
Lemon and RE2c

August 3, 2015

Lemon is different than Bison

I While there are many excellent guides to Bison, both
commercial and free, Lemon has far fewer: the reason is
simple, Lemon has far fewer quirks and oddities to document.

First things first

I With Lemon, the parser calls the lexer, instead of the very odd
“lexer calls parser” structure that Bison and Flex use

I With Lemon, you don’t write rules using a large number of
alternatives in individual rules; rather, you split separate rules
into separate cases.

No embedded semantic actions

I All semantic actions come after the rule, not in the midst.

Attributes

I If a component needs an attribute, you just use this simple
syntax to name the attribute:

vardecl ::= VAR IDENTIFIER(ID_NAME) EQUALS expression.

{

avl->add(avl,ID_NAME,"");

}

Attribute type declarations

I You declare its type in the %type section:

%type IDENTIFIER {char *}

So, what if I need an embedded semantic action?

I If you need the equivalent of an embedded semantic action,
all you need to do is split the original rule into two parts: the
original, and a “singleton” rule so that its reduction triggers
your semantic action.

So, what if I need an embedded semantic action?

I For instance, let’s say that you have an “if” construct
something like this:

if_stmt ::= IF expr stmt_blk ELSE stmt_blk.

So, what if I need an embedded semantic action?

I and you would like to create some jump labels for the two
branches. It would be nice to have these after the “if” is
recognized, so split this one:

So, what if I need an embedded semantic action?

if_stmt ::= if expr stmt_blk ELSE stmt_blk.

if(JUMP_LABELS) ::= IF.

{

// create two jump labels for the two cases

JUMP_LABELS = create_two_jump_labels();

}

Handy debugging feature of Lemon

I ParseTrace()

You can have the parser emit very useful information about the
state of the parse by simply calling the function ParseTrace()

ParseTrace(stderr, "PARSER SAYS: ");

Ending it all

I Don’t forget to send the Parser a final “null” token:

Parser(Parser,0,0);

RE2C

I RE2C’s model is quite different Lex/Flex; instead of writing a
fairly complete lexer, RE2C expects you to (largely) write the
structure of your lexer.

RE2C

I Inside of that structure, you insert comments with semantic
meaning; these comments are rewritten by RE2C to provide
fast DFA code to recognize those regular expressions.

RE2C, your code

/*!re2c

re2c:define:YYCTYPE = "char";

re2c:define:YYLIMIT = last_char;

re2c:define:YYCURSOR = current_char;

[...]

"," { return(","); }

*/

RE2C, after being rewritten

#line 120 "lexer.c"

{

char yych;

yych = *current_char;

switch (yych) {

case ’,’: goto yy2;

