
Conformance 119 3.9 Unicode Encoding Forms
3.9 Unicode Encoding Forms
The Unicode Standard supports three character encoding forms: UTF-32, UTF-16, and
UTF-8. Each encoding form maps the Unicode code points U+0000..U+D7FF and
U+E000..U+10FFFF to unique code unit sequences. The size of the code unit is specified
for each encoding form. This section presents the formal definition of each of these encod-
ing forms.

D76 Unicode scalar value: Any Unicode code point except high-surrogate and low-surro-
gate code points.

• As a result of this definition, the set of Unicode scalar values consists of the
ranges 0 to D7FF16 and E00016 to 10FFFF16, inclusive.

D77 Code unit: The minimal bit combination that can represent a unit of encoded text
for processing or interchange.

• Code units are particular units of computer storage. Other character encoding
standards typically use code units defined as 8-bit units—that is, octets. The
Unicode Standard uses 8-bit code units in the UTF-8 encoding form, 16-bit
code units in the UTF-16 encoding form, and 32-bit code units in the UTF-32
encoding form.

• A code unit is also referred to as a code value in the information industry.

• In the Unicode Standard, specific values of some code units cannot be used to
represent an encoded character in isolation. This restriction applies to isolated
surrogate code units in UTF-16 and to the bytes 80–FF in UTF-8. Similar
restrictions apply for the implementations of other character encoding stan-
dards; for example, the bytes 81–9F, E0–FC in SJIS (Shift-JIS) cannot represent
an encoded character by themselves.

• For information on use of wchar_t or other programming language types to
represent Unicode code units, see “ANSI/ISO C wchar_t” in Section 5.2, Pro-
gramming Languages and Data Types.

D78 Code unit sequence: An ordered sequence of one or more code units.

• When the code unit is an 8-bit unit, a code unit sequence may also be referred
to as a byte sequence.

• A code unit sequence may consist of a single code unit.

• In the context of programming languages, the value of a string data type basi-
cally consists of a code unit sequence. Informally, a code unit sequence is itself
just referred to as a string, and a byte sequence is referred to as a byte string. Care
must be taken in making this terminological equivalence, however, because the
formally defined concept of a string may have additional requirements or com-
plications in programming languages. For example, a string is defined as a
pointer to char in the C language and is conventionally terminated with a

Conformance 120 3.9 Unicode Encoding Forms
NULL character. In object-oriented languages, a string is a complex object,
with associated methods, and its value may or may not consist of merely a code
unit sequence.

• Depending on the structure of a character encoding standard, it may be neces-
sary to use a code unit sequence (of more than one unit) to represent a single
encoded character. For example, the code unit in SJIS is a byte: encoded char-
acters such as “a” can be represented with a single byte in SJIS, whereas ideo-
graphs require a sequence of two code units. The Unicode Standard also makes
use of code unit sequences whose length is greater than one code unit.

D79 A Unicode encoding form assigns each Unicode scalar value to a unique code unit
sequence.

• For historical reasons, the Unicode encoding forms are also referred to as Uni-
code (or UCS) transformation formats (UTF). That term is actually ambiguous
between its usage for encoding forms and encoding schemes.

• The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is one-to-one. This property guarantees
that a reverse mapping can always be derived. Given the mapping of any Uni-
code scalar value to a particular code unit sequence for a given encoding form,
one can derive the original Unicode scalar value unambiguously from that code
unit sequence.

• The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is not onto. In other words, for any
given encoding form, there exist code unit sequences that have no associated
Unicode scalar value.

• To ensure that the mapping for a Unicode encoding form is one-to-one, all
Unicode scalar values, including those corresponding to noncharacter code
points and unassigned code points, must be mapped to unique code unit
sequences. Note that this requirement does not extend to high-surrogate and
low-surrogate code points, which are excluded by definition from the set of
Unicode scalar values.

D80 Unicode string: A code unit sequence containing code units of a particular Unicode
encoding form.

• In the rawest form, Unicode strings may be implemented simply as arrays of
the appropriate integral data type, consisting of a sequence of code units lined
up one immediately after the other.

• A single Unicode string must contain only code units from a single Unicode
encoding form. It is not permissible to mix forms within a string.

D81 Unicode 8-bit string: A Unicode string containing only UTF-8 code units.

D82 Unicode 16-bit string: A Unicode string containing only UTF-16 code units.

Conformance 121 3.9 Unicode Encoding Forms
D83 Unicode 32-bit string: A Unicode string containing only UTF-32 code units.

D84 Ill-formed: A Unicode code unit sequence that purports to be in a Unicode encoding
form is called ill-formed if and only if it does not follow the specification of that Uni-
code encoding form.

• Any code unit sequence that would correspond to a code point outside the
defined range of Unicode scalar values would, for example, be ill-formed.

• UTF-8 has some strong constraints on the possible byte ranges for leading and
trailing bytes. A violation of those constraints would produce a code unit
sequence that could not be mapped to a Unicode scalar value, resulting in an
ill-formed code unit sequence.

D84a Ill-formed code unit subsequence: A non-empty subsequence of a Unicode code unit
sequence X which does not contain any code units which also belong to any mini-
mal well-formed subsequence of X.

• In other words, an ill-formed code unit subsequence cannot overlap with a
minimal well-formed subsequence.

D85 Well-formed: A Unicode code unit sequence that purports to be in a Unicode encod-
ing form is called well-formed if and only if it does follow the specification of that
Unicode encoding form.

D85a Minimal well-formed code unit subsequence: A well-formed Unicode code unit
sequence that maps to a single Unicode scalar value.

• For UTF-8, see the specification in D92 and Table 3-7.

• For UTF-16, see the specification in D91.

• For UTF-32, see the specification in D90.

A well-formed Unicode code unit sequence can be partitioned into one or more minimal
well-formed code unit sequences for the given Unicode encoding form. Any Unicode code
unit sequence can be partitioned into subsequences that are either well-formed or ill-
formed. The sequence as a whole is well-formed if and only if it contains no ill-formed sub-
sequence. The sequence as a whole is ill-formed if and only if it contains at least one ill-
formed subsequence.

D86 Well-formed UTF-8 code unit sequence: A well-formed Unicode code unit sequence
of UTF-8 code units.

• The UTF-8 code unit sequence <41 C3 B1 42> is well-formed, because it can be
partitioned into subsequences, all of which match the specification for UTF-8
in Table 3-7. It consists of the following minimal well-formed code unit subse-
quences: <41>, <C3 B1>, and <42>.

• The UTF-8 code unit sequence <41 C2 C3 B1 42> is ill-formed, because it con-
tains one ill-formed subsequence. There is no subsequence for the C2 byte
which matches the specification for UTF-8 in Table 3-7. The code unit

Conformance 122 3.9 Unicode Encoding Forms
sequence is partitioned into one minimal well-formed code unit subsequence,
<41>, followed by one ill-formed code unit subsequence, <C2>, followed by
two minimal well-formed code unit subsequences, <C3 B1> and <42>.

• In isolation, the UTF-8 code unit sequence <C2 C3> would be ill-formed, but
in the context of the UTF-8 code unit sequence <41 C2 C3 B1 42>, <C2 C3>
does not constitute an ill-formed code unit subsequence, because the C3 byte is
actually the first byte of the minimal well-formed UTF-8 code unit subse-
quence <C3 B1>. Ill-formed code unit subsequences do not overlap with mini-
mal well-formed code unit subsequences.

D87 Well-formed UTF-16 code unit sequence: A well-formed Unicode code unit sequence
of UTF-16 code units.

D88 Well-formed UTF-32 code unit sequence: A well-formed Unicode code unit sequence
of UTF-32 code units.

D89 In a Unicode encoding form: A Unicode string is said to be in a particular Unicode
encoding form if and only if it consists of a well-formed Unicode code unit sequence
of that Unicode encoding form.

• A Unicode string consisting of a well-formed UTF-8 code unit sequence is said
to be in UTF-8. Such a Unicode string is referred to as a valid UTF-8 string, or a
UTF-8 string for short.

• A Unicode string consisting of a well-formed UTF-16 code unit sequence is
said to be in UTF-16. Such a Unicode string is referred to as a valid UTF-16
string, or a UTF-16 string for short.

• A Unicode string consisting of a well-formed UTF-32 code unit sequence is
said to be in UTF-32. Such a Unicode string is referred to as a valid UTF-32
string, or a UTF-32 string for short.

Unicode strings need not contain well-formed code unit sequences under all conditions.
This is equivalent to saying that a particular Unicode string need not be in a Unicode
encoding form.

• For example, it is perfectly reasonable to talk about an operation that takes the
two Unicode 16-bit strings, <004D D800> and <DF02 004D>, each of which
contains an ill-formed UTF-16 code unit sequence, and concatenates them to
form another Unicode string <004D D800 DF02 004D>, which contains a well-
formed UTF-16 code unit sequence. The first two Unicode strings are not in
UTF-16, but the resultant Unicode string is.

• As another example, the code unit sequence <C0 80 61 F3> is a Unicode 8-bit
string, but does not consist of a well-formed UTF-8 code unit sequence. That
code unit sequence could not result from the specification of the UTF-8 encod-
ing form and is thus ill-formed. (The same code unit sequence could, of course,
be well-formed in the context of some other character encoding standard using
8-bit code units, such as ISO/IEC 8859-1, or vendor code pages.)

Conformance 123 3.9 Unicode Encoding Forms
If a Unicode string purports to be in a Unicode encoding form, then it must not contain any
ill-formed code unit subsequence.

If a process which verifies that a Unicode string is in a Unicode encoding form encounters
an ill-formed code unit subsequence in that string, then it must not identify that string as
being in that Unicode encoding form.

A process which interprets a Unicode string must not interpret any ill-formed code unit
subsequences in the string as characters. (See conformance clause C10.) Furthermore, such
a process must not treat any adjacent well-formed code unit sequences as being part of
those ill-formed code unit sequences.

Table 3-4 gives examples that summarize the three Unicode encoding forms.

UTF-32
D90 UTF-32 encoding form: The Unicode encoding form that assigns each Unicode sca-

lar value to a single unsigned 32-bit code unit with the same numeric value as the
Unicode scalar value.

• In UTF-32, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <0000004D 00000430 00004E8C 00010302>.

• Because surrogate code points are not included in the set of Unicode scalar val-
ues, UTF-32 code units in the range 0000D80016..0000DFFF16 are ill-formed.

• Any UTF-32 code unit greater than 0010FFFF16 is ill-formed.

For a discussion of the relationship between UTF-32 and UCS-4 encoding form defined in
ISO/IEC 10646, see Appendix C.2, Encoding Forms in ISO/IEC 10646.

Table 3-4. Examples of Unicode Encoding Forms

Code Point Encoding Form Code Unit Sequence
U+004D UTF-32 0000004D

UTF-16 004D
UTF-8 4D

U+0430 UTF-32 00000430
UTF-16 0430
UTF-8 D0 B0

U+4E8C UTF-32 00004E8C
UTF-16 4E8C
UTF-8 E4 BA 8C

U+10302 UTF-32 00010302
UTF-16 D800 DF02
UTF-8 F0 90 8C 82

Conformance 124 3.9 Unicode Encoding Forms
UTF-16
D91 UTF-16 encoding form: The Unicode encoding form that assigns each Unicode sca-

lar value in the ranges U+0000..U+D7FF and U+E000..U+FFFF to a single unsigned
16-bit code unit with the same numeric value as the Unicode scalar value, and that
assigns each Unicode scalar value in the range U+10000..U+10FFFF to a surrogate
pair, according to Table 3-5.

• In UTF-16, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <004D 0430 4E8C D800 DF02>, where <D800 DF02> corresponds to
U+10302.

• Because surrogate code points are not Unicode scalar values, isolated UTF-16
code units in the range D80016..DFFF16 are ill-formed.

Table 3-5 specifies the bit distribution for the UTF-16 encoding form. Note that for Uni-
code scalar values equal to or greater than U+10000, UTF-16 uses surrogate pairs. Calcula-
tion of the surrogate pair values involves subtraction of 1000016, to account for the starting
offset to the scalar value. ISO/IEC 10646 specifies an equivalent UTF-16 encoding form.
For details, see Appendix C.3, UTF-8 and UTF-16.

Note: wwww = uuuuu - 1

UTF-8
D92 UTF-8 encoding form: The Unicode encoding form that assigns each Unicode scalar

value to an unsigned byte sequence of one to four bytes in length, as specified in
Table 3-6 and Table 3-7.

• In UTF-8, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <4D D0 B0 E4 BA 8C F0 90 8C 82>, where <4D> corresponds to U+004D,
<D0 B0> corresponds to U+0430, <E4 BA 8C> corresponds to U+4E8C, and
<F0 90 8C 82> corresponds to U+10302.

• Any UTF-8 byte sequence that does not match the patterns listed in Table 3-7 is
ill-formed.

• Before the Unicode Standard, Version 3.1, the problematic “non-shortest form”
byte sequences in UTF-8 were those where BMP characters could be repre-
sented in more than one way. These sequences are ill-formed, because they are
not allowed by Table 3-7.

Table 3-5. UTF-16 Bit Distribution

Scalar Value UTF-16
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
000uuuuuxxxxxxxxxxxxxxxx 110110wwwwxxxxxx 110111xxxxxxxxxx

Conformance 125 3.9 Unicode Encoding Forms
• Because surrogate code points are not Unicode scalar values, any UTF-8 byte
sequence that would otherwise map to code points U+D800..U+DFFF is ill-
formed.

Table 3-6 specifies the bit distribution for the UTF-8 encoding form, showing the ranges of
Unicode scalar values corresponding to one-, two-, three-, and four-byte sequences. For a
discussion of the difference in the formulation of UTF-8 in ISO/IEC 10646, see
Appendix C.3, UTF-8 and UTF-16.

Table 3-7 lists all of the byte sequences that are well-formed in UTF-8. A range of byte val-
ues such as A0..BF indicates that any byte from A0 to BF (inclusive) is well-formed in that
position. Any byte value outside of the ranges listed is ill-formed. For example:

• The byte sequence <C0 AF> is ill-formed, because C0 is not well-formed in the
“First Byte” column.

• The byte sequence <E0 9F 80> is ill-formed, because in the row where E0 is
well-formed as a first byte, 9F is not well-formed as a second byte.

• The byte sequence <F4 80 83 92> is well-formed, because every byte in that
sequence matches a byte range in a row of the table (the last row).

In Table 3-7, cases where a trailing byte range is not 80..BF are shown in bold italic to draw
attention to them. These exceptions to the general pattern occur only in the second byte of
a sequence.

Table 3-6. UTF-8 Bit Distribution

Scalar Value First Byte Second Byte Third Byte Fourth Byte
00000000 0xxxxxxx 0xxxxxxx
00000yyy yyxxxxxx 110yyyyy 10xxxxxx
zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx
000uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 3-7. Well-Formed UTF-8 Byte Sequences

Code Points First Byte Second Byte Third Byte Fourth Byte
U+0000..U+007F 00..7F
U+0080..U+07FF C2..DF 80..BF
U+0800..U+0FFF E0 A0..BF 80..BF
U+1000..U+CFFF E1..EC 80..BF 80..BF
U+D000..U+D7FF ED 80..9F 80..BF
U+E000..U+FFFF EE..EF 80..BF 80..BF
U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

Conformance 126 3.9 Unicode Encoding Forms
As a consequence of the well-formedness conditions specified in Table 3-7, the following
byte values are disallowed in UTF-8: C0–C1, F5–FF.

Encoding Form Conversion
D93 Encoding form conversion: A conversion defined directly between the code unit

sequences of one Unicode encoding form and the code unit sequences of another
Unicode encoding form.

• In implementations of the Unicode Standard, a typical API will logically convert
the input code unit sequence into Unicode scalar values (code points) and then
convert those Unicode scalar values into the output code unit sequence. Proper
analysis of the encoding forms makes it possible to convert the code units
directly, thereby obtaining the same results but with a more efficient process.

• A conformant encoding form conversion will treat any ill-formed code unit
sequence as an error condition. (See conformance clause C10.) This guarantees
that it will neither interpret nor emit an ill-formed code unit sequence. Any
implementation of encoding form conversion must take this requirement into
account, because an encoding form conversion implicitly involves a verifica-
tion that the Unicode strings being converted do, in fact, contain well-formed
code unit sequences.

Constraints on Conversion Processes
The requirement not to interpret any ill-formed code unit subsequences in a string as char-
acters (see conformance clause C10) has important consequences for conversion pro-
cesses. Such processes may, for example, interpret UTF-8 code unit sequences as Unicode
character sequences. If the converter encounters an ill-formed UTF-8 code unit sequence
which starts with a valid first byte, but which does not continue with valid successor bytes
(see Table 3-7), it must not consume the successor bytes as part of the ill-formed subse-
quence whenever those successor bytes themselves constitute part of a well-formed UTF-8
code unit subsequence.

If an implementation of a UTF-8 conversion process stops at the first error encountered,
without reporting the end of any ill-formed UTF-8 code unit subsequence, then the
requirement makes little practical difference. However, the requirement does introduce a
significant constraint if the UTF-8 converter continues past the point of a detected error,
perhaps by substituting one or more U+FFFD replacement characters for the uninterpre-
table, ill-formed UTF-8 code unit subsequence. For example, with the input UTF-8 code
unit sequence <C2 41 42>, such a UTF-8 conversion process must not return <U+FFFD>
or <U+FFFD, U+0042>, because either of those outputs would be the result of misinter-
preting a well-formed subsequence as being part of the ill-formed subsequence. The
expected return value for such a process would instead be <U+FFFD, U+0041, U+0042>.

Conformance 127 3.9 Unicode Encoding Forms
For a UTF-8 conversion process to consume valid successor bytes is not only non-confor-
mant, but also leaves the converter open to security exploits. See Unicode Technical Report
#36, “Unicode Security Considerations.”

Although a UTF-8 conversion process is required to never consume well-formed subse-
quences as part of its error handling for ill-formed subsequences, such a process is not oth-
erwise constrained in how it deals with any ill-formed subsequence itself. An ill-formed
subsequence consisting of more than one code unit could be treated as a single error or as
multiple errors.

For example, in processing the UTF-8 code unit sequence <F0 80 80 41>, the only formal
requirement mandated by Unicode conformance for a converter is that the <41> be pro-
cessed and correctly interpreted as <U+0041>. The converter could return <U+FFFD,
U+0041>, handling <F0 80 80> as a single error, or <U+FFFD, U+FFFD, U+FFFD,
U+0041>, handling each byte of <F0 80 80> as a separate error, or could take other
approaches to signalling <F0 80 80> as an ill-formed code unit subsequence.

U+FFFD Substitution of Maximal Subparts
An increasing number of implementations are adopting the handling of ill-formed subse-
quences as specified in the W3C standard for encoding to achieve consistent U+FFFD
replacements. See:

http://www.w3.org/TR/encoding/

Although the Unicode Standard does not require this practice for conformance, the follow-
ing text describes this practice and gives detailed examples.

D93a Unconvertible offset: An offset in a code unit sequence for which no code unit subse-
quence starting at that offset is well-formed.

D93b Maximal subpart of an ill-formed subsequence: The longest code unit subsequence
starting at an unconvertible offset that is either:

 a. the initial subsequence of a well-formed code unit sequence, or

 b. a subsequence of length one.

This definition of the maximal subpart is used in describing how far to advance processing
when making substitutions: always process at least one code unit, or as many code units as
match the beginning of a well-formed character, up to the point where the next code unit
would make it ill-formed, that is, an offset is reached that does not continue this partial
character.

Or stated more formally:

Whenever an unconvertible offset is reached during conversion of a
code unit sequence:

1. The maximal subpart at that offset is replaced by a single U+FFFD.

https://www.w3.org/TR/encoding/

Conformance 128 3.9 Unicode Encoding Forms
2. The conversion proceeds at the offset immediately after the maximal
subpart.

This practice of substituting maximal subparts can be trivially applied to the UTF-32 or
UTF-16 encoding forms, but is primarily of interest when converting UTF-8 strings.

Unless the beginning of an ill-formed subsequence matches the beginning of some well-
formed sequence, this practice replaces almost every byte of an ill-formed UTF-8 sequence
with one U+FFFD. For example, every byte of a “non-shortest form” sequence (see Defini-
tion D92), or of a truncated version thereof, is replaced, as shown in Table 3-8. (The inter-
pretation of “non-shortest form” sequences has been forbidden since the publication of
Corrigendum #1.)

Also, every byte of a sequence that would correspond to a surrogate code point, or of a
truncated version thereof, is replaced with one U+FFFD, as shown in Table 3-9. (The inter-
pretation of such byte sequences has been forbidden since Unicode 3.2.)

Finally, every byte of a sequence that would correspond to a code point beyond U+10FFFF,
and any other byte that does not contribute to a valid sequence, is also replaced with one
U+FFFD, as shown in Table 3-10.

Only when a sequence of two or three bytes is a truncated version of a sequence which is
otherwise well-formed to that point, is more than one byte replaced with a single U+FFFD,
as shown in Table 3-11.

Table 3-8. U+FFFD for Non-Shortest Form Sequences

Bytes C0 AF E0 80 BF F0 81 82 41

Output FFFD FFFD FFFD FFFD FFFD FFFD FFFD FFFD 0041

Table 3-9. U+FFFD for Ill-Formed Sequences for Surrogates

Bytes ED A0 80 ED BF BF ED AF 41

Output FFFD FFFD FFFD FFFD FFFD FFFD FFFD FFFD 0041

Table 3-10. U+FFFD for Other Ill-Formed Sequences

Bytes F4 91 92 93 FF 41 80 BF 42

Output FFFD FFFD FFFD FFFD FFFD 0041 FFFD FFFD 0042

Table 3-11. U+FFFD for Truncated Sequences

Bytes E1 80 E2 F0 91 92 F1 BF 41

Output FFFD FFFD FFFD FFFD 0041

Conformance 129 3.9 Unicode Encoding Forms
For a discussion of the generalization of this approach for conversion of other character
sets to Unicode, see Section 5.22, U+FFFD Substitution in Conversion.

