
Chapter 13: Scripting Languages

July 28, 2015



Why scripting?

I Scripting languages are strongest at asking other programs to
do something; call it “glue” if you like.



Batch and interactive mode common

I REPL-type batch quite common



Brevity is often the case

I print “Hello world!”; is likely to work just fine in a scripting
language, with perhaps a bit of syntactic sugar.

I Reification of quite a bit of user-land experience as syntax for
pre-existing objects inside the language environment.



Flexible, dynamic typing is the usual case

I Coercion is quite common; also, types can become quite
baroque (look at the perlio manual page, for instance)



Primary Access to system-level objects.

I io, file/directory manipulation, process management, database
access, ipc, networking. . .



Pattern-matching and string manipulation

I PCRE



High-level data types

I Sets, bags, dictionaries, lists, tuples, . . .



Shells

I Truest type of scripting; consists literally of the commands to
a given shell

I Globs and regular expressions
I Pipes and redirection
I Here documents
I Quoting with interpolation and without
I Functions



The crunch-bang

I Dire but neat hack



Text processing and report general

I PERL = “Practical Extraction and Reporting Language”
I Sed, stream editing
I Awk, the moribund



Python

I Unusually, it actually cares about indentation and end-of-line
characters

I Structurally, well, some people really like it and some don’t;
fundamentally, it’s not a lot different than most scripting
languages, but certainly is willing to take on (and sometimes
drop) new features.



Ruby

I A purely object-oriented language; the author wanted a
language more expressive than Perl and more object-oriented
than Python.



Extension languages

I If a software package exposes an API, then one can build
around that API; while this might be external, the scripting
could also incorporated into that environment. For instance,
GIMP, Inkscape, and emacs all have significant extension
capabilities. Some software packages have their own extension
languages; others are more oriented to an API-type
environment.



CGI scripting

I CGI scripting is quite simple; a process receives a http request
(often moderated in some fashion, though not necessarily)
and then replies with a similarily formatted response. Text ->
text is a modality ideally suited to scripting languages.



CGI scripting

I PHP: a lamentable language; of all the languages we will talk
about this semester, is probably the most troubled. Widely
deployed, it has awkward constructions such as == versus
===.



CGI scripting

I Server-side javascript is now competing strongly with PHP;
see this article.



Scripting languages and innovation

I Names and Scopes

I Wide variety of ideas here: Perl, in its usual accommodating
fashion allows about any type of scoping you like; Python and
Javascript use classical nesting and lexical scoping

I TCL has unusua methods for “external” scoping (see fig 13.18)



Scripting languages and innovation

I TCL, like Pleasant, uses strings for everything



Scripting languages and innovation

I Perl has the very unusual idea of letting the program have
rather direct access to subroutine parameters as an
anonymous array



Scripting languages and innovation

I Scripting languages generally have excellent string
manipulation tools as built-in features; i.e., there exists
language syntax for the tool rather than expressing its use as
calls to library routines.



Scripting languages and innovation

I One outstanding example is Perl’s support for regular
expressions as part of the syntax of the language.


