks, especially

those with i/o that are related

☞ Can very easily leverage powerful Unix tools

COP 4342

Fall 2006 Shell programming

Disadvantages of shell scripts

➳ Shell scripts execute slowly.

➳ Advanced programming techniques aren’t a feature of

shell programming. Abstraction and encapsulation are

poorly supported.

COP 4342

Fall 2006 Shell programming

What shell to use

☞ For programming, most people have preferred sh and

its derivatives such as bash.

☞ We will use bash for programming, although we will

also talk about csh when appropriate in command shells.

COP 4342

Fall 2006 Shell programming

What shell to use

☞ In the past, many people have preferred csh and tcsh
as command line shells; however, it appears that bash
is now preferred since its support for command line

editing is quite strong and it also is quite useful for shell

programming.

COP 4342

Fall 2006 Shell programming

What shell to use

☞ There is also program busybox which is also worth

knowing about. It is a shell — and a lot more.

The binary itself includes many other programs such as

head, tail, ps, top, find, crontab, and tar as

built-ins.

COP 4342

Fall 2006 Shell programming

Finding more information

☞ man bash

☞ man {alias, bg, bind, break, builtin, cd, command,
compgen, ...}

☞ info bash

☞ Google bash

COP 4342

Fall 2006 Shell programming

Creating a script

☞ By convention, we use an extension of .sh for shell

scripts.

☞ The first line needs to be

#!/bin/bash
#!/bin/sh
#!/bin/csh
#!/sbin/bash

COP 4342

Fall 2006 Shell programming

Creating a script

☞ Now you should put some comments:

2006 09 06 -- original version by rdl
2006 09 07 -- updated ‘‘text’’ by rdl
#
this shell program is used to confabulate the obfuscated
#

COP 4342

Fall 2006 Shell programming

Using echo

☞ The program (and builtin) echo is useful for sending a

given string or strings to stdout.
[langley@sophie 2006-Fall]$ echo a b c
a b c
[langley@sophie 2006-Fall]$ echo "a b c"
a b c
[langley@sophie 2006-Fall]$ echo "$SHELL a b c"
/bin/bash a b c
[langley@sophie 2006-Fall]$ echo $SHELL a b c
/bin/bash a b c
[langley@sophie 2006-Fall]$ echo ’$SHELL a b c’
$SHELL a b c

COP 4342

Fall 2006 Shell programming

Shell variables

☞ Do not have to be declared: just use them. (If you

want to, you can declare them with declare; generally

only useful to make variables read-only.)

☞ Can be assigned a value, or can just have a blank value

☞ Can dereferenced with a “$”

COP 4342

Fall 2006 Shell programming

Shell variables

Examples:

[langley@sophie 2006-Fall]$ a=b
[langley@sophie 2006-Fall]$ b=$a
[langley@sophie 2006-Fall]$ echo "a = $a , b = $b"
a = b , b = b

COP 4342

Fall 2006 Shell programming

reading values from the command line

From the man page for bash:

‘‘One line is read from the standard input, . . . and the
first word is assigned to the first name, the second word to the
second name, and so on, with leftover words and their interven-
ing separators assigned to the last name. If there are fewer
words read from the input stream than names, the remaining names
are assigned empty values. The characters in IFS are used to
split the line into words.’’

COP 4342

Fall 2006 Shell programming

read example

[langley@sophie 2006-Fall]$ read a b c d e f
apple beta cherry delta eta figs and more
[langley@sophie 2006-Fall]$ echo "$a -- $b -- $c -- $d -- $e -- $f"
apple -- beta -- cherry -- delta -- eta -- figs and more

COP 4342

Fall 2006 Shell programming

read example

It is also good to note that you can also specify that

items are to go into an array rather than just individually

named variables with the -a ARRAYNAME option.

For example:

[langley@sophie 2006-Fall]$ read -a arr
a b c d e f g h
[langley@sophie 2006-Fall]$ for i in 0 1 2 3 4 5 6 7
> do
> echo ${arr[$i]} # note the odd syntax to deref!
> done
a

COP 4342

Fall 2006 Shell programming

b
c
d
e
f
g
h

COP 4342

Fall 2006 Shell programming

Command line parameters

☞ When you call a shell script, command line parameters

are automatically setup with $1, $2, etc...
[langley@sophie 2006-Fall]$./Script1.sh abc def ghi
first 3 args: ’abc’ ’def’ ’ghi’

☞ $0 refers to the name of the command (the first item)

COP 4342

Fall 2006 Shell programming

More on command line arguments

☞ $# refers to the number of command line arguments.

☞ $@ refers to the all of the command lines arguments in

one string.

Example:

[langley@sophie 2006-Fall]$./Script2.sh abc def ghi jkl
There are 4 arguments: abc def ghi jkl

COP 4342

Fall 2006 Shell programming

Debugging tips

☞ The options -x and -v are very helpful. You can either

add them to the initial #! line, or you can call the shell

at the command line:

☞ bash -xv Script1.sh abc def

Example:

[langley@sophie 2006-Fall]$ bash -xv Script1.sh ls asd asdf asdf
#!/bin/bash

COP 4342

Fall 2006 Shell programming

2006 09 06 -- Small test script

echo "first 3 args: ’$1’ ’$2’ ’$3’"
+ echo ’first 3 args: ’\’’ls’\’’ ’\’’asd’\’’ ’\’’asdf’\’’’
first 3 args: ’ls’ ’asd’ ’asdf’
echo "cmd: ’$0’"
+ echo ’cmd: ’\’’Script1.sh’\’’’
cmd: ’Script1.sh’
[langley@sophie 2006-Fall]$ bash -x Script1.sh ls asd asdf asdf
+ echo ’first 3 args: ’\’’ls’\’’ ’\’’asd’\’’ ’\’’asdf’\’’’
first 3 args: ’ls’ ’asd’ ’asdf’
+ echo ’cmd: ’\’’Script1.sh’\’’’
cmd: ’Script1.sh’

COP 4342

Fall 2006 Shell programming

Testing

☞ You can test with square brackets:
$ [$ -e /etc/hosts $] $

☞ You can also test with test:
test -e /etc/hosts

COP 4342

Fall 2006 Shell programming

Testing

Example:

[langley@sophie 2006-Fall]$ if test -e /etc/hosts
> then
> echo exists
> fi
exists
[langley@sophie 2006-Fall]$ if [-e /etc/hosts]
> then
> echo exists
> fi
exists

COP 4342

Fall 2006 Shell programming

File testing conditions

You can readily check various file status items:

[-d DIR] # True if directory DIR exists.
[-e SOMETHING] # True if file or directory SOMETHING exists.
[-f FILE] # True if regular file FILE exists.
[-r SOMETHING] # True if file or directory SOMETHING exists and is readable.
[-s SOMETHING] # True if file or directory SOMETHING exists and

has a size greater than zero.
[-x SOMETHING] # True if file or directory SOMETHING exists and

is ‘‘executable’’ by the current userid.

COP 4342

Fall 2006 Shell programming

Numeric testing conditions

You can readily check various numeric values:

[0 -eq 1] # equality
[1 -ne 1] # inequality
[1 -lt 1] # less than
[1 -gt 1] # greater than
[1 -le 1] # less than or equal
[1 -ge 0] # great than or equal

COP 4342

Fall 2006 Shell programming

String testing conditions

You can readily check various numeric values:

[-z STRING] # is the string STRING zero length?
[-n STRING] # is the string STRING non-zero length?
[STR1 == STR2] # ‘‘bash’’ equality; POSIX prefers ‘‘=’’
[STR1 != STR2] # inequality
[STR1 < STR2] # less than
[STR1 > STR2] # greater than

Note that it is a very good idea to “” quote any string

variables; otherwise, the corresponding blank in if [
$var1 != ‘‘today’’] becomes if [!= ‘‘today’’
] !

COP 4342

Fall 2006 Shell programming

exit

☞ You can explicitly exit a shell with exit, which can

take an argument which will give the exit status of the

process. (If you don’t specify the optional value, the

exit status for the whole shell will take the value of the

last command to execute.)
[langley@sophie 2006-Fall]$ bash
[langley@sophie 2006-Fall]$ exit 3
exit
[langley@sophie 2006-Fall]$ echo $?
3

COP 4342

Fall 2006 Shell programming

if / then

☞ We can write if / then statements like:
if condition
then

[... statements ...]
fi

COP 4342

Fall 2006 Shell programming

Quoting

☞ Single quotes stop any globbing or variable expansion

within them, and create a single token (i.e., whitespace

within the quotes is not treated as a separator

character.)

☞ Double quotes allow globbing and variable expansion

within them, and create a single token (i.e., whitespace

within the quotes is not treated as a separator

character.)

COP 4342

Fall 2006 Shell programming

☞ You can use the backslash to quote any single

character.

COP 4342

Fall 2006 Shell programming

Quoting examples

animal=’’horse’’
echo $animal #prints: horse
echo ’$animal’ #prints: $animal
echo ‘‘$animal’’ #prints: horse
cost=2000
echo ’cost: $cost’ #prints: cost: $cost
echo ‘‘chost: $cost’’ #prints: cost: 2000
echo ‘‘cost: \$cost’’ #prints: cost: $cost
echo ‘‘cost: \$$cost’’ #prints: cost: $2000

COP 4342

Fall 2006 Shell programming

Multiple conditions

[$1 -eq $2] && [-e /etc/hosts]
[$1 -eq $2] || [-d /etc]

COP 4342

Fall 2006 Shell programming

General if/then/else

if condition
then

[... statements ...]
elif condition
then

[... statements ...]
[... more elifs ...]
else

[... statements ...]
fi

COP 4342

